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1. Acknowledgement

These notes borrow extensively from the following three books: Morse Theory, by John

Milnor; Notes on Differential Geometry, by Noel J. Hicks; and Elementary Differential

Geometry by Barrett O’Neill.

2. Introduction

At the very least, a geometric theory of manifolds would include a notion of distance,

which could be expected to take the form of a metric that generates the topology of the

manifold’s underlying topological space. In an interesting geometric theory this metric

would be a path metric, meaning that there is a notion of the length of a path, and that

the distance between two points is the infimum of the lengths of the paths joining them.

In fact one would expect to have a notion of “straight lines” or geodesics, such that the

distance between two points is realized by a path contained in a geodesic.

As we have already seen, a natural way to define a metric in the context of differentiable

manifolds is to endow the manifold with the extra structure of a Riemannian metric.

Definition 2.1. A Riemannian metric on a smooth n-manifold M is an assignment to

each point p in M of a positive definite bilinear pairing 〈·, ·〉p on TpM which is smooth in
the sense that if X and Y are smooth vector fields on M then the function p 7→ 〈X, Y 〉p
is smooth. For any tangent vector v ∈ TpM we will set ||v || =

√
〈v , v〉p. For smooth

vector fields X and Y we will denote by 〈X, Y 〉 and ||X|| the functions p 7→ 〈X, Y 〉p and
p 7→ ||X(p)|| respectively. A Riemannian manifold is a smooth manifold endowed with a
Riemannian metric.

A Riemannian metric immediately provides a definition of the arclength of a smooth path

σ : [a, b]→ M:

Length(σ) =
∫ b
a
||σ′(t)||dt.

It is also immediate that a smooth path with non-vanishing velocity can be reparametrized

as a unit-speed path, i.e. one for which the velocity vector has length 1 with respect to

the Riemannian metric.
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There is a straightforward way to describe a Riemannian metric in local coordinates. If

(W,φ) is a chart with coordinate functions x1, . . . , xn then we express 〈·, ·〉p in terms of
the basis ∂

∂x1
, . . . , ∂

∂xn
by specifying a a positive definite symmetric matrix. Specifically,

the metric will be described by a matrix g = [gi j ] where each gi j is a smooth function on

U and where g(p) = [gi j(p)] is a positive definite symmetric matrix for each p ∈ U.

However we will use a different approach, known as the Cartan viewpoint. Instead of

working with the basis determined by the coordinate functions of a chart (W,φ), we will

work with a family of smooth vector fields.

Definition 2.2. A frame field on an open set W in a smooth n-manifold M is an n-tuple

of vector fields (E1, . . . , En) such that E1(p), . . . , En(p) are defined and form a basis for

TpM for each p ∈ W .

Now suppose M is a Riemannian manifold. An orthonormal frame field on an open set in

M is a frame field (U1, . . . , Un) such that the vectors U1(p), . . . , Un(p) form an othonormal

basis of TpM.

If X and Y are arbitrary vector fields given in terms of an orthonormal frame field

(U1, . . . , Un) by X =
∑n
i=1 aiUi and Y =

∑n
i=1 biUi then we have

〈X, Y 〉 =
n∑
i=1

aibi .

This is perhaps a good opportunity to adopt the Einstein summation convention: when

working with an n-manifold, unspecified summation indices will run from 1 to n, and

every sum with unspecified indices will run over all of the indices which appear twice in

the summand. For example, we will write

〈X, Y 〉 =
∑
aibi .

Exercise 2.1. LetM be a Riemannian manifold. Use the Gramm-Schmidt process to show

that there exists a frame field on any chart neighborhood.

Exercise 2.2. Explain why it would be silly to assume that a frame field is defined on all

of M.

Now we come back to the notion of a geodesic, which involves much more subtle ideas

than that of the length of a path. Because of our experience with the geometry of Rn and
with surfaces in R3 we expect that geodesics will have a dual nature. On the one hand
they have a length minimizing property, namely that the distance between two points is

realized by a path which lies on a geodesic. On the other hand, we expect geodesics to be

paths which are “straight”. For a unit-speed path σ in Rn we can define “straightness”

to mean that the acceleration σ′′ is 0. A similar idea works for a surface in Σ ⊂ R3. Given
a path σ which lies on Σ for all time, we define its acceleration relative to Σ to be the
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orthogonal projection of σ′′(t) into the tangent space Tσ(t)Σ, viewed as a subspace of

Rn. If σ is a unit-speed path on Σ then it is a geodesic provided that it has acceleration
0 relative to Σ, i.e. σ is a geodesic if ||σ′(t)|| = 1 and σ′′(t) is perpendicular to Tσ(t)Σ
for all t.

