Lecture 3 (January 16, 2009) -

We continue by showing transitivity of homotopy (so that it is indeed an equivalence relation).

Assume $f \cong f^{\prime}$ and $f^{\prime} \cong f^{\prime \prime}$ by F and F^{\prime}. Then we can let

$$
F^{\prime \prime}(s, t)= \begin{cases}F(2 s, t) & s \in[0,1 / 2] \\ F^{\prime}(2 s-1, t) & s \in(1 / 2,1]\end{cases}
$$

This is an explicit continuous function between f and $f^{\prime \prime}$, so $f \cong f^{\prime \prime}$.
Now, let's show that give $\varphi: I \rightarrow I$ with $\varphi(0)=0$ and $\varphi(1)=1, \alpha \cong \alpha \circ \varphi$. Indeed,

$$
\alpha_{s}(t)=\alpha((1-s) t+s \varphi(t))
$$

Exercise. Show associativity of the fundamental group using a direct parametrization.

Lecture 4 (January 21, 2009) -

Read pages 162-165, 1-4, 25-37, and 5-7 in Hatcher.
Let $\left(X, x_{0}\right)$ be a pointed space.

Lecture 5 (January 23, 2009) -

Lifting Theorem

Take $\varphi: R \rightarrow S_{1}$ with $\varphi(t)=e^{2 \pi i t}$.
Lifting Theorem. If X is star shaped from $\overrightarrow{0} \in X \subset \mathbb{R}^{n}, X$ is compact, $f: X \rightarrow S_{1}$, $t_{0} \in \mathbb{R}, \varphi\left(t_{0}\right)=f\left(x_{0}\right) \Longrightarrow \exists \tilde{f}: X \rightarrow \mathbb{R}$ s.t. $\varphi \circ \tilde{f}=f, \tilde{f}\left(x_{0}\right)=t_{0}$. In other words, there is a lift.

Proof. Take $\varphi:\left(-\frac{1}{2}, \frac{1}{2}\right) \rightarrow S^{1}-\{-1\}$ a homeomorphism with inverse ψ : $S^{1}-\{-1\} \rightarrow\left(-\frac{1}{2}, \frac{1}{2}\right)$. Then $\exists \delta>0$ such that $\forall x, x^{\prime} \in X,\left\|x-x^{\prime}\right\|<\delta$ implies that $\left|f(x)-f\left(x^{\prime}\right)\right|<2$. Now choose n such that $\frac{\|x\|}{n}<\delta \forall x \in X$. Then $f(0),,\left(\frac{1}{n} x\right), \ldots$, $f\left(\frac{n-1}{n} x\right), f(x)$ form a consecutive partition of non-antipodal points.

Lecture 6 (January 26, 2009) -

Degrees of paths

For a path α, we define $\operatorname{deg} \alpha=\tilde{\alpha}(1)$ (where $\tilde{\alpha}$ is a lift for α). If $\alpha \sim \beta$, then $\operatorname{deg} \alpha=$ $\operatorname{deg} \beta$. If $H: I \times I \rightarrow S^{1}$, we get $\tilde{H}: I \times I \rightarrow \mathbb{R}$ with $\tilde{H}(0,0)=0$ such that $\tilde{H}(0, t)=$ $\tilde{\alpha}(t)$ (by unique lifting), $\tilde{H}(s, 0)=0$ (by unique lifting), and $\tilde{H}(1,0)=\tilde{\beta}(0)$ and $H(1, t)=\beta(t)$. Then $\tilde{H}(1, t)=\tilde{\beta}(t)$ by unique lifting. Finally, $\tilde{H}(s, 1)$ is constant in S. Hence, $\tilde{\alpha}(1)=\tilde{\beta}(1)$. This means indeed $\operatorname{deg} \alpha=\operatorname{deg} \beta$.

