UIC Math 549

Differentiable Manifolds—Vector Calculus Background
John Wood

Some sources and inspiration for this treatment are the advanced calculus or
analysis books by Dieudonné, Loomis & Sternberg, and Spivak, and notes and
books by Milnor.

1. The derivative

DEFINITION. Let U C R™ be an open set, a € U, and f : U — R". The map f is
differentiable at a if there is a linear map A € Hom(R™, R™) with

Lo @) = fla) = Az —a)

z—a |z — a

= 0.

LEMMA. If there is such a \ it is unique.
PROOF. Let A and A\; both satisfy the definition. Then

(A=) (@ —a)| <|f(x) = fla) = Mz = a)| + | = f(z) + fla) + M (2 — a)]
hence |(A — Ap)(z — a)|/|xr —a| — 0 as  — a. For v # 0, letting x = a +v € U,
[(A = A) )|/ ]v] = [(A = M) (Ev)|/[tv] — 0 as ¢ — 0.

Therefore A(v) = A1 (v).
When f is differentiable at a this unique linear map is denoted D f(a).

2. The case m=n=1

Let f: R — R and assume f’(a) exists. Then

He=f ==l WM pf ~oase—a

so Df(a)(v) = f'(a)v. The 1 x 1-matrix for the linear map D f(a) has entry f'(a).

3. The case n =1 of real-valued functions, partial derivatives

ProposiTiON. If f : U — R is differentiable at a € U C R™, then the partial
derivatives of f exist at a and determine D f(a).



PROOF. Let eq,...,e,, be the standard orthonormal basis for R™. Then

tm | 101D =IO 100 = g @ 100) = [l@) = D) @)Fer)

t—0 t t—0 |tes|

= ()’
hence the partial derivative with respect to the ith variable exists:

gj (a) = Dif(a) = Dfa)(er) = lim T2 H 1D = T10)

If v=>,ve;, then Df(a)v=>_, D;f(a)v,.
More generally, the directional derivative is defined by

D.f(a) = lim f(a+tvt) — fla)

This limit may exist, in some or all directions, even if f is not differentiable at a. The
gradient of f at a is the vector grad f(a) = >, D;f(a)e; and, if f is differentiable at a,

Df(a)o = D, f(a) = grad f(a) - v

For f to be differentiable at a it is necessary, but not sufficient, for the partial derivatives
to exist at a. It is even necessary, but not sufficient, for the directional derivative to exist at
a for all v and to define a linear function. A sufficient condition for f to be differentiable is
given by the following theorem, but this condition is not necessary.

THEOREM. Let f: U — R, U open in R™. Suppose the partial derivatives D, f are
each continuous at a € U. Then f is differentiable at a and Df(a)v =), D;f(a)v;.

PRrOOF. Given € > 0 there exists 6 > 0 such that

|v —al <0 =|D;f(x) — D;f(a)| < ¢ for all i.

Let & = (21, -+, X, Qig1, - -5 am); §o = a, &n = x. Then [§; — a|] < § and

fa) = fla) =Y f(&) — f(&-).

i=0
Let ;(t) = f(&-1 + te;). Then

f&) = f(&i1) = wilzi — ai) — ¢i(0) = @' (t:) (v — a;) = D f (&1 + ties) (zi — ai)
for some t; with 0 < t; < x; — a;, by the mean value theorem in one variable. Now

\f(x) — fla) = Dif(a)(wi — a)| < Y 1f(&) = (&) — Dif (a) (@i — @)
<Y (&) = (&) = Dif (St + tied) (wi — ai)| + Y {Dif(&—1 +tie:) — Dif(a)Hai — a;)]

<0+ nelr — al.

|[f(z) = fla) = Az — a)
|z — al

> D;f(a)v;. Therefore f is differentiable at a.