Subtle problems arise when we try to extend these ideas to an abstract manifold. Com-

puting the acceleration of a path σ : [a, b] → M involves computing the rate of change
of its velocity. This requires that we be able to compute the difference of two velocity

vectors σ(t) and σ(t + h). But these vectors lie in two different vector spaces, Tσ(t)M

and Tσ(t+h. A priori we have no canonical way of subtracting two such vectors. It can be

done for a path in Rn only because the identification of the tangent bundle of Rn with
Rn × Rn provides a standard way to project all of the tangent spaces onto a single copy
of Rn. There is no standard way of doing this for a general smooth manifold. While each
chart provides its own trivialization of an open subset of the tangent bundle, it is not clear

which trivialization should be viewed as the “standard” one. Moreover, if such a stan-

dard trivialization were to be useful it would have to depend somehow on the Riemannian

metric.

3. Connections

The first step towards defining acceleration in a general manifold is to reformulate the

definition for Rn in terms of covariant derivatives. Suppose that X and Y are smooth
vector fields defined on an open set in Rn. The standard covariant derivative on Rn is an
operation on a pair of vector fields X and Y which produces a new vector field which we

will denote DX(Y ). If we write X =
∑
ai
∂
∂xi
and Y =

∑
bj
∂
∂xj
, then DX(Y ) is defined by

DX(Y ) =
∑
X(bj)

∂

∂xj
=

∑
ai
∂bj
∂xi

∂

∂xj
.

It is easily checked that the standard covariant derivative satisfies the following properties,

where X, Y and Z are smooth vector fields and f and g are smooth functions.

• Df X+gY (Z) = f DX(Z) + gDY (Z);
• DZ(X + Y ) = DZ(X) +DZ(X); and
• DX(f Y ) = X(f )Y + f DX(Y ) = df (X)Y + f DX(Y )

(In particular, DX is not an endomorphism of the C
∞(M)-module X (M), i.e. it is not a

“tensor”.)

Now if σ is a smooth path in M then, for sufficently small intervals [a, b] we may view

σ′ and σ′′ as restrictions to σ([a, b]) of vector fields defined on an open neighborhood of

σ([a, b]) in M, and we then have σ′′(t) = Dσ′(t)(σ
′(t)).

To generalize this, we abstract the notion of a covariant derivative.
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Definition 3.1. A covariant derivative on a smooth manifold M is an operation on X (M)
that combines a pair (X, Y ) of vector fields to produce a vector field ∇X(Y ), such that
the following properties are satisfied for X, Y, Z ∈ X (M) and f , g ∈ C∞(M):

• ∇f X+gY (Z) = f∇X(Z) + g∇Y (Z);
• ∇Z(X + Y ) = ∇Z(X) +∇Z(Y ); and
• ∇X(f Y ) = X(f )Y + f∇X(Y ) = df (X)Y + f∇X(Y )

where X(f ) = df (X) denotes the directional derivative of the function f along the vector

field X.

While this would allow us to make the definition that, for a smooth path σ in M, σ′′ =

∇σ′(t)(σ′(t)) we are still a long way from being able to do geometry in M. There are
two serious deficiencies in this definition of acceleration. First, it applies to any smooth

manifold, and makes no reference to a Riemannian metric. So it cannot possibly carry any

geometric information. Second, even after requiring our covariant derivative to preserve

the Riemannian structure, there will be not be a unique covariant derivative associated

to each metric. Extra conditions are required to obtain a covariant derivative which is

uniquely determined by the metric.

The following definition links a covariant derivative to the Riemannian structure on M.

Definition 3.2. Let M be a Riemannian manifold. A covariant derivative on M is com-

patible with the metric if, for any smooth vector fields X, Y and Z defined on an open

set in M, we have

Z(〈X, Y 〉) = 〈∇Z(X), Y 〉+ 〈X,∇Z(Y )〉

An imediate consequence of this definition is that if X is a unit vector field, and if the

covariant derivative ∇ is compatible, then 〈∇Z(X), X〉 = 0. In particular, the acceleration
of a unit speed path is perpendicular to the velocity. More generally, a vector field X is said

to be parallel along a unit speed curve σ(t) if ∇σ′(X) = 0. The compatibility condition
guarantees that if two vector fields are parallel along a curve then the angle between them

is constant along the curve.

The uniqueness issue will be dealt with in the next section. For the rest of this section

we just focus on how to describe a covariant derivative.