Now, we want to show deg : $\pi_{1}(S, 1) \rightarrow \mathbb{Z}$ is an isomorphism. Recall that $[\alpha] *[\beta]=$ $[\alpha * \beta]$. If $\tilde{\alpha}(0)=0, \tilde{\alpha}(1)=m=\operatorname{deg} \alpha$, then call $m+\tilde{\beta}(t)$ the path in \mathbb{R} from m to $m+\operatorname{deg} \beta$. Then $\tilde{\alpha} *(m+\tilde{\beta})$ covers $\alpha * \beta$, and $\tilde{\alpha} *(m+\tilde{\beta})$. Then the lift of $\alpha * \beta$ gives

$$
(\alpha * \beta(1))=\operatorname{deg} \alpha+\operatorname{deg} \beta .
$$

Then ker deg $=\left[c_{1}\right]$. If $\operatorname{deg} \alpha=0$, this means $\tilde{\alpha}(1)=0$ so $\tilde{\alpha}$ is a directed path: $\tilde{\alpha}(0)=0$ $=\tilde{\alpha}(1)$. Then define $\tilde{\alpha}_{s}(t)=s \tilde{\alpha}(t)\left(\tilde{\alpha}_{0}(t)=0, \tilde{\alpha}_{0}=c_{0}, \tilde{\alpha}_{1}(t)=\tilde{\alpha}, c_{0} \sim \tilde{\alpha}\right.$. Then we show $c_{1} \sim \alpha$.

Of course, $\pi_{1}\left(D^{2}, 1\right) \cong 1$. For $\alpha: I \rightarrow D^{2} \subset \mathbb{C}$ with $\alpha(0)=\alpha(1)=1$, just take

$$
\alpha_{s}(t)=s \alpha(t)+(1-s) \cdot 1
$$

Then $\alpha_{0}(t)=c_{1}(t)$ and $\alpha_{1}(t)=\alpha(t)$.
We claim there is no retract on the above: $\nexists r$ continuous s.t. $S^{1} \xrightarrow{\iota} D^{2} \xrightarrow{r} S^{1}$ with $r \circ \iota=\iota_{S^{1}}$. This follows from the fact π_{1} is a topological invariant: we would need

$$
\pi_{1}\left(S^{1}, 1\right) \xrightarrow{\iota_{\#}} \pi_{1}\left(D^{2}, 1\right) \xrightarrow{r_{\#}} \pi_{1}\left(S^{1}, 1\right)
$$

such that $(r \circ i)_{\#}=r_{\#} \circ i_{\#}$. Of course, this is impossible, since we would need $\mathbb{Z} \rightarrow 1 \rightarrow$ \mathbb{Z}. [this r has to be continuous b / c of the stuff we talked about lifting all used continuity]

If $f: D^{2} \rightarrow D^{2}$ then f has a fixed point. Suppose f has no fixed points.

$$
r(x)=t x+(1-t) f(x) \text { for } t \geq 1
$$

Then $\|r(x)\|=1$. Exercise. Check r is continuous.
Todo. Read notes he gave.

Lecture 7 (January 28, 2009) -

Consider the quotient space D^{n} / S^{n-1} with $x \sim y$ if $x=y$ or $x, y \in$ equiv class $\{[x]\}=X / A$.
Definition. A map p is a quotient map if $V \subset X / A$ is open $\Leftrightarrow p^{-1}(V)$ is open in X.

Lecture 9 (February 2, 2009) -

See handout on singular homology.

Lecture 13 (February 11, 2009) - δ

There is an identity map $1: \Delta^{n} \rightarrow \Delta^{n}$ with $\Delta_{n}\left(\Delta^{n}\right) \rightarrow \Delta_{n}(X)$ where we send $\mathbf{1} \rightarrow \sigma$. Then we can have the boundary operator $\Delta_{n}\left(\Delta^{n}\right) \xrightarrow{\partial} \Delta_{n-1}\left(\Delta^{n}\right)$. We also have $\Delta_{n}(X) \xrightarrow{\partial} \Delta_{n-1}(X)$, with $\Delta_{n-1}\left(\Delta^{n}\right) \rightarrow \Delta_{n-1}(X)$ (this gives us a square diagram).

