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Differentiable Manifolds—Vector Calculus Background

John Wood

Some sources and inspiration for this treatment are the advanced calculus or

analysis books by Dieudonné, Loomis & Sternberg, and Spivak, and notes and

books by Milnor.

1. The derivative

Definition. Let U ⊂ Rm be an open set, a ∈ U , and f : U −→ Rn. The map f is

differentiable at a if there is a linear map λ ∈ Hom(Rm,Rn) with

lim
x→a

|f(x)− f(a)− λ(x− a)|
|x− a|

= 0.

Lemma. If there is such a λ it is unique.

Proof. Let λ and λ1 both satisfy the definition. Then

|(λ− λ1)(x− a)| ≤ |f(x)− f(a)− λ(x− a)|+ | − f(x) + f(a) + λ1(x− a)|

hence |(λ− λ1)(x− a)|/|x− a| → 0 as x→ a. For v 6= 0, letting x = a+ v ∈ U ,

|(λ− λ1)(v)|/|v| = |(λ− λ1)(tv)|/|tv| → 0 as t→ 0.

Therefore λ(v) = λ1(v).

When f is differentiable at a this unique linear map is denoted Df(a).

2. The case m = n = 1

Let f : R −→ R and assume f ′(a) exists. Then

|f(x)− f(a)− f ′(a)(x− a)|
|x− a|

=

∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣→ 0 as x→ a

so Df(a)(v) = f ′(a)v. The 1× 1-matrix for the linear map Df(a) has entry f ′(a).

3. The case n = 1 of real-valued functions, partial derivatives

Proposition. If f : U −→ R is differentiable at a ∈ U ⊂ Rm, then the partial

derivatives of f exist at a and determine Df(a).
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Proof. Let e1, . . . , em be the standard orthonormal basis for Rm. Then

lim
t→0

∣∣∣∣f(a+ tei)− f(a)

t
−Df(a)(ei)

∣∣∣∣ = lim
t→0

|f(a+ tei)− f(a)−D(f)(a)(tei)|
|tei|

= 0,

hence the partial derivative with respect to the ith variable exists:

∂f

∂xi
(a) = Dif(a) = Df(a)(ei) = lim

t→0

f(a+ tei)− f(a)

t
.

If v =
∑

i viei, then Df(a)v =
∑

iDif(a)vi.

More generally, the directional derivative is defined by

Dvf(a) = lim
t→0

f(a+ tv)− f(a)

t
.

This limit may exist, in some or all directions, even if f is not differentiable at a. The

gradient of f at a is the vector grad f(a) =
∑

iDif(a)ei and, if f is differentiable at a,

Df(a)v = Dvf(a) = grad f(a) · v

For f to be differentiable at a it is necessary, but not sufficient, for the partial derivatives

to exist at a. It is even necessary, but not sufficient, for the directional derivative to exist at

a for all v and to define a linear function. A sufficient condition for f to be differentiable is

given by the following theorem, but this condition is not necessary.

Theorem. Let f : U −→ R, U open in Rm. Suppose the partial derivatives Dif are

each continuous at a ∈ U . Then f is differentiable at a and Df(a)v =
∑

iDif(a)vi.

Proof. Given ε > 0 there exists δ > 0 such that

|x− a| < δ ⇒ |Dif(x)−Dif(a)| < ε for all i.

Let ξi = (x1, . . . , xi, ai+1, . . . , am); ξ0 = a, ξm = x. Then |ξi − a| < δ and

f(x)− f(a) =
m∑
i=0

f(ξi)− f(ξi−1).

Let ϕi(t) = f(ξi−1 + tei). Then

f(ξi)− f(ξi−1) = ϕi(xi − ai)− ϕi(0) = ϕ′(ti)(xi − ai) = Dif(ξi−1 + tiei)(xi − ai)

for some ti with 0 < ti < xi − ai, by the mean value theorem in one variable. Now∣∣∣f(x)− f(a)−
∑

Dif(a)(xi − ai)
∣∣∣ ≤∑ |f(ξi)− f(ξi−1)−Dif(a)(xi − ai)|

≤
∑
|f(ξi)− f(ξi−1)−Dif(ξi−1 + tiei)(xi− ai)|+

∑
|{Dif(ξi−1 + tiei)−Dif(a)}(xi− ai)|

≤ 0 + nε|x− a|.