Even though a covariant derivative is not C∞(M)-linear, it is nonetheless determined by

its action on elements of a frame field. If we are given a frame field (E1, . . . , En) and two

arbitrary vector fields X =
∑
aiEi and Y =

∑
biEi then, according to the properties in
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the definition, we have

∇X(Y ) =
∑
ai∇Ei (Y )

=
∑
ai∇Ei (bjEj)

=
∑
aiEi(bj)Ej +

∑
aibj∇Ei (Ej)

=
∑
aidbj(Ei)Ej +

∑
aibj∇Ei (Ej)

Thus, to describe a covariant derivative in terms of the frame field (E1, . . . , En), it suffices

to give the n2 vector fields ∇Ei (Ej). In the classical description in terms of coordinate
functions on a chart neighborhood, one takes Ei =

∂
∂xi
and defines the Christoffel symbols

Γ kij by the formula

∇Ei (Ej) =
∑
Γ kijEk .

These n3 smooth functions determine the covariant derivative, and the Christoffel Iden-

tities characterize the collections of n3 functions which determine a compatible covariant

derivative. Since we will not be working with Christoffel symbols, we refer the reader to

Milnor’s Morse theory book for an efficient treatment.

Using differential forms makes it a bit less daunting to describe the data that determine

a covariant derivative. Starting with our frame field (E1, . . . , En), we may consider the

dual 1-forms θ1, . . . , θn which are defined by the condition θi(Ej) = δi j . We then define

n2 1-forms by the formula

ωi j(X) = θj(∇X(Ei)), i , j = 1, . . . , n.

These are 1-forms because ∇X(Y ) is linear in the variable X. Moreover, for each i =
1, . . . , n we have the identity

∇X(Ei) =
∑
ωi j(X)Ej .

Now if we are given vector fields X and Y =
∑
biEi then we have

(3.2.1)

∇X(Y ) =
∑
∇X(biEi)

=
∑
dbi(X)Ei + bi∇X(Ei)

=
∑
dbi(X)Ei +

∑
biωi j(X)Ej

In particular, the covariant derivative is determined by the frame field (E1, . . . , En) and

the 1-forms ωi j . We will refer to these forms as connection 1-forms and view them as the

entries of an n × n matrix Ω.

The calculation above applies in an arbitrary smooth manifold. Now we consider a Rie-

mannian manifold and consider the connection 1-forms are associated to an orthonormal

frame field defined on an open set in M. The next proposition shows that, in this situa-

tion, the covariant derivative is compatible if and only if its matrix of connection forms is

anti-symmetric.
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Proposition 3.3. Let M be a Riemannian n-manifold. Let Ω = [ωi j ] be the matrix of

connection 1-forms determined by a covariant derivative ∇ and an orthonormal frame
field (U1, . . . , Un) defined on an open subset of M. Then the covariant derivative ∇ is is
compatible with the metric on M if and only if ωi j = −ωj i for all i , j ∈ {1, . . . , n}.

Proof. Assume that ∇ is compatible. Since 〈Ui , Uj〉 is constant we have, for any vector
field X,

0 = X · 〈Ui , Uj〉 = 〈∇X(Ui), Uj〉+ 〈Ui ,∇X(Uj)〉 = ωi j(X) + ωj i(X).

For the converse, assume that ωi j = −ωJi and let X =
∑
aiUi , Y =

∑
biUi and Z be

vector fields. We have

Z(〈X, Y 〉) =
∑
ai dbi(Z) + bi dai(Z).

Applying 3.2.1 we have

〈∇Z(X), Y 〉 =
∑
bi dai(Z) +

∑
bjaiωj i(Z);

and

〈X,∇Z(Y )〉 =
∑
ai dbi(Z) +

∑
ajbiωi j(Z).

Thus we must show that ∑
bjaiωi j(Z) +

∑
ajbiωi j(Z) = 0.

But if we interchange the names of the indices in the second sum the left hand side

becomes ∑
bjaiωi j(Z) +

∑
aibjωj i(Z),

which is equal to 0 since we have assumed that ωj i(Z) + ωi j(Z) = 0. �

Remark 3.4. Assuming that an orthonormal frame field has been fixed, we have shown

that a covariant derivative is completely described by the anti-symmetric matrix Ω of

1-forms. But the axioms of a covariant derivative are expressed without reference to any

choice of frame field. One would therefore expect that there is an invariantly defined

object which plays the same rôle as Ω. Indeed, such an object exists and is called a

connection. Connections can be defined on arbitrary vector bundles. A connection which

is defined on the tangent bundle is called an affine connection. One way to define a

connection is as a Lie algebra valued 1-form. We have been looking at the case where

the values lie in the Lie algebra of the orthogonal group. (When the orthogonal group

is identified with the group of orthogonal matrices, its Lie algebra is identified with the

algebra of anti-symmetric matrices.)