For X a set, define

$$
A_{X}=\{f: X \rightarrow \mathbb{Z} \mid f(x) \neq 0 \text { for only finitely many } x\}
$$

Let

$$
(f+g)(x)=f(x)+g(x)
$$

Then A_{X} forms an abelian group.

Lecture 15 (February 16, 2009) - Reduced homology

Suppose $A \subset X$ with $A \xrightarrow{\iota} X \xrightarrow{r} A$ with $r \circ i=1_{A}$. Then A is a retract of X and r is said to be a retraction.

Lecture 17 (February 20, 2009) -

If $\quad t: S^{0} \rightarrow S^{0} \quad$ and $\quad t(x)=-x, \quad t_{1}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1} \quad$ given \quad by $t\left(x_{1}, \ldots, x_{n+1}\right)=$ $\left(-x_{1}, x_{2}, \ldots, x_{n+1}\right)$, then $S^{n}=\left\{x \in \mathbb{R}^{n+1}:|x|=1\right\}$. Further,

$$
D^{n}=\left\{x \in \mathbb{R}^{n+1}: x_{n+1}=0,|x| \leq \pi\right\}
$$

Now, we have $f: D^{n} \rightarrow S^{n}$. We want

$$
f(x)= \begin{cases}-(\cos |x|) e_{n+1}+\frac{\sin |x|}{|x|} x & x \neq 0 \\ -e_{n+1} & x=0\end{cases}
$$

Then $f \circ t_{1}=t_{1} \circ f$, and f is equivariant.

$$
f\left(\partial D^{n}\right)=\left\{e_{n+1}\right\}=p \subset S^{n}
$$

Furthermore,

$$
\tilde{H}_{0}\left(S^{0}\right) \xrightarrow{+1} \tilde{H}_{0}\left(S^{0}\right)
$$

with $H_{1}\left(D^{1}, S^{0}\right) \stackrel{\partial y}{\cong} \tilde{H}_{0}\left(S^{0}\right)$ and $H_{1}\left(D^{1}, S^{0}\right) \stackrel{\partial x}{\cong} \tilde{H}_{0}\left(S^{0}\right)$. Finally,

$$
\tilde{H}_{1}\left(S^{1}, p\right) \xrightarrow{f_{*}} \tilde{H}_{1}\left(D^{1}, S^{1}\right) \text { and } \tilde{H}_{1}\left(S^{1}, p\right) \xrightarrow{f_{*}} H_{1}\left(D^{1}, S^{0}\right),
$$

with $H_{1}\left(D^{1}, S^{0}\right) \xrightarrow{t_{*}} \tilde{H}_{1}\left(D^{1}, S^{1}\right)$ and $H_{1} 1\left(S^{1}, p\right) \xrightarrow{t_{*}} \tilde{H}_{1}\left(S^{1}, p\right)$, where t_{*} is simply multiplication by -1 . Finally, we have

$$
\tilde{H}_{1}\left(S^{1}\right) \supseteqq H_{1}\left(S^{1}, p\right) \text { and } \tilde{H}_{1}\left(S^{1}\right) \supseteqq \tilde{H}_{1}\left(S^{1}, p\right)
$$

and $\tilde{H}_{1}\left(S^{1}\right) \xrightarrow{t_{*}} \tilde{H}_{1}\left(S^{1}\right)$. (this has to be re-diagrammized...)
Given a map $f: S^{n} \rightarrow S^{n}$ or $f:\left(D^{n}, S^{n-1}\right) \rightarrow\left(D^{n}, S^{n-1}\right)$, we can define a degree $\operatorname{deg} f$ by $f_{*}(\alpha)=(\operatorname{deg} f) \alpha$. Then α generates $\tilde{H}_{n}\left(S^{n}\right)$. The degree has two properties, namely
(1) $\operatorname{deg} \mathbb{I}=1$.
(2) $\operatorname{deg} f \circ g=(\operatorname{deg} f)(\operatorname{deg} g)$.
(3) $f \cong g \Longrightarrow \operatorname{deg} f=\operatorname{deg} g$.
(4) If f is a homotopy equivalence, then $\operatorname{deg} f$ is ± 1.
(5) If $f:\left(D^{n}, S^{n-1}\right) \rightarrow\left(D^{n}, S^{n-1}\right)$, then $\operatorname{deg} f=\operatorname{deg}\left(f \mid S^{n-1}\right)$.