Hence
|f(x)− f(a)− λ(x− a)|

|x− a|
→ 0 as x→ a where λ is the linear map defined by λ(v) =∑

Dif(a)vi. Therefore f is differentiable at a.
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4. The derivative of linear and bilinear maps

Lemma. If f is a linear map then Df(a) = f .

Proof. Since f is linear, f(x)− f(a)− f(x− a) = 0.

Lemma. If U, V,W are vector spaces and β : U × V −→ W is bilinear, then

Dβ(a, b)(u, v) = β(a, v) + β(u, b).

Proof. Note that the map `(a, b) defined by `(a, b)(u, v) = β(a, v) + β(u, b) is linear

from U × V −→ W and

β(a+ u, b+ v)− β(a, b)− `(a, b)(u, v) = β(u, v).

The norm |(u, v)| =
√
|u|2 + |v|2, and |u||v| ≤ max{|u|2, |v|2} ≤ |u|2 + |v|2, hence

β(u, v) = |u||v|β(u/|u|, v/|v|) ≤ |(u, v)|2β(u/|u|, v/|v|), for u 6= 0, v 6= 0.

Therefore |β(u, v)|/|(u, v)| → 0 as (u, v)→ (0, 0).

Examples of bilinear maps β : R` × Rm −→ Rn.

` = m = n = 1, β(r, s) = rs

` = 1, m = n, β(r, u) = ru,

` = m, n = 1, β(u, v) = u · v,
` = m = n = 3, β(u, v) = u× v.

5. A norm on Hom(Rm,Rn)

Let e1, . . . , em be the standard orthonormal basis for Rm and e1, . . . , en be the standard

orthonormal basis for Rn. Let x =
∑

i xiei ∈ Rm, so xi = x · ei. Let ` ∈ Hom(Rm,Rn) and

set `ji = `(ei) · ej. Then `(x) =
∑

i xi`(ei) =
∑

j

∑
i `
j
ixiej.

Proposition. If |`ji | ≤ k for all i, j, then |`(x)| ≤
√
mnk|x|.

Proof. By Cauchy’s inequality, |
∑

i `
j
ixi| ≤ {

∑
i(`

j
i )

2}1/2|x| ≤
√
mk|x|. Then

|`(x)| =
{∑

j

(∑
i

`jixi

)2}1/2

≤
√
mnk|x|.

The continuous real-valued function |`(x)| is bounded on the compact unit sphere,

{x : |x| = 1} ⊂ Rm, and attains its bound.

Definition. For a linear map `, define ‖`‖ = sup{|`(x)| : |x| = 1}.
Corollary. (i) |`(x)| ≤ ‖`‖ |x| and (ii) ‖`‖ ≤

√
mnk.

3



6. Lipschitz continuity of differentiable functions

Proposition. If f : U −→ Rn where U is open in Rm and f is differentiable at a, then

there exist δ > 0 and k > 0 such that |x− a| < δ ⇒ |f(x)− f(a)| ≤ k|x− a|.
Proof. There is a linear map λ such that the function ϕ(x) = f(x) − f(a) − λ(x − a)

satisfies |ϕ(x)|/|x− a| → 0 as x → a. Therefore there is a δ > 0 such that |ϕ(x)| ≤ |x− a|
for |x − a| < δ. Then |f(x) − f(a)| = |λ(x − a) + ϕ(x)| ≤ (‖λ‖ + 1)|x − a| for |x − a| < δ.

Take k = ‖λ‖+ 1.

The conclusion of the Proposition is called Lipschitz continuity at a; it implies that f is

continuous at a.