For these notes we will always work with a frame field, so we will not try to give the

definition of a Lie Algebra valued 1-form. Look it up if you are interested.
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4. Brackets

Let M be a general (i.e. non-Riemannian) smooth n-manifold. Recall that vector fields

may be viewed as differential operators on smooth functions, i.e. as directional derivatives.

As such there is a canonically defined operation defined on the C∞(M)-module of smooth

vector fields X (M), namely the operation of composition, as differential operators. If X
and Y are two vector fields then we denote their composition as X ◦ Y . Given a smooth
function f we have

X ◦ Y (f ) = X(df (Y )) = d(df (Y ))(X).

Note that, as with covariant differentiation, the composition operation is not a tensor;

instead it satisfies a “Leibniz rule”. It is true, for smooth functions f and g and smooth

vector fields X, Y and Z, that

(f X + gY ) ◦ Z = f X ◦ Z + gY ◦ Z.

However the composition operation is not C∞(M)-linear in the second variable. In fact,

we have

X ◦ (f Y ) = X(f )Y + f X ◦ Y = df (X)Y + f X ◦ Y.

Definition 4.1. Let X and Y be smooth vector fields defined on the smooth manifold M.

The Lie bracket of X and Y is the smooth vector field given by

[X, Y ] = X ◦ Y − Y ◦X.

Note that [X, Y ] = −[Y,X] and [f X, Y ] = f [X, Y ] − Y (f )X. One can check that the
bracket also satisfies the Jacobi identity

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0,

but we won’t need that.

A key point about the bracket is that its definition does not refer to a coordinate system.

Thus any quantity whose definition can be formulated in terms of covariant derivatives

and brackets is automatically invariant under coordinate changes.

It is not difficult to express the bracket in terms of local coordinates; and we will only

have to use this expression once.

Proposition 4.2. Let x1, . . . , xn be coordinate functions determined by a chart (U, φ) for

a smooth n-manifold M. Suppose that X =
∑
ai
∂
∂xi
and Y =

∑
bi
∂
∂xi
are smooth vector

fields defined on U. Then

[X, Y ] =
∑
(ai
∂bj
∂xi
− bi
∂aj
∂xi
)
∂

∂xj
.
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Proof. We have for a smooth function f ,

X ◦ Y (f ) =
∑
ai
∂bj
∂xi

∂f

∂xj
+

∑
aibj

∂2f

∂xi∂xj

and

Y ◦X(f ) =
∑
bi
∂aj
∂xi

∂f

∂xj
+

∑
biaj

∂2f

∂xi∂xj
When these expressions are subtracted the second order derivatives cancel and the lemma

follows. �

The bracket enables us to give a coordinate-free formula for the differential of a 1-form.

This will allow us to make our computations directly in terms of frame fields, without

having to represent them in terms of local coordinates.

Proposition 4.3. Let ω be a 1-form and X and Y smooth vector fields on an n-manifold

M. Then

dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]).

(Here ω(Y ) and ω(X) are smooth functions and X(ω(Y )) and Y (ω(X)) are directional

derivatives of these functions.)

Proof. Let x1, . . . , xn be local coordinates given by a chart (U, φ). Write X, Y and ω in

terms of these coordinates: X =
∑
ai
∂
∂xi
, Y =

∑
bi
∂
∂xi
and ω =

∑
zidxi .

According to Proposition 4.2 we have

ω([X, Y ]) =
∑
(aj
∂bi
∂xj
− bj
∂ai
∂xj
)zi .

Expanding the other two terms, we have

X(ω(Y )) = X(
∑
bizi)

=
∑
(dbi(X)zi + bidzi(X))

=
∑
ajzidbi(

∂

∂xj
+

∑
bidzi(X)

=
∑
ajzi
∂bi
∂xj
+

∑
bidzi(X)

and

Y (ω(X)) =
∑
bjzi
∂ai
∂xj
+

∑
aidzi(X).

Thus

X(ω(Y ))− Y (ω(X))− ω([X, Y ]) =
∑
bidzi(X)−

∑
aidzi(X)

=
∑
(dzi(X)dxi(Y )− dzi(Y )dxi(X))

= dω(X, Y )

�
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5. Torsion

Definition 5.1. The torsion of a covariant derivative ∇ on a smooth manifold M is the
map T : X (M)×X (M)→ X (M) given by

T (X, Y ) = ∇X(Y )−∇Y (X)− [X, Y ].