Hence — 0 as © — a where A is the linear map defined by A(v) =
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4. The derivative of linear and bilinear maps

LEMMA. If f is a linear map then Df(a) = f.
PROOF. Since f is linear, f(z) — f(a) — f(z —a) = 0.
LeEMmMA. If U, V,W are vector spaces and : U x V — W is bilinear, then
Dp(a,b)(u,v) = B(a,v) + B(u, b).
PROOF. Note that the map ¢(a,b) defined by ¢(a,b)(u,v) = B(a,v) + B(u,b) is linear
from U x V — W and

ﬂ(a + u7b+ U) - 6(aa b) - E(a’a b)(uvv) = ﬂ(u, 'U)'
The norm |(u,v)| = v/[ul? + [v]2, and |u||v| < max{|u|?, [v]*} < |u|? + |v|?, hence
Bu,v) = [ul[v]B(u/|ul,v/v]) < (u, v)[Bu/lul,v/lv]), for u # 0,v # 0.

Therefore |5(u,v)|/|(u,v)| — 0 as (u,v) — (0,0).

Examples of bilinear maps 3 : R x R™ — R".

=m=n=1, B(r,s) =rs
=1, m=n, B(r,u) = ru,
{=m, n=1, Blu,v) =u-wv,
{=m=mn=3, B(u,v) =uxv
5. A norm on Hom(R™ R")
Let eq,..., e, be the standard orthonormal basis for R™ and €y, ...,¢€, be the standard

orthonormal basis for R". Let v = ), z,e; € R™, so r; = x - €. Let ¢ € Hom(R™,R™) and
set gg = 6(62) : Ej- Then g(l’) = Zz $Z€(€Z) = Zj Zz gleé]

PROPOSITION. If |¢/| < k for all 4,7, then |[(z)| < \/mn k|z|.

PrOOF. By Cauchy’s inequality, | S, | < {3°,(¢)?}/|z| < /mk|x|. Then

()| = {2(26@2}1” < vmm klz].

J
The continuous real-valued function [¢(z)| is bounded on the compact unit sphere,
{z :|z| = 1} C R™, and attains its bound.
DEFINITION. For a linear map ¢, define ||¢|| = sup{|¢(z)| : || = 1}.
COROLLARY. (i) |[l(z)| < ||¢]| |z| and (ii) ||¢]] < v/mnk.



6. Lipschitz continuity of differentiable functions

ProPOSITION. If f: U — R"™ where U is open in R™ and f is differentiable at a, then
there exist § > 0 and k > 0 such that |z —a| <6 = |f(x) — f(a)| < k|z — al.

PROOF. There is a linear map A such that the function p(z) = f(z) — f(a) — Mx — a)
satisfies |p(z)|/|z — a| — 0 as © — a. Therefore there is a § > 0 such that |¢(x)| < |z — q
for |z —al < 6. Then |f(z) — f(a)] = Mz —a) + ¢(x)| < ([N + 1)|z — a] for |z —a| <.
Take k = ||\l + 1.

The conclusion of the Proposition is called Lipschitz continuity at a; it implies that f is
continuous at a.

7. The chain rule
THEOREM. Ifa e U CR™ beVCR" f: U —YV, fla)=b,g:V — RP, fis
differentiable at a, and g is differentiable at b; then g o f is differentiable at a and
D(g o f)(a) = Dg(b) o Df(a).

PROOF. (See Spivak, p. 19.) Let A = Df(a), p = Dg(b) and set

p(x) = f(x) = fla) = A(z —a)

U(y) = g(y) — g(b) — u(y —b)

p(x) = g(f(x)) — g(b) — p(AMz — a)).

We have
(i) lp(@)|/|z —al = 0as z — a,
(ii) [W)|/ly —bl — 0asy —b.

From the definitions,

First u(p(2))] < Ilull¢(@)], so by () lu(p(@)|/le - al — 0 as = — a.
Second, by Proposition 6, there are k£ > 0,6 > 0 such that

|z —al <6 =|f(z) = fla)| < klz —al.
By (ii), for any € > 0 there is a §; > 0 such that
|f(@) = fla)| < é1 = [o(f(@))] <elf(z) — fla)l.