7. The chain rule

Theorem. If a ∈ U ⊂ Rm, b ∈ V ⊂ Rn, f : U −→ V , f(a) = b, g : V −→ Rp, f is

differentiable at a, and g is differentiable at b; then g ◦ f is differentiable at a and

D(g ◦ f)(a) = Dg(b) ◦Df(a).

Proof. (See Spivak, p. 19.) Let λ = Df(a), µ = Dg(b) and set

ϕ(x) = f(x)− f(a)− λ(x− a)

ψ(y) = g(y)− g(b)− µ(y − b)
ρ(x) = g(f(x))− g(b)− µ(λ(x− a)).

We have

|ϕ(x)|/|x− a| → 0 as x→ a,(i)

|ψ(y)|/|y − b| → 0 as y → b.(ii)

From the definitions,

ρ(x) = g(f(x))− g(b)− µ(f(x)− f(a)− ϕ(x))

= [g(f(x))− g(b)− µ(f(x)− f(a))] + µ(ϕ(x))

= ψ(f(x)) + µ(ϕ(x)).

First |µ(ϕ(x))| ≤ ‖µ‖|ϕ(x)|, so by (i) |µ(ϕ(x))|/|x− a| → 0 as x→ a.

Second, by Proposition 6, there are k > 0, δ > 0 such that

|x− a| < δ ⇒ |f(x)− f(a)| ≤ k|x− a|.

By (ii), for any ε > 0 there is a δ1 > 0 such that

|f(x)− f(a)| < δ1 ⇒ |ψ(f(x))| < ε|f(x)− f(a)|.

So for 0 6= |x− a| < min{δ, δ1/k} we have |ψ(f(x))|/|x− a| < εk. Hence

|ρ(x)|/|x− a| → 0 as x→ a which gives the result.
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8. Sample computations

(a) Let f(x) = x · x = β ◦∆(x) where ∆(x) = (x, x) is linear and β(x, y) = x · y. Then

Df(a)(u) = Dβ(∆(a)) ◦D∆(a)(u) = Dβ(a, a)(u, u) = β(a, u) + β(u, a).

Since β is symmetric, Df(a)(u) = 2a · u and grad f(a) = 2a.

If g(x) = |x− p| =
√
f(x− p),

Dg(a)(u) =
1

2
√
f(a− p)

Df(a− p)(u) =
a− p
|a− p|

· u for a 6= p.

So, for x 6= p, grad g(x) =
x− p
|x− p|

, the unit vector at x pointing away from p.

(b) The derivative of a sum.

Lemma. Let f and g : U −→ Rn be differentiable at a ∈ U ⊂ Rm.

Define (f, g) : U −→ Rn × Rn by (f, g)(x) = (f(x), g(x)). Then

D(f, g)(a) = (Df,Dg)(a).

Proof. Let λ = Df(a), ϕ(x) = f(x) − f(a) − λ(x − a), µ = Dg(a), and ψ(x) =

g(x)− g(a)− µ(x− a). Then (ϕ, ψ)(x) = (f, g)(x)− (f, g)(a)− (λ, µ)(x− a) and

|(ϕ, ψ)(x)|
|x− a|

=

√
|ϕ(x)|2
|x− a|2

+
|ψ(x)|2
|x− a|2

→ 0 as x→ a.

Define the linear map s : Rn × Rn −→ Rn by s(y1, y2) = y1 + y2. Now (f + g)(x) =

f(x) + g(x) = s ◦ (f, g)(x). Hence the derivative of a sum is the sum of the derivatives:

D(f + g) = Df +Dg.

(c) The set M(n) of n × n-matrices is an n2-dimensional vector space under addition

and scalar multiplication and a ring under matrix multiplication. Let β(A,B) = AB and

t(A) = At be the transpose. The maps t and (I, t) are linear as maps of vector spaces

where I is the identity linear map. On products t satisfies t(AB) = t(B)t(A). Define

f : M(n) −→M(n) by f(A) = AAt, so f = β ◦ (I, t)

Let O(n) ⊂ M(n) be the orthogonal group, O(n) = {A : f(A) = I}. Thus A ∈ O(n)

means A is invertible and At = A−1.