Note that this definition is global, and does not require a choice of coordinates or a choice

of frame field.

Since covariant differentiation and composition fail to be bilinear in exactly the same way,

we have the following

Proposition 5.2. The torsion of a covariant derivative on a smooth manifold M is an

alternating bilinear map of C∞(M)-modules.

Proof. The alternating property is clear from the definition. To verify the bilinearity we

compute:

T (X, f Y ) = ∇X(f Y )−X ◦ (f Y ) +∇f Y (X)− f Y ◦X

= X(f )Y + f∇X(Y )−X(f )Y − f X ◦ Y + f∇Y (X)− f Y ◦X

= f T (X, Y ).

�

This observation invites us to express T in terms of differential forms.

To a frame field (E1, . . . , En) we associate the column vector Θ for which the i
th entry is

the dual 1-form θi to Ei .

We may represent the vector field T (X, Y ) in terms of our frame field as a column

vector whose entries are alternating bilinear functions of X and Y . Thus the frame field

determines a representation of T as a column vector of 2-forms. We will denote this

column vector as [T ].

It will be convenient to extend the usual matrix multiplication to matrices of k-forms by

replacing the usual product with the wedge product. (Of course one must be careful to

preserve the order of multiplication, since the wedge product is anti-commutative.) Given

a matrix A of k-forms we define dA to be the matrix obtained by applying the operator

d to each entry. It is easy to check that the product rule holds for matrix multiplication.

If A is a matrix of p-forms and B is a matrix of q-forms and if the sizes of the matrices

are compatible for matrix multiplication, then

d(A ∧ B) = dA ∧ B + (−1)pA ∧ dB.

It is important to note, though, that if A is a matrix of forms then it can easily happen

that A ∧ A 6= 0.
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Proposition 5.3. Let M be a smooth manifold with a covariant derivative ∇. Let
(E1, . . . , En) be a frame field on an open subset of M with associated column vector

Θ of dual 1-forms. Let Ω be the representation of ∇ as a matrix of connection forms,
and [T ] the representation of the torsion T of ∇ as a column vector of 2-forms. Then

[T ] = dΘ−Ω ∧Θ.

Proof. We will show, for each index i , that

dθi(X, Y )− θi(T (X, Y )) =
∑
ωi j ∧ θj(X, Y ).

We write the vector fields in terms of our frame field: X =
∑
aiEi and Y =

∑
biEi .

According to Proposition 4.3 we have

dθi(X, Y )− θi(T (X, Y )) = X(bi)− Y (ai)− θi([X, Y ])− θi(∇X(Y )−∇Y (X)− [X, Y ])

= dbi(X)− dai(Y )− θi(∇X(Y )) + θi(∇Y (X))

Now, according to 3.2.1 we have

−dai(Y ) + θi(∇Y (X)) = ajωj i(Y )

and

dbi(X)− θi(∇X(Y )) = −bjωj i(X).

It follows that

dθi(X, Y )− θi(T (X, Y )) = ωj i(X)aj − ωj i(Y )bj
= ωi j(X)θj(Y )− ωi j(Y )θj(X)

= ωi j ∧ θj(X, Y ).

�

We are finally ready to describe the canonical compatible covariant derivative associated

to a Riemannian metric.

We fix an orthonormal frame field (U1, . . . , Un) defined on an open set in a Riemannian

n-manifold M. There is a dual 1-form θi associated to each of the vector fields Ui . In

this case we have

θi(X) = 〈X,Ui〉.

We will view the 1-forms θi as the entries of a column vector Θ.

Definition 5.4. A covariant derivative on a Riemannian manifold is Levi-Civita if it is

compatible with the metric and has vanishing torsion. In particular, this means that

dΘ = Ω ∧Θ.

Proposition 5.5. A Riemannian n-manifold has a unique Levi-Civita covariant derivative.
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Proof. The idea is that the equation dΘ = Ω ∧Θ completely determines Ω, given that
Ω is anti-symmetric. We have, for each i and each j 6= k ,

dθi(Uk , Uj) =
∑
ωi j ∧ θj(Uk , Uj).