So for 0 # |z — a| < min{d, d;/k} we have [ (f(x))|/|x — a| < k. Hence
lp(z)|/|x — a| — 0 as x — a which gives the result.
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8. Sample computations

(a) Let f(z) =2z -2 = (o A(x) where A(x) = (z,z) is linear and ((z,y) = x - y. Then

Df(a)(u) = DB(A(a)) o DA(a)(u) = Df(a, a)(u, u) = B(a,u) + B(u, a).
Since (3 is symmetric, D f(a)(u) = 2a - u and grad f(a) = 2a.
If g(z) = |v —pl = V/f(x = p),
1 a—p

Dg(a)(u) = me(a —p)(u) = a—pl

-u for a # p.

So, for = # p, grad g(x) = ;, the unit vector at x pointing away from p.

|z = p|
(b) The derivative of a sum.
LEMMA. Let f and g : U — R" be differentiable at a € U C R™.
Define (f,g) : U — R* x R" by (f,g)(z) = (f(2), g(x)). Then

D(f,g)(a) = (Df, Dg)(a).

PROOF. Let A = Df(a), p(z) = f(z) — f(a) = Az — a), u = Dyg(a), and () =
9(x) - g(a) — p(x — a). Then (2, 9)() = (f,9)(x) - (f,g)(@) — (A, p)(x — a) and

(e, 9@ _ [le@)l? | ()P

| — al - |t —al?> |z —al?

—0asx — a.

Define the linear map s : R” x R® — R" by s(y1,y2) = 11 + y2. Now (f + g)(z) =
f(x) +g(x) =so(f,g)(z). Hence the derivative of a sum is the sum of the derivatives:

D(f +g)=Df + Dg.

(c) The set M(n) of n x m-matrices is an n*-dimensional vector space under addition
and scalar multiplication and a ring under matrix multiplication. Let (A, B) = AB and
t(A) = A" be the transpose. The maps ¢ and (I,t) are linear as maps of vector spaces
where [ is the identity linear map. On products ¢ satisfies t(AB) = t(B)t(A). Define
£+ M(n) — M(n) by f(A) = A 50 f = fo (1)

Let O(n) C M(n) be the orthogonal group, O(n) = {A : f(A) = I}. Thus A € O(n)
means A is invertible and A* = A7

EXERCISE. This is the computational part of a proof that O(n) is a manifold of dimension
n(n —a)/2. Show:

f(A) is symmetric, f(A) =t(f(A)).

Df(A)(M) = AM"+ MA".

If A€ O(n), then Df(A) maps M (n) onto the vector space of symmetric matrices.
[Hint: Given a symmetric S, take M = 3SA]
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9. Differentiability of maps to R”

The results of §3 extend to maps to R".

ProrosiTION. If f: U — R" is differentiable at a € U then the partial derivatives of
the components D; f; exist at a and are the entries in the matrix representing D f(a). If all
the partials are continuous at a then f is differentiable at a.

PROOF. (See Spivak, p. 21, and for notation §§3, 5.) Define the linear projection map
7 R" — R by m;(y) = y - €;. The jth component of f is f; =m0 f, f(x) = >_, fi(v)e;
and

Dfj(a) = Dm;(f(a)) o Df(a) = ;0 Df(a).
The partial derivatives 32 (a) = D; f;(a) = Df;(a)(e;) = Df(a)(e;) - &;.
If u=73", ue;, then Df(a)u= 7.5 Difj(a)ue;.
Introducing the Jacobian matrix we write D f(a)u as a matrix product:
Dfi(a)u Difi(a) ... Dmfi(a) uy
Df(a)u = : = : : :
Dfn<a)u len(a) Dmfn<a> Um
If all the partials are continuous at a, by §3 each D;f(a) exists and by §8(b) D f(a) exists.
When m =1, f(t) is a path in R" and we define the velocity vector f'(t) = D f(t)(e1).