Exercise. This is the computational part of a proof that O(n) is a manifold of dimension

n(n− a)/2. Show:

f(A) is symmetric, f(A) = t(f(A)).

Df(A)(M) = AM t +MAt.

If A ∈ O(n), then Df(A) maps M(n) onto the vector space of symmetric matrices.

[Hint: Given a symmetric S, take M = 1
2
SA.]
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9. Differentiability of maps to Rn

The results of §3 extend to maps to Rn.

Proposition. If f : U −→ Rn is differentiable at a ∈ U then the partial derivatives of

the components Difj exist at a and are the entries in the matrix representing Df(a). If all

the partials are continuous at a then f is differentiable at a.

Proof. (See Spivak, p. 21, and for notation §§3, 5.) Define the linear projection map

πj : Rn −→ R by πj(y) = y · ej. The jth component of f is fj = πj ◦ f , f(x) =
∑

j fj(x)ej
and

Dfj(a) = Dπj(f(a)) ◦Df(a) = πj ◦Df(a).

The partial derivatives
∂fj

∂xi
(a) = Difj(a) = Dfj(a)(ei) = Df(a)(ei) · ej.

If u =
∑

i uiei, then Df(a)u =
∑

j

∑
iDifj(a)uiej.

Introducing the Jacobian matrix we write Df(a)u as a matrix product:

Df(a)u =

Df1(a)u
...

Dfn(a)u

 =

D1f1(a) . . . Dmf1(a)
...

...

D1fn(a) . . . Dmfn(a)


u1

...

um

 .

If all the partials are continuous at a, by §3 each Dif(a) exists and by §8(b) Df(a) exists.

When m = 1, f(t) is a path in Rn and we define the velocity vector f ′(t) = Df(t)(e1).

10. Mean value theorems

Proposition. If U ⊂ Rm is convex, f : U −→ R is differentiable, and a, x ∈ U , then

f(x)− f(a) = Df(ζ)(x− a) where ζ = a+ t0(x− a) for some 0 < t0 < 1.

Proof. Let ϕ(t) = f(a+ t(x− a)). By the chain rule ϕ′(t) = Df(a+ t(x− a))(x− a).

By the one-variable mean value theorem

f(x)− f(a) = ϕ(1)− ϕ(0) = ϕ′(t0) = Df(ζ)(x− a)

where ζ = a+ t0(x− a) for some 0 < t0 < 1.

Corollary. If ‖Df(ζ)‖ ≤ k for any ζ ∈ U , then |f(x)− f(a)| ≤ k|x− a|.
This follows from the Proposition and Corollary §5(i).

The Proposition is not true in general for maps to Rn, n > 1. For example let

f : R −→ R3 describe a helix about the vertical axis and take x vertically above a. Then

x − a points straight up while Df(t)(u) never does. The following Theorem extends the

result of the Corollary to maps to Rn. It says f is Lipschitz continuous on U .

Theorem. If U ⊂ Rm is convex, f : U −→ Rn is differentiable on U , a, x ∈ U , and∣∣∣∣∂fj∂xi

∣∣∣∣ ≤ k√
mn

on U for all i, j, then |f(x)− f(a)| ≤ k|x− a|.

Proof. By the Proposition fj(x) − fj(a) = Dfj(ζj)(x − a). By §5 applied to the real-

valued function fj, ‖Dfj(ζj)‖ ≤ k√
n
. By the Corollary, |fj(x) − fj(a)| ≤ k√

n
|x − a|. Then

|f(x)− f(a)| ≤ k|x− a| as in §5.
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10a. Alternate proof of the mean value theorem

In §10 we used the one-variable mean value theorem. The following proof gives both

the Corollary and Theorem above without assuming the one-variable theorem and does not

depend on bounds on the partial derivatives. See Loomis & Sternberg, p. 148, or Dieudonné,

p. 153.