Then

$$
\begin{gathered}
t_{j}\left(x_{1}, \ldots, x_{n+1}\right)=\left(x_{1}, \ldots, x_{j-1},-x_{j}, x_{j+1}, \ldots, x_{n+1}\right), \text { and } \\
s\left(x_{1}, \ldots, x_{n+1}\right)=\left(x_{j}, x_{2}, \ldots, x_{j-1}, x_{1}, x_{j+1}, \ldots, x_{n+1}\right) .
\end{gathered}
$$

Clearly, $s \circ s=\mathbb{I}$ and $t_{j}=s \circ t_{1} \circ s$, so that $\operatorname{deg}\left(t_{i}\right)=\operatorname{deg} t_{1}=-1$.

Antipodal map

$a\left(x_{1}, \ldots, x_{n+1}\right)=\left(-x_{1}, \ldots,-x_{n-1}\right)$, and $a(\vec{x})=-\vec{x}$. Then $a=a \mid S^{n}$, and $\operatorname{deg} a=$ $(-1)^{n+1}$. Suppose $f(x) \neq x$ for all x, with $f: S^{n} \rightarrow S^{n}$. That is, each x goes to a point different from x. If $\operatorname{deg} f \neq(-1)^{n+1}$, then f has a pixed point. If

$$
L f=1+-1 \quad f
$$

If $X=U \cup V$ where U and V are open, then the Mayer-Vietoris sequence

$$
\ldots \stackrel{\Delta}{\Rightarrow} H_{q}(U \cap V) \xrightarrow{i} H_{q}(U) \oplus H_{q}(V) \xrightarrow{j} H_{q}(X) \stackrel{\Delta}{\Rightarrow} H_{q-1}(U \cap V) \rightarrow \ldots
$$

is exact where $i(\alpha)=\left(i_{1 *} \alpha, i_{2 *} \alpha\right)$ and $j(\beta, \gamma)=j_{1 *} \beta-j_{2 *} \gamma$ and where

$$
\begin{gathered}
U \cap V \stackrel{i_{1}}{\rightarrow} U \\
i_{2} \downarrow \\
V \underset{j_{2}}{\longrightarrow} U \cup j_{1}
\end{gathered}
$$

The boundary map Δ is defined to be the composition

$$
H_{q}(U \cup V) \rightarrow H_{q}(U \cup V, U) \equiv H_{q}(V, U \cap V) \xrightarrow{\partial_{*}} H_{q-1}(U \cap V)
$$

where the middle map is excision. Excision and the exact sequence of a pair give the diagram

$$
\begin{gathered}
H_{q}(U \cap V) \xrightarrow{i_{2 *}} H_{q}(V) \longrightarrow H_{q}(V, U \cap V) \xrightarrow{\partial_{*}} H_{q-1}(U \cap V) \xrightarrow{i_{2 *}} \\
\quad i_{1 *} \downarrow \\
H_{q}(U) \xrightarrow[j_{1 *}]{\longrightarrow} H_{q}(U \cup V) \longrightarrow H_{q}(U \cup V, U) \xrightarrow[\partial_{*}]{\longrightarrow} H_{q-1}(U) \xrightarrow[j_{1 *}]{\longrightarrow}
\end{gathered}
$$