10. Mean value theorems

ProrosiTioN. If U C R™ is convex, f : U — R is differentiable, and a,z € U, then
f(z) — f(a) = Df({)(x — a) where ¢ = a + to(z — a) for some 0 < t5 < 1.

PROOF. Let ¢(t) = f(a+t(x — a)). By the chain rule ¢'(t) = Df(a+t(x — a))(z — a).
By the one-variable mean value theorem

flx) = fla) = (1) = ¢(0) = ¢'(to) = Df(C)(x — a)
where ( = a + to(z — a) for some 0 < 5 < 1.
COROLLARY. If |[Df(Q)|| < k for any ¢ € U, then |f(x) — f(a)| < k|z — al.
This follows from the Proposition and Corollary §5(i).
The Proposition is not true in general for maps to R”, n > 1. For example let
f : R — R? describe a helix about the vertical axis and take x vertically above a. Then

x — a points straight up while Df(¢)(u) never does. The following Theorem extends the
result of the Corollary to maps to R™. It says f is Lipschitz continuous on U.

THEOREM. If U C R™ is convex, f : U — R" is differentiable on U, a,z € U, and
of; k
&];]Z < N on U for all 4, j, then |f(z) — f(a)| < k|lz — al.

PRrROOF. By the Proposition f;(z) — f;j(a) = Df;(¢;)(x — a). By §5 applied to the real-
valued function f;, ||Df;(¢)] < \Lf By the Corollary, |f;(z) — fj(a)| < \/iﬁkv —al|. Then

n

|f(z) — f(a)| < klx — a| as in §5.




10a. Alternate proof of the mean value theorem

In §10 we used the one-variable mean value theorem. The following proof gives both
the Corollary and Theorem above without assuming the one-variable theorem and does not

depend on bounds on the partial derivatives. See Loomis & Sternberg, p. 148, or Dieudonné,
p. 153.

THEOREM. Let f : [a,b] — R" be continuous on [a,b] and differentiable on (a,b).
Assume |f'(t)| < k for a <t < b, where (see §9) f'(t) = D1 f(t)(e1). Then
[f(b) = fla)] < k(b —a).
PROOF. Fix e > 0. Let A={z € [a,b] : |f(x) — f(a)]| < (k+¢e)(x —a)+e}.
(1) Since f is continuous at a there is a 6 > 0 such that

|f(x) — f(a)| <cfora<z<a+d

so ¢ € A for some z > a.

(2) Set £ = sup A. Either £ € A or for any § > 0 thereisat with{—§ <t < /landt € A.
But then, by the continuity of f at ¢, ¢ € A.

(3) If £ < b then f'(¢) exists and |f'(¢)| < k. Hence there is a § > 0 such that
C<t<l+0=|f(t)— fO] < (k+e)(t—20).
Then
[f @) = fla)l < |f(8) = FOI +[£(6) = f(a)]

<(k+e)t-0)+(k+e)l—a)+e
=(k+e)t—a)+e.
and hence t € A for some t > ¢, a contradiction. Therefore ¢ = b and, as in (2), b € A.
Since € > 0 is arbitrary, |f(b) — f(a)| < k(b — a).
COROLLARY. Let U C R™ be convex, a,b € U, f : U — R" be differentiable, and
assume || D f(z)|| < k for x € U. Then
|f(b) = f(a)] < k|b—al.

PROOF. Define ¢: R — R" by ¢(t) = tb+ (1 — t)a. Then ¢/(t) =b—a and foc(l) —
foc(0) = f(b)— f(a). For 0 <t <1, c(t) € U and D(foc)(t)(er) = Df(e(t))(b—a), so
|(foc) )| <||IDf(c(t))|l|b—a] < k|b— al|. The result follows from the Theorem.