Theorem. Let f : [a, b] −→ Rn be continuous on [a, b] and differentiable on (a, b).

Assume |f ′(t)| ≤ k for a < t < b, where (see §9) f ′(t) = D1f(t)(e1). Then

|f(b)− f(a)| ≤ k(b− a).

Proof. Fix ε > 0. Let A = {x ∈ [a, b] : |f(x)− f(a)| ≤ (k + ε)(x− a) + ε}.
(1) Since f is continuous at a there is a δ > 0 such that

|f(x)− f(a)| ≤ ε for a ≤ x < a+ δ

so x ∈ A for some x > a.

(2) Set ` = supA. Either ` ∈ A or for any δ > 0 there is a t with `− δ < t ≤ ` and t ∈ A.

But then, by the continuity of f at `, ` ∈ A.

(3) If ` < b then f ′(`) exists and |f ′(`)| ≤ k. Hence there is a δ > 0 such that

` ≤ t < `+ δ ⇒ |f(t)− f(`)| ≤ (k + ε)(t− `).

Then

|f(t)− f(a)| ≤ |f(t)− f(`)|+ |f(`)− f(a)|
≤ (k + ε)(t− `) + (k + ε)(`− a) + ε

= (k + ε)(t− a) + ε.

and hence t ∈ A for some t > `, a contradiction. Therefore ` = b and, as in (2), b ∈ A.

Since ε > 0 is arbitrary, |f(b)− f(a)| ≤ k(b− a).

Corollary. Let U ⊂ Rm be convex, a, b ∈ U , f : U −→ Rn be differentiable, and

assume ‖Df(x)‖ ≤ k for x ∈ U . Then

|f(b)− f(a)| ≤ k|b− a|.

Proof. Define c : R −→ Rn by c(t) = tb + (1 − t)a. Then c′(t) = b − a and f ◦ c(1) −
f ◦ c(0) = f(b) − f(a). For 0 ≤ t ≤ 1, c(t) ∈ U and D(f ◦ c)(t)(e1) = Df(c(t))(b − a), so

|(f ◦ c)′(t)| ≤ ‖Df(c(t))‖ |b− a| ≤ k|b− a|. The result follows from the Theorem.

7



11. The inverse function theorem

Definition. A function f : U −→ Rn is said to be of class C1 if the partial derivatives

exist and are continuous everywhere on U , f is of class Ck if the partial derivatives of orders

k and less are continuous, and f is C∞ if it is Ck for all positive integers k.

Theorem. Given a ∈ U ⊂ Rn, U open, and a C1 function f : U −→ Rn with f(a) = b

such that Df(a) is invertible, there are neighborhoods V of a, V ⊂ U , and W of b and a

unique C1 map g : W −→ V such that the restriction f |V and g are inverses. The derivative

of g is Dg(y) = Df(g(y))−1. Further, if f is Ck (1 ≤ k ≤ ∞) then g is also.

Plan. The map g will need to satisfy g(b) = a. Let g0(y) = a be a first approximation to

g. Since Df(a) is invertible, the linear approximation to f , y = f(x) ∼ f(a)+Df(a)(x−a),

can be solved for x. Let g1(y) be this solution: g1(y) = a + Df(a)−1(y − b). We will define

iteratively a sequence of functions {gn} converging to the local inverse of f .

Proof. (1) Define F (x, y) = x + Df(a)−1(y − f(x)) on U × Rn. Let D1F (a, b) denote

the derivative of the function x 7→ F (x, b) at x = a. Then

F (a, b) = a+Df(a)−1(b− f(a)) = a,

D1F (x, y) = I −Df(a)−1 ◦Df(x), and

D1F (a, y) = I −Df(a)−1 ◦Df(a) = 0.