Thus ωi j(Uk) = dθi(Uk , Uj) for j 6= k . This determines the value of ωi j for all but one
of the vector fields in the frame field. For the last vector field, we use the fact that ω

is anti-symmetric to see that ωi j(Uj) = −ωj i(Uj) = dθj(Uj , Ui). Thus the value of ωi j on
each vector field in the frame field is uniquely determined by dΘ. �

6. Curvature

Definition 6.1. Let M be a smooth n-manifold with a covariant derivative ∇. The
curvature of ∇ is the mapping X (M)×X (M)×X (M)→ X (M) given by

(X, Y, Z) 7→ RX,Y (Z) = ∇X(∇Y (Z))−∇Y (∇X(Z))−∇[X,Y ](Z).

Note that this definition is global, and does not require a choice of coordinates or a frame

field.

The next proposition says that the curvature is a tensor.

Proposition 6.2. If M is a smooth n-manifold with a covariant derivative ∇ then the
curvature of ∇ is a multi-linear map of C∞(M)-modules.

Proof. We have

∇f X(∇Y (Z)) = f∇X(∇Y (Z));

∇Y (∇f X(Z)) = ∇Y (f∇X(Z)) = Y (f )∇X(Z) + f∇Y (∇X(Z)); and

∇[f X,Y ](Z) = ∇f [X,Y ]−Y (f )X(Z) = f∇[X,Y ](Z)− Y (f )∇X(Z).

Summing these three terms, we obtain Rf X,Y (Z) = f RX,Y (Z). The other two computa-

tions are similar. �

Now suppose that (E1, . . . , En) is a frame field defined in an open subset W in M. The

multilinearity implies that RX,Y (·) restricts to a linear transformation from TpM to itself
for each p ∈ W . We will denote by RX,Y the family of linear transformations obtained
in this way. We may use the frame field to write RX,Y as a matrix [ρi j(X, Y )] of smooth

functions on W . Clearly, RX,Y (Z) = −RY,X(Z). Moreover, since RX,Y (Z) is bilinear, the
rhoi j are in fact 2-forms. Thus a choice of frame field determines a representation of the

curvature of ∇ as a matrix of 2-forms, which we will denote as [R].

The next proposition relates this matrix of 2-forms to the connection 2-forms.
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Proposition 6.3. Let M be a smooth manifold with a covariant derivative ∇. Let
(E1, . . . , En) be a frame field defined on an open set in M, with dual 1-forms θ1, . . . , θn.

Let Θ be the column vector whose i th entry is θi ; let Ω be the matrix of connection forms

determined by the frame field; and let [R] be the matrix of 2-forms which represents the

curvature of ∇. Then
[R] = dΩ−Ω ∧Ω.

Proof. Let [R] = [ρi j ] where the ρi j are 2-forms. We have ρi j = θi(RX,Y (Ej)). Thus we

must show

θi(RX,Y (Ej)) = dωi j(X, Y )−
∑
ωik ∧ ωkj(X, Y ).

We have

RX,Y (Ej) = ∇X(∇Y (Ej))−∇Y (∇X(Ej))−∇[X,Y ](Ej)

= ∇X(
∑
ωkj(Y )Ek)−∇Y (

∑
ωkj(X)Ek)−

∑
ωkj([X, Y ])Ek

=
∑
X(ωkj(Y ))Ek +

∑
ωkj(Y )∇X(Ek)

−
∑
Y (ωkj(X))Ek −

∑
ωkj(X)∇Y (Ek)

−
∑
ωkj([X, Y ])Ek

We now apply 4.3 to obtain

RX,Y (Ej) =
∑
dωkj(X, Y )Ek +

∑
ωkj(Y )∇X(Ek)−

∑
ωkj(X)∇Y (Ek)

=
∑
dωkj(X, Y )Ek +

∑
ωkj(Y )ωlk(X)El −

∑
ωkj(X)ωlk(Y )El

=
∑
dωkj(X, Y )Ek +

∑
ωlk ∧ ωkj(X, Y )El .

Finally, applying θi yields the required identity. �

7. Surfaces

In this section we will describe the curvature of a smooth oriented Riemannian 2-manifold

Σ. We will then restrict to the case of a surface embedded in R3 and interpet its curvature
geometrically.

Choose a positive orthonormal frame field (U1, U2) defined on an open set in Σ. Let Θ

be the column vector of dual 1-forms and let Ω be the matrix of connection forms for the

Levi-Civita covariant derivative ∇ on Σ

We observe that, even though the 1-forms θi obviously depend on our choice of a positive

orthonormal frame field, the 2-form θ1 ∧ θ2 does not. If (U ′1, U ′2) is another positive
orthonormal frame field and if Ap denotes the unique orthogonal linear transformation

carrying (U1(p), U2(p)) to (U
′
1(p), U

′
2(p)) then on TpΣ we have

θ′1 ∧ θ′2 = (detAp)θ1 ∧ θ2 = θ1 ∧ θ2.
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Since this 2-form is invariantly defined on any chart neighborhood, it is globally defined

on Σ.