The proof from here is algebra. In simpler notation, the Barrett-Whitehead lemma states that given a commutative diagram with exact rows and where c is an isomorphism,

$$
\begin{aligned}
& A_{q} \xrightarrow{f} B_{q} \xrightarrow{g} C_{q} \xrightarrow{\partial} A_{q-1} \stackrel{f}{\rightarrow} B_{q-1} \\
& a \downarrow \quad b \downarrow \quad c \downarrow=\downarrow a \quad \downarrow b \\
& \bar{A}_{q} \underset{\vec{f}}{\vec{B}} \bar{B}_{q} \underset{\vec{g}}{\vec{C}} \bar{C}_{q} \underset{\partial}{\vec{\partial}} \bar{A}_{q-1} \underset{\vec{f}}{\vec{B}} \bar{B}_{q-1}
\end{aligned}
$$

there is a long exact sequence

$$
\ldots \xrightarrow{\Delta} A_{q} \xrightarrow{i} \bar{A}_{q} \oplus B_{q} \xrightarrow{j} \bar{B}_{q} \xrightarrow{\Delta} A_{q-1} \xrightarrow{i} \ldots
$$

with $i(\alpha)=(a(\alpha), f(\alpha)), j(\bar{\alpha}, \beta)=\bar{f}(\bar{\alpha})-b(\beta)$, and $\Delta=\partial \circ c^{-1} \circ \bar{g}$.

Lecture 19 (February 25, 2009) -

Proposition. [pg 169 Hatcher] Let $A \subset S^{n}$ such that $A \cong D^{k}$. Then $\tilde{H}_{q}\left(S^{n}-A\right)=0$. Proof. We will use induction. When $k=0$, we have $S^{n}-D^{0}=\mathbb{R}^{n}$, which is homotopic to a point. Now, $D^{k} \cong D^{k-1} \times I$. Assume $\tilde{H}_{q}\left(S^{n}-A\right) \neq 0$. Then take

$$
h: D^{k-1} \times I \underset{\rightrightarrows}{\approx} \text {. }
$$

Let

$$
A^{\prime}=h\left(D^{k-1} \times\left[0, \frac{1}{2}\right]\right), A^{\prime \prime}=h\left(D^{k-1} \times\left[\frac{1}{2}, 1\right]\right)
$$

with $\quad A^{\prime} \cup A^{\prime \prime}=A$ and $A^{\prime} \cap A^{\prime \prime} \cong D^{k-1}$. Then $\quad S^{n}-A=\left(S^{n}-A^{1}\right) \cap\left(S^{n}-A\right)$. Hence, we get the Mayer-Vietoris sequence

$$
\tilde{H}_{q}\left(S^{n}-A\right) \rightarrow \tilde{H}_{q}\left(S^{n}-A^{\prime}\right) \oplus \tilde{H}_{q}\left(S^{n}-A^{\prime \prime}\right) \rightarrow \tilde{H}_{q}\left(S^{n}-A^{\prime} \cap A^{\prime \prime}\right) .
$$

Here, $y_{i} \in \tilde{H}_{q}\left(S^{n}-A\right)$ is mapped to $y_{i} \neq 0$ in $\tilde{H}_{q}\left(S^{n}-A_{1}\right)$ where $A_{1}=A^{\prime}$ or $A^{\prime \prime}$. Then

$$
y_{0} \mapsto y_{1} \mapsto \ldots \mapsto y_{i} \in \tilde{H}_{q}\left(S^{n}-A_{i}\right) .
$$

Now, since $\bigcup S^{n}-A_{i}=S^{n}-h\left(D^{k-1} \times\{t\}\right)=S^{n}-\bigcap A_{i}$. So,

$$
\tilde{H}_{q}\left(S^{n}-A_{i}\right) \rightarrow \tilde{H}_{q}\left(S^{n} \cap A_{i}\right)=0 \text { (by induction) }
$$

with $y=0$ in $\tilde{H}_{q}\left(S^{n} \cap A_{i}\right)$. We get a string of the y_{i} 's which are all non-zero but end up mapping to something zero, so we have a contradiction (that $y_{0} \neq 0$).