11. The inverse function theorem

DEFINITION. A function f: U — R" is said to be of class C! if the partial derivatives
exist and are continuous everywhere on U, f is of class C* if the partial derivatives of orders
k and less are continuous, and f is O if it is C* for all positive integers k.

THEOREM. Given a € U C R", U open, and a C! function f : U — R" with f(a) = b
such that Df(a) is invertible, there are neighborhoods V of a, V' C U, and W of b and a
unique C* map g : W — V such that the restriction f|V and g are inverses. The derivative
of gis Dg(y) = Df(g(y))~'. Further, if fis C* (1 < k < 00) then g is also.

PLAN. The map g will need to satisfy g(b) = a. Let go(y) = a be a first approximation to
g. Since D f(a) is invertible, the linear approximation to f, y = f(z) ~ f(a)+ D f(a)(z —a),
can be solved for z. Let g;(y) be this solution: ¢;(y) = a + Df(a)"*(y — b). We will define
iteratively a sequence of functions {g,} converging to the local inverse of f.

PROOF. (1) Define F(x,y) =z + Df(a) " '(y — f(x)) on U x R™. Let D;F(a,b) denote
the derivative of the function z — F(z,b) at x = a. Then
F(a,b) = a+ Df(a)~' (b~ f(a)) = a,
DyF(,y) = I - Df()" o Df(x), and
DiF(a,y) =1—Df(a) " oDf(a) = 0.
Dy F(z,y) does not depend on y and is the zero map for x = a. Hence for x near a, D f(z)
is invertible and the entries in matrix Dy F'(z,y) are small. Choose k > 0 so that:

(i) Bi(a) C U and D f(z) is invertible for € By(a), and

1
| D1 F(z,y)| < 3 for x € Bi(a). Then

. 1
(i) z,€ € Bila) = |F(z,y) = F(&y)| < 5lo — ¢
using the mean value theorem for the function z — F(z,y). Since

|[F(a,y) —al = |[Df(a)" (y = b)| < [ Df(a)~" [ ly - bl

if we set 6 = —————— we have:
2| Df(a)~t|

(iii) y € Bs(b) = F(a,y) € Bia(a)
and the same implication for the closed balls.
(2) Let F be the set of continuous functions h : Bs(b) — By(a) such that h(b) = a. For
h € F define Th(y) = F(h(y),y). Then Th(b) = F(a,b) = a. For y € Bs(b),
[Th(y) — a| = [F(h(y),y) — a
< [F(h(y),y) — Fla,y)| + [F(a,y) — a

1 k
< §\h(y) —al| + 3 <k by (ii) and (iii).




Hence Th(y) € Bi(a) so Th € F and T : F — F. The same argument, using the open
version of (iii), shows y € Bs(b) = T(y) € Bi(a).

(3) T has a fixed point.

Define a sequence of functions in F by go(y) = a and g,4+1(y) = Tgn(y) = F(gn(y),v).

Note that g; is as defined in the plan. To shorten notation, temporarily fix y and set
Tn = gn(y). We have xy = a, 1 = F(a,y), and by (iii) |x; — xo| < k/2.

1 1
[Tni1 — @u| = [F (20, y) — Fzn-1,y)| < 5\% —Tpq| <00 < —\371 — o < pEFEE

1 1 k
m = Tn| < |Tm — Ty nl — Tp| < k<_7
Ty — | < |y, — T | + -+ T — 20 <2m+ +2n+1) on

for n < m. Therefore {x,} is a Cauchy sequence.
Let x = limx,,. Since each x,, € Bi(a), z € Bi(a). Define the map

9: Bs(b) — Bila) by g(y) =z = lim g,(y).

k -
Since |g(y) —gn(y)| < -, the sequence {g,} converges uniformly on B;(b), so g is continuous

and g € F. Since F' is continuous, Tg = g:
9(y) = lim g, (y) = lim F(gn(y),y) = F(limgn(y),y) = F(9(y),y) = Tg(y).