Definition 7.1. The globally defined 2-form which agrees with θ1 ∧ θ2 is called the area
form of Σ and will be denoted dA. If Φ is a compact 2-dimensional manifold-with-boundary

contained in Σ then we define the area of Φ to be
∫
Φ dA.

If (X, Y ) is any positive frame field defined on an open set W in in Σ then we have

dA(X, Y ) > 0 at each point of W . In particular, a compact submanifold-with-boundary

has positive area. In addition, this implies that any 2-form defined on W can be written

as f θ1 ∧ θ2 for some smooth function f .

For any point p in Σ ∩ W let Jp : TpΣ → TpΣ denote the linear transformation such
that Jp(U1) = U2 and Jp(U2) = −U1. Thus Jp is a 90◦ rotation in the counter-clockwise
direction. It is clear from this description (or from an easy computation) that Jp commutes

with any orthogonal linear transformation from Tp to Tp. Thus if (U
′
1, U

′
2) is another

positive orthonormal frame field, and if J ′p : TpΣ→ TpΣ denotes the linear transformation
such that J ′p(U

′
1) = U

′
2 and J

′
p(U

′
2) = −U ′1 then we have Jp = J ′p. That is, there is a well-

defined map J : TΣ → TΣ that preserves each tangent space TpΣ and acts on that
oriented vector space as a counter-clockwise rotation by 90◦.

Definition 7.2. The almost-complex structure on Σ is the unique map J : TΣ → TΣ
with the following property. If (U1, U2) is a positive orthonormal frame field defined on an

open set in Σ then J(U1) = U2 and J(U2) = −U1.

Next we consider the matrix Ω. Since the covariant derivative ∇ is compatible, Ω is
anti-symmetric. Hence it can be written as

Ω′ =

[
0 ω12

−ω12 0

]
.

It follows immediately that Ω ∧Ω = 0 and therefore Proposition 6.3 implies that

[R] = Ω ∧Ω− dΩ =
[
0 −dω12
dω12 0

]
.

We have seen that there exists a smooth function κ which is defined on W and satisfies

−dω12 = κθ1∧θ2. The computation above shows that R(U1, U2) = −κJ. It follows from
the fact that R(X, Y ) is alternating and bilinear that the linear tranformation R(U1, U2)

is equal to R(U ′1, U
′
2) for any other positive orthonormal frame field (U

′
1, U

′
2). This implies

that the definition of κ is independent of the choice of a positive orthonormal frame field,

and hence that κ is a globally defined smooth function on Σ.

Definition 7.3. The Gauss curvature of Σ is the unique smooth function κ defined globally

on Σ and having the following property. Let (U1, U2) be any positive orthonormal frame
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field defined on an open subset of Σ, let Θ be the column vector of dual 1-forms and let

Ω the matrix of connection 1-forms for the Levi-Civita covariant derivative on Σ. Then

−dω12 = κθ1 ∧ θ2.

8. Surfaces in R3

We now restrict to the situation where Σ is a 2-manifold embedded in R3. The orientation
of Σ corresponds to a choice of a normal vector field defined on Σ. We choose an extension

of this normal vector field to a vector field N defined in a neighborhood of Σ.

We work with the standard Riemannian metric on R3, and define the Riemannian metric
on Σ to be the restriction of the standard metric on R3 to the tangent bundle of Σ.
It is clear that the Levi-Civita covariant derivative associated to the standard metric on

R3 is just the standard covariant derivative D. The vector fields ( ∂
∂x1
, . . . , ∂

∂x3
) form an

orthonormal frame field on R3 and it is easy to check in terms of this frame field that the
curvature of R3 is 0.

Now suppose that X and Y are vector fields on Σ. We define a covariant derivative on Σ

by ∇X(Y ) = DX(Y )−〈DX(Y ), N〉, i.e. by orthogonally projecting the standard covariant
derivative to the tangent space of Σ. (Strictly speaking, this involves extending X and Y

to a neighborhood of Σ and then observing that the definition does not depend on the

choice of extension.) Throughout this discussion we will need to extend or restrict vector

fields and forms to or from a neighborhood. To simplify notation we will not distinguish

a vector field or form from its extension or restriction. The choice of extension will not

affect any computation that we make on Σ.