D1F (x, y) does not depend on y and is the zero map for x = a. Hence for x near a, Df(x)

is invertible and the entries in matrix D1F (x, y) are small. Choose k > 0 so that:

Bk(a) ⊂ U and Df(x) is invertible for x ∈ Bk(a), and(i)

‖D1F (x, y)‖ ≤ 1

2
for x ∈ Bk(a). Then

x, ξ ∈ Bk(a)⇒ |F (x, y)− F (ξ, y)| ≤ 1

2
|x− ξ|(ii)

using the mean value theorem for the function x 7→ F (x, y). Since

|F (a, y)− a| = |Df(a)−1(y − b)| ≤ ‖Df(a)−1‖ |y − b|,

if we set δ =
k

2‖Df(a)−1‖
we have:

(iii) y ∈ Bδ(b)⇒ F (a, y) ∈ Bk/2(a)

and the same implication for the closed balls.

(2) Let F be the set of continuous functions h : Bδ(b) −→ Bk(a) such that h(b) = a. For

h ∈ F define Th(y) = F (h(y), y). Then Th(b) = F (a, b) = a. For y ∈ Bδ(b),

|Th(y)− a| = |F (h(y), y)− a|
≤ |F (h(y), y)− F (a, y)|+ |F (a, y)− a|

≤ 1

2
|h(y)− a|+ k

2
≤ k by (ii) and (iii).
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Hence Th(y) ∈ Bk(a) so Th ∈ F and T : F −→ F . The same argument, using the open

version of (iii), shows y ∈ Bδ(b)⇒ Tγ(y) ∈ Bk(a).

(3) T has a fixed point.

Define a sequence of functions in F by g0(y) = a and gn+1(y) = Tgn(y) = F (gn(y), y).

Note that g1 is as defined in the plan. To shorten notation, temporarily fix y and set

xn = gn(y). We have x0 = a, x1 = F (a, y), and by (iii) |x1 − x0| ≤ k/2.

|xn+1 − xn| = |F (xn, y)− F (xn−1, y)| ≤ 1

2
|xn − xn−1| ≤ · · · ≤

1

2n
|x1 − x0| ≤

k

2n+1
,

|xm − xn| ≤ |xm − xm−1|+ · · ·+ |xn+1 − xn| ≤
(

1

2m
+ · · ·+ 1

2n+1

)
k <

k

2n
,

for n < m. Therefore {xn} is a Cauchy sequence.

Let x = limxn. Since each xn ∈ Bk(a), x ∈ Bk(a). Define the map

g : Bδ(b) −→ Bk(a) by g(y) = x = lim
n→∞

gn(y).

Since |g(y)−gn(y)| ≤ k

2n
, the sequence {gn} converges uniformly on Bδ(b), so g is continuous

and g ∈ F . Since F is continuous, Tg = g:

g(y) = lim gn(y) = limF (gn(y), y) = F (lim gn(y), y) = F (g(y), y) = Tg(y).

(4) g is a unique local inverse of f .

Set W = Bδ(b) and V = Bk(a) ∩ f−1(W ) ⊂ U . V and W are neighborhoods of a

and b respectively. If y ∈ W , by (3) Tg(y) = g(y) and by the definition of Tg, g(y) =

g(y) +Df(a)−1(y − f(g(y))). Hence f(g(y)) = y. Then by (2), g(y) ∈ V , g : W −→ V , and

f ◦ g = 1W .

If x, ξ ∈ V and f(x) = f(ξ) = y ∈ W , then F (x, y) = x, and F (ξ, y) = ξ. By (ii)

|x− ξ| ≤ 1
2
|x− ξ|, hence x = ξ. Therefore f is one-to-one on V . If x ∈ V , let y = f(x) ∈ W

and let ξ = g(f(x)) ∈ V . Now f(ξ) = f(g ◦ f(x)) = f ◦ g(f(x)) = f(x). Therefore x = ξ,

g(f(x)) = x, and g ◦ f = 1V .