(4) g is a unique local inverse of f.

Set W = Bs(b) and V = By(a) N f~Y(W) C U. V and W are neighborhoods of a
and b respectively. If y € W, by (3) T (y) g(y) and by the definition of T'g, g(y) =
9(y) + Df(a)" (y — f(g(y))). Hence f(g(y)) =y. Then by (2), g(y) €V, g: W — V, and
fog=1y.

If 2,6 € V and f(x) = f(§) =y € W, then F(z,y) = z, and F(§,y) = £ By (ii)
|z — & < 3|z — €[, hence z = £ Therefore f is one-to-oneon V. If z € V, let y = f(z) € W
and Iet € = g(f(x)) € V. Now £(€) = £(g0 (x)) = f o g(f(x)) = f(x). Therefore z = £,
9(f(z)) =z, and go f = 1y.

Let h be another inverse of f with h(b) = a. Let both h and g be defined on W; C W,
and set V; = By(a) N f~1(Wy) C V. For y € Wi, let = g(y), and £ = h(y). Since g and h
are right inverses of f, f(x) = f(§). Since f is 1-1, x = £ and hence g = h on Wj.

(5) g is Lipschitz continuous.

Let g(y) = x, g(n) = £ for y,n € Bs(b). Since g = Tg, v = F(x,y) and § = F(§,n).
Then

|z —&| = |F(x,y) — F(&,n)
<|F(x,y) = F(§y)| + [F(&y) — F(&n)

< Sl =&l +1Df(@ -
Therefore L[z — €| < |Df(a)~"|| |y — n| and hence |g(y) — g(n)| < 2|[Df(a)| |y — 7).

9



(6) g is differentiable.
Since f is C' and, by (i) Df(€) is invertible for £ € Bi(a), we can choose k so that

IDf(E)7H < & for € € By(a).
Let

p(x) = fx) = f(§) = Df(E)(x —¢).

Then |¢(z)|/|x — & — 0 as . — &, so for any € > 0, |p(z)| < |z — €] for x near €.
Let

(y) =g(y) —gn) —DfE) " (y—n)
= g(y) —g(n) = Df(E) Hp(x)+ Df(E)(x— &)}
=g(y) —g(n) — (& = &) — Df(&) " (e(x))
(

Then
[U(y)| < klp(z)| < kelx — ] for x near &,
< 2k*¢|ly — 1| for y near n by (5).

Hence |¢(y)|/ly —n| — O0asy — n. Therefore g is differentiable at n and Dg(n)
Df(gtm)~

(7) If fis C* sois g.

We can write Dg as the composition Dg = i0D fog where i(A) = A~! is matrix inversion.

Bs(0)-LU 2L cemn) - Gen),

where ¢ is continuous, f is C* so that Df is C*~1, and i is O by Cramer’s rule. Since g
is continuous, the composition, Dy is continuous, so g is C'. Now if g is CV for any j < k,

then similarly, Dg is C7, and g is C’*!. By induction g is CF, for 1 < k < oo.
This completes the proof of the inverse function theorem.

12. Applications of the inverse function theorem

IMPLICIT FUNCTION THEOREM. Let (a,b) € R¥ x R™. Let f be a C! function from a
neighborhood of (a,b) to R™ with f(a,b) = c¢. Let Dsf(a,b), the derivative of the function

y +— f(a,y), be invertible.

Then there are neighborhoods a € U C R*, (a,b) € V C R¥ x R", and ¢ € W C R" and

a C! function g : U — R™ such that f(V) C W and

(r,y) € Vand f(z,y) =c <= z €U and y = g(x),
Dg(l‘) = —Dgf(l’,g(l’))_l o ‘le(xhg('r))
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Further there is a C! diffeomorphism G : U x W — V such that, defining
gw(z) =m0 G(z,w), wehave f(x,y)=w <= y = g,(x).
The function ¢, : U — V define by ¢, (x) = G(z,w) parameterizes the level surface
fHw) ={(z,y) € V: f(z,y) = w}.