Jordan-Brouwer Separation Theorem (still page 169--part b of the proposition)
Let Σ^{m}, S^{n} be such that $\Sigma^{m} \cong S^{m}$. Then

$$
\tilde{H}_{q}\left(S^{n}-\Sigma^{m}\right)= \begin{cases}\mathbb{Z} & q=n-m-1 \\ 0 & q \neq n-m-1\end{cases}
$$

Proof. We proceed by induction on m. First, $m=0$. Then

$$
\tilde{H}_{q}\left(S^{n}-S^{0}\right)=\tilde{H}_{q}\left(S^{n-1}\right)= \begin{cases}\mathbb{Z} & q=n-1 \\ 0 & q \neq n-1\end{cases}
$$

(recall the reduced homology is precisely that for the S^{n-1} sphere). Now, notice

$$
\Sigma^{m} \cong S^{m}=D_{-}^{m} \cup D_{+}^{m} \text { [where } D_{-}^{m} \text { and } D_{+}^{m} \text { are two hemispheres] }
$$

with $S^{n}-D_{-}^{m}, S^{n}-D_{+}^{m}$. Then the Mayer-Vietoris sequence is

$$
0 \rightarrow \tilde{H}_{q+1}\left(\left(S^{n}-D_{-}^{m}\right) \cup\left(S^{n}-D_{+}^{m}\right)\right) \stackrel{\partial}{\Rightarrow} \tilde{H}_{q}\left(S^{n}-\Sigma^{m}\right) \rightarrow 0
$$

where

$$
\tilde{H}_{q+1}\left(\left(S^{n}-D_{-}^{m}\right) \cup\left(S^{n}-D_{+}^{m}\right)\right)=\tilde{H}_{q+1}\left(S^{n}-\left(D_{-}^{m} \cap D_{+}^{m}\right)\right)=H_{q}\left(S^{n}-\Sigma^{m-1}\right)
$$

Hence,

$$
\tilde{H}_{q}\left(S^{n}-\Sigma^{m}\right) \equiv \tilde{H}_{q+1}\left(S^{n}-\Sigma^{m-1}\right) \equiv \ldots \leftarrow \tilde{H}_{q+m}\left(S^{n}-\Sigma^{0}\right)=\tilde{H}_{q+m}\left(S^{n-1}\right)
$$

but we know the last guy is just

$$
\begin{cases}\mathbb{Z} & q=n-m-1 \\ 0 & \text { otherwise. } \square\end{cases}
$$

Using the above theorem, we know for example that $\tilde{H}_{0}\left(S^{2}-\Sigma^{1}\right)=\mathbb{Z}$.
Now, consider $S^{1} \hookrightarrow S^{3}$.

Lecture 20 (February 27, 2009) -

Jordan-Brouwer

Recall last time we computed

$$
\tilde{H}_{q}\left(S^{n}-\Sigma^{m}\right)= \begin{cases}\mathbb{Z} & \text { if } \varphi=n-m-1 \\ 0 & \text { otherwise }\end{cases}
$$

If X is path connected and given by $g: \dot{I} \rightarrow X$, then $\exists f: I \rightarrow X$ such that

Further, X is connected if any map $h: X \rightarrow \dot{I}$ is constant.
Lemma. If X is path connected, then X is connected.
Proof. Suppose $h: X \rightarrow \dot{I}$ is onto. Then there exists an x_{0} such that $h\left(x_{0}\right)=0$, and there exists an x_{1} such that $h\left(x_{1}\right)=1$. Define $g(0)=x_{0}$ and $g(1)=x_{1}$. First, notice that $h \circ f(0)=0$ and $h \circ f(1)=1$. Hence, we can't have such a continuous function.

This shows $H_{0}\left(S^{n}-\Sigma^{n-1}\right)=\mathbb{Z} \oplus \mathbb{Z}$, so that it has two path components, say U and $V\left(\right.$ so $\left.S^{n}-\Sigma^{n-1}=U \cup V\right)$.