Let h be another inverse of f with h(b) = a. Let both h and g be defined on W1 ⊂ W ,

and set V1 = Bk(a) ∩ f−1(W1) ⊂ V . For y ∈ W1, let x = g(y), and ξ = h(y). Since g and h

are right inverses of f , f(x) = f(ξ). Since f is 1-1, x = ξ and hence g = h on W1.

(5) g is Lipschitz continuous.

Let g(y) = x, g(η) = ξ for y, η ∈ Bδ(b). Since g = Tg, x = F (x, y) and ξ = F (ξ, η).

Then

|x− ξ| = |F (x, y)− F (ξ, η)|
≤ |F (x, y)− F (ξ, y)|+ |F (ξ, y)− F (ξ, η)|

≤ 1

2
|x− ξ|+ |Df(a)−1(y − η)|

Therefore 1
2
|x− ξ| ≤ ‖Df(a)−1‖ |y − η| and hence |g(y)− g(η)| ≤ 2‖Df(a)−1‖ |y − η|.
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(6) g is differentiable.

Since f is C1 and, by (i) Df(ξ) is invertible for ξ ∈ Bk(a), we can choose κ so that

‖Df(ξ)−1‖ ≤ κ for ξ ∈ Bk(a).

Let

ϕ(x) = f(x)− f(ξ)−Df(ξ)(x− ξ).

Then |ϕ(x)|/|x− ξ| → 0 as x→ ξ, so for any ε > 0, |ϕ(x)| ≤ ε|x− ξ| for x near ξ.

Let

ψ(y) = g(y)− g(η)−Df(ξ)−1(y − η)

= g(y)− g(η)−Df(ξ)−1{ϕ(x) +Df(ξ)(x− ξ)}
= g(y)− g(η)− (x− ξ)−Df(ξ)−1(ϕ(x))

= −Df(ξ)−1(ϕ(x)).

Then

|ψ(y)| ≤ κ|ϕ(x)| ≤ κε|x− ξ| for x near ξ,

≤ 2κ2ε|y − η| for y near η by (5).

Hence |ψ(y)|/|y − η| → 0 as y → η. Therefore g is differentiable at η and Dg(η) =

Df(g(η))−1.

(7) If f is Ck so is g.

We can write Dg as the composition Dg = i◦Df ◦g where i(A) = A−1 is matrix inversion.

Bδ(b)
g−→U Df−→G`(n)

i−→G`(n),

where g is continuous, f is Ck so that Df is Ck−1, and i is C∞ by Cramer’s rule. Since g

is continuous, the composition, Dg is continuous, so g is C1. Now if g is Cj for any j < k,

then similarly, Dg is Cj, and g is Cj+1. By induction g is Ck, for 1 ≤ k ≤ ∞.

This completes the proof of the inverse function theorem.

12. Applications of the inverse function theorem

Implicit Function Theorem. Let (a, b) ∈ Rk × Rn. Let f be a C1 function from a

neighborhood of (a, b) to Rn with f(a, b) = c. Let D2f(a, b), the derivative of the function

y 7→ f(a, y), be invertible.

Then there are neighborhoods a ∈ U ⊂ Rk, (a, b) ∈ V ⊂ Rk × Rn, and c ∈ W ⊂ Rn and

a C1 function g : U −→ Rn such that f(V ) ⊂ W and

(x, y) ∈ V and f(x, y) = c ⇐⇒ x ∈ U and y = g(x),

Dg(x) = −D2f(x, g(x))−1 ◦D1f(x, g(x)).
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Further there is a C1 diffeomorphism G : U ×W −→ V such that, defining

gw(x) = π2 ◦G(x,w), we have f(x, y) = w ⇐⇒ y = gw(x).

The function ϕw : U −→ V define by ϕw(x) = G(x,w) parameterizes the level surface

f−1(w) = {(x, y) ∈ V : f(x, y) = w}.

Proof. Define F on the domain of f with values in Rk × Rn by F (x, y) = (x, f(x, y)).