PROOF. Define F' on the domain of f with values in R¥ x R" by F(x,y) = (z, f(x,y)).
Then F(a,b) = (a,c) and the Jacobian matrix of DF(x,y) is

)

and M = Dyf =

where

a(fla---vfn)
8(x1, c. ,!,I?k>

Since M(a,b) is invertible, DF(a,b) is invertible.

The inverse function theorem gives a map G which we may assume is defined on a product
neighborhood U x W C R* x R" of (a,c). Let V.= G(U x W). Then F|V and G|U x W are
inverses. If (z,y) € V and F(z,y) = (z, f(x,y)) = (x,w) € U x W, then G(z,w) = (z,y)
and f(z,y) = w. Define g,,(z) = m 0o G(x,w) = y. Then f(z, g,(x)) = f(x,y) = w. For the
case f(x,y) = ¢, take g = g..

Since F has a C' inverse on V, it follows that DF is invertible on V and, from the
form of its Jacobian matrix, that the matrix M (x,y) of Dyf(x,y) is also invertible. As a
composition, g, (x) is differentiable. Differentiating f(z, g, (%)) = w with respect to = using
the chain rule we get

a(flw'-afn)

L=Df= )
1f 8(3/17731”)

D f(x, gu(x)) + Daf (z, gw(x)) 0 Dgy(x) =0, hence
Dgu(x) = —Daf(z, gu()) ™" o Dif(z, gu(2)).

Notice that V' is not a product, the slice {y € R" : (z,y) € V'} depends on z.

PROPOSITION 1. Let p € R™ and let f be a C! map on a neighborhood of p to R*, m > n,
with D f(p) surjective. Then there is a neighborhood p € V' C R™ and a diffeomorphism
h:U — V, U open in R™, such that foh(z1,...,2m) = (Tm_nt1,.-.,Tm) Or foh=ms.

PROOF. Let m = k + n. Since Df(p) is surjective we can reorder the variables, i.e.
the coordinates of R™, x1,...,x,,, so that the Jacobian matrix of derivatives with respect
to the last n variables is invertible. Then the implicit function theorem applies: the map
F(z) = (z1,..., 2, f(z)) restricted to a neighborhood V' of a has an inverse h : U — V.
Then Foh(z)=zand foh=my0Foh=m.
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PROPOSITION 2. Let a € U C R™ be open and f : U — R” be a C! map, m < n,
with D f(a) injective. Then there are neighborhoods a € Uy C U, V C R™ with f(U;) C V,
and b € W C R" and a diffeomorphism h : V. — W such that ho f(zq,...,2,) =
(T1,. .., Tm,0,...,0).

PROOF. The Jacobian matrix of D f(a) has an invertible m x m submatrix A. We may
permute the coordinate functions, fi,..., f,., i.e. the coordinates in the range R", so that

the first m rows of the Jacobian of f are an invertible matrix A.
Define F': U x R"™™™ — R" by

F(zy,...,xn) = f(x1, .., 2m) + (0, .., 0, g1y - oo )

Then F(a,0) = f(a) +0 =0 and

DF(a,0) = (;‘ ?)

which is invertible. By the inverse function theorem there are neighborhoods (a,0) € V' C
UxR"™ and be W C R" and amap h: W — V inverse to F|V : V — W.
Set i(z1,...,Tm) = (21,...,2m,0,...,0), 50 Foi=f. Let Uy =i (V). On U,

hof=hoFoi=1.

Think of (h, W) as a new coordinate chart for R with respect to which the map f has
the simplest possible form: ho f =i.

It follows that f|U; is a homeomorphism onto its image in the induced topology. That
is O is open in U if and only if f(O) is the intersection with f(U;) of an open set in R".

12