Proposition. Let $\Sigma^{n-1} \subset S^{n}$. Then $\Sigma^{n-1}=\partial U=\partial V$, with $\partial U=\bar{U}-\stackrel{\circ}{U}$, where $\stackrel{\circ}{U}$ is the interior.

Proof. Assume U and V are open with $\bar{U} \subset S^{n}-V$. Take $S^{n}=U \cup V \cup \Sigma$. Then $U=\left(S^{n}-V\right)-\Sigma$ and $\bar{U} \subset S^{n}-V$. We have

$$
\partial U=\bar{U}-U \subset\left(S^{n}-V\right)-U=S^{n}-(U \cup V)=\Sigma
$$

Hence, $\partial V \subset \Sigma$. We want to show $\Sigma \subset \partial U$ and $\Sigma \subset \partial V$, that is, $\Sigma \subset \bar{U} \cap \bar{V}$. Let $x \in \Sigma$ and let N be any open neighborhood of x in S^{n}. Let $A \subset \Sigma^{n-1} \cap N$ with $\Sigma^{n-1}-A \cong$ D^{n-1}. By the Lemma,

$$
\tilde{H}_{0}\left(S^{n}-\left(\Sigma^{n-1}-A\right)\right)=0
$$

(the reduced homology of the complement of the disk is 0). Since $S^{n}-\left(\Sigma^{n-1}-A\right)$ is path connected, if $p \in U$ and $q \in V$, then there is a path w in $S^{n}-\left(\Sigma^{n-1}-A\right)$ from p to q which meets Σ^{n-1}, and hence must meet A.

Lecture 22 (March 4, 2009) - Real projective space

Attaching a cell to \boldsymbol{X}

We have a map $g: S^{n-1} \rightarrow X$ and $Z=X \cup_{g} D^{n}:=X \amalg D^{n} / x \sim g(x)$ with $x \in S^{n-1}$ and $g(x) \in X$ (with \amalg disjoint union).

Example. Take $X=\{*\}$ a one-point space. Then $Z=S^{n}$.

We can define $\mathbb{R} P^{n}:=S^{n} / x \sim-x$. But we don't need the whole sphere, we can take one hemisphere with just antipodal points on the boundary identified: that is D^{n} with $\mathbb{R} P^{n-1}$. Now, we can do the following. Take $S^{n-1} \xrightarrow{g} \mathbb{R} P^{n-1}$ with $g(x)=g(-x)$. Then

$$
\mathbb{R} P^{n}=\mathbb{R} P^{n-1} \cup_{g} D^{n}
$$

Remember $\mathbb{Z} / 2$ acts on S^{n} by the antipodal map:

$$
\mathbb{Z} / 2 \rightarrow \operatorname{Homeo}\left(S^{n}\right)
$$

with $S^{n} /(\mathbb{Z} / 2)$ the set of orbits. Define a projection map $S^{n} \xrightarrow{p} \mathbb{R} P^{n}$ such that $V \subset \mathbb{R} P^{n}$ is open if and only if $p^{-1}(V)$ is open. Consider

$$
H_{q}\left(D^{n}, S^{n-1}\right) \equiv H_{q}(Z, X)
$$

where $Z=\mathbb{R} P^{n-1} \cup_{g} D^{n}$ where $g: S^{n-1} \rightarrow \mathbb{R} P^{n-1}$. We then get the diagram

$$
\begin{gathered}
\left(D^{n}, S^{n-1}\right) \stackrel{f}{\rightarrow}(Z, X) \\
\downarrow \cong \\
\left(D^{n}, A\right) \rightarrow\left(Z, A^{\prime}\right) \\
\uparrow=\quad \uparrow= \\
\left(D^{n}-U, A-U\right) \rightarrow\left(Z-U^{\prime}, A^{\prime}-U^{\prime}\right)
\end{gathered}
$$

such that $f \mid S^{n-1}=g$ with $A^{\prime}=X \cup f(A)$ and $U^{\prime}=X \cup f(U)$.