Fix an orthonormal frame field (U1, U2, U3) defined in an R3-neighborhood of an open
subset W of Σ, chosen so that U3 = N and (U1, U2) is a positive frame field on Σ. As

usual, let Θ be the column vector of dual 1-forms and let Ω be the associated 3×3 matrix
of connection forms.

We regard (U1, U2) as an orthonormal frame field on Σ. The associated column vector

Θ′ of dual 1-forms thus consists of the first two entries of Θ. The definition of ∇ implies
that the 2×2 matrix Ω′ of connection forms for this frame field on Σ consists of the first
two rows and columns of Ω.

Differentiating both sides of the equation Ui · Ui = 1 shows that, for any vector field X
we have DX(Ui) · Ui = 0. It follows that if X is a vector field which is tangent to Σ then
DX(U3) is another vector field tangent to Σ.

Definition 8.1. The shape operator of the oriented embedded surface Σ ⊂ R3 is the the
map S : X (Σ)→ X (Σ) given by

S(X) = −DX(N)
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where N is the unit normal vector field to Σ determined by its orientation. The restriction

of S to a tangent plane TpΣ is a linear endomorphism of TpΣ and will be denoted Sp

The link between the shape operator and the geometry of the surface S is provided by the

next proposition. Given a point p ∈ Σ and a unit tangent vector v ∈ TpΣ, the intersection
of Σ with the plane spanned by N(p) and v will be called the normal section through v .

Proposition 8.2. Let p ∈ Σ and let v ∈ TpΣ. Then the curvature at p of the normal
section through the unit tangent vector v is given by Sp(v) · v .

Proof. Let σ(s) be a unit speed parametrization of the normal section, with σ(0) = p

and σ′(0) = v . The unit normal vector to the section is N(σ(t)). Thus the curvature of

the section is σ′′ · N. Since σ′ · N = 0, taking covariant derivatives gives

∇σ′(σ′) · N + σ′ · ∇σ′(N) = 0.

The left hand side of this equation is the curvature of the section, while the right hand

side is equal to S(v) · v . �

We may consider the matrix representation of Sp with respect to the orthonormal basis

(U1(p), U2(p)). Letting p vary we obtain a matrix of smooth functions which we compute

in terms of the connection forms as:

[S] =

[
−∇U1(U3) · U1 −∇U2(U3) · U1
−∇U1(U3) · U2 −∇U2(U3) · U2

]
=

[
−ω13(U1) −ω13(U2)
−ω23(U1) −ω23(U2)

]
=

[
ω31(U1) ω31(U2)

ω32(U1) ω32(U2)

]

The next proposition shows that Sp(v) · v is a quadratic form.

Proposition 8.3. The linear transformation Sp is symmetric.

Proof. It suffices to show that the matrix [S] is symmetric, i.e. that ω31(U2) = ω32(U1).

Looking at the bottom row of the equation dΘ = Ω ∧Θ we see that

dθ3 = ω31 ∧ θ1 + ω32 ∧ θ2.

Thus we have

dθ3(θ1, θ2) = −ω31(U2)− ω32(U1).
Therefore it suffices to show that dθ3(θ1, θ2) = 0. We may use 4.3 to compute

dθ3(θ1, θ2) = U1(θ3(U2))− U2(θ3(U1))− θ3([U1, U2]).

Since θ3 vanished on each tangent space to Σ, the right hand side is 0. This completes

the proof. �

Finally we connect the shape operator to the Gauss curvature.

Proposition 8.4. The determinant of Sp is the Gauss curvature of Σ at p.
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Proof. Taking the determinant of [S] we obtain

ω31(U1)ω32(U2)− ω31(U2)ω32(U1) = ω31 ∧ ω32(U1, U2).

Next we observe that, since the curvature of R3 is 0, we have dΩ = Ω ∧ Ω. Expanding
the 12-entry of both sides we see

dω12 = ω13 ∧ ω32 = −ω31 ∧ ω32.

Since κ = −dω12, the result follows. �

Since Sp is symmetric, it has an orthonormal basis of eigenvectors. The function Sp(v) ·v
on the circle of unit vectors in TpΣ attains its extreme values at the unit vectors in the

eigenspaces. Consequently the two eigendirections of Sp in TpΣ, which are called the

principal directions, are the directions in which the curvature of the normal section is

maximized or minimized. The curvatures in these two directions are called the principal

curvatures. Gauss originally defined the curvature of Σ at a point p to be the product

of the principal curvatures at p. Gauss’ Theorema Egregium states that the curvature is

determined by the intrinsic metric on Σ. We have just verified this: the product of the

principal curvatures is determined by the 1-form ω12, which in turn depends only on the

Riemannian metric of Σ.
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