Then F (a, b) = (a, c) and the Jacobian matrix of DF (x, y) is(
I 0

L M

)
where

L = D1f =
∂(f1, . . . , fn)

∂(x1, . . . , xk)
and M = D2f =

∂(f1, . . . , fn)

∂(y1, . . . , yn)
.

Since M(a, b) is invertible, DF (a, b) is invertible.

The inverse function theorem gives a map G which we may assume is defined on a product

neighborhood U ×W ⊂ Rk×Rn of (a, c). Let V = G(U ×W ). Then F |V and G|U ×W are

inverses. If (x, y) ∈ V and F (x, y) = (x, f(x, y)) = (x,w) ∈ U ×W , then G(x,w) = (x, y)

and f(x, y) = w. Define gw(x) = π2 ◦G(x,w) = y. Then f(x, gw(x)) = f(x, y) = w. For the

case f(x, y) = c, take g = gc.

Since F has a C1 inverse on V , it follows that DF is invertible on V and, from the

form of its Jacobian matrix, that the matrix M(x, y) of D2f(x, y) is also invertible. As a

composition, gw(x) is differentiable. Differentiating f(x, gw(x)) = w with respect to x using

the chain rule we get

D1f(x, gw(x)) +D2f(x, gw(x)) ◦Dgw(x) = 0, hence

Dgw(x) = −D2f(x, gw(x))−1 ◦D1f(x, gw(x)).

Notice that V is not a product, the slice {y ∈ Rn : (x, y) ∈ V } depends on x.

Proposition 1. Let p ∈ Rm and let f be a C1 map on a neighborhood of p to Rn, m ≥ n,

with Df(p) surjective. Then there is a neighborhood p ∈ V ⊂ Rm and a diffeomorphism

h : U −→ V , U open in Rm, such that f ◦ h(x1, . . . , xm) = (xm−n+1, . . . , xm) or f ◦ h = π2.

Proof. Let m = k + n. Since Df(p) is surjective we can reorder the variables, i.e.

the coordinates of Rm, x1, . . . , xm, so that the Jacobian matrix of derivatives with respect

to the last n variables is invertible. Then the implicit function theorem applies: the map

F (x) = (x1, . . . , xk, f(x)) restricted to a neighborhood V of a has an inverse h : U −→ V .

Then F ◦ h(z) = z and f ◦ h = π2 ◦ F ◦ h = π2.
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Proposition 2. Let a ∈ U ⊂ Rm be open and f : U −→ Rn be a C1 map, m ≤ n,

with Df(a) injective. Then there are neighborhoods a ∈ U1 ⊂ U , V ⊂ Rn with f(U1) ⊂ V ,

and b ∈ W ⊂ Rn and a diffeomorphism h : V −→ W such that h ◦ f(x1, . . . , xm) =

(x1, . . . , xm, 0, . . . , 0).

Proof. The Jacobian matrix of Df(a) has an invertible m×m submatrix A. We may

permute the coordinate functions, f1, . . . , fn, i.e. the coordinates in the range Rn, so that

the first m rows of the Jacobian of f are an invertible matrix A.

Define F : U × Rn−m −→ Rn by

F (x1, . . . , xn) = f(x1, . . . , xm) + (0, . . . , 0, xm+1, . . . , xn)

Then F (a, 0) = f(a) + 0 = b and

DF (a, 0) =

(
A 0

B I

)
which is invertible. By the inverse function theorem there are neighborhoods (a, 0) ∈ V ⊂
U × Rn−m and b ∈ W ⊂ Rn and a map h : W −→ V inverse to F |V : V −→ W .

Set i(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0), so F ◦ i = f . Let U1 = i−1(V ). On U1

h ◦ f = h ◦ F ◦ i = i.

Think of (h,W ) as a new coordinate chart for Rn with respect to which the map f has

the simplest possible form: h ◦ f = i.

It follows that f |U1 is a homeomorphism onto its image in the induced topology. That

is O is open in U1 if and only if f(O) is the intersection with f(U1) of an open set in Rn.
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