Now, we know that

$$
H_{q}\left(D^{n}, S^{n-1}\right)= \begin{cases}Z & \text { if } q=n \\ 0 & \text { if } q \neq n\end{cases}
$$

Now let's look at the exact sequence of the pair $\left(\mathbb{R} P^{n}, \mathbb{R} P^{n-1}\right)$.

$$
\begin{aligned}
0 \rightarrow H_{n}\left(\mathbb{R} P^{n-1}\right) & \rightarrow H_{n}\left(\mathbb{R} P^{n}\right) \rightarrow H_{n}\left(\mathbb{R} P^{n}, \mathbb{R} P^{n-1}\right) \xrightarrow{\partial} H_{n-1}\left(\mathbb{R} P^{n-1}\right) \rightarrow H_{n-1}\left(\mathbb{R} P^{n}\right) \rightarrow 0 \\
0 & \rightarrow \tilde{H}_{q}\left(\mathbb{R} P^{n-1}\right) \rightarrow \tilde{H}_{q}\left(\mathbb{R} P^{n}\right) \rightarrow 0 \text { if } q \neq n, n-1
\end{aligned}
$$

For example, for $\mathbb{R} P^{0}=\{*\}, \tilde{H}_{q}\left(\mathbb{R} P^{0}\right)=0$.
We then claim that $\tilde{H}_{q}\left(\mathbb{R} P^{n}\right)=0$ if $q>n$. Proof. It's true if $n=0$, and true if $n=1$, and true for $n>1$ by induction.

Recall the diagram

$$
\begin{gathered}
H_{n}\left(D^{n}, S^{n-1}\right)=H_{n-1}\left(S^{n-1}\right) \\
\| f \\
0 \rightarrow \tilde{H}_{n}\left(\mathbb{R} P^{n}\right) \rightarrow H_{n}\left(\mathbb{R} P^{n}, \mathbb{R} P^{n-1}\right) \rightarrow \tilde{H}_{n-1}\left(\mathbb{R} P^{n-1}\right) \rightarrow \tilde{H}_{n-1}\left(\mathbb{R} P^{n}\right) \rightarrow 0 .
\end{gathered}
$$

with $S^{n-1} \xrightarrow{p} \mathbb{R} P^{n-1}$ and notice

$$
H_{n}\left(\mathbb{R} P^{n}, \mathbb{R} P^{n-1}\right)=H_{n}\left(D^{n}, S^{n-1}\right)=H_{n-1}\left(S^{n-1}\right)=\mathbb{Z}
$$

Theorem. [page 144 of Hatcher]

$$
H_{q}\left(\mathbb{R} P^{n}\right)= \begin{cases}\mathbb{Z} & \text { if } q=0 \\ \mathbb{Z} / 2 & \text { if } q=\text { is odd and } 1 \leq q<n \\ \mathbb{Z} & \text { if } q=n \text { is odd } \\ 0 & \text { otherwise }\end{cases}
$$

Proof. We have shown the $q=0$ case. Assume it's true for some $k=n-1$ with n odd. Look at the above diagram. Assume we've already done the induction from 1 to 2 and know that $H_{n-1}\left(\mathbb{R} P^{n-1}\right)=0$ since $n-1$ is even. We don't know anything about $\tilde{H}_{q}\left(\mathbb{R} P^{n}\right)$ or $H_{n-1}\left(\mathbb{R} P^{n}\right)$. However, if you think about it $\tilde{H}_{n-1}\left(\mathbb{R} P^{n}\right)=0$ and $\tilde{H}_{n}\left(\mathbb{R} P^{n}\right)=\mathbb{Z}$. We get the diagram (look above and use what we learned):

$$
0 \rightarrow H_{n}\left(\mathbb{R} P^{n-1}\right) \rightarrow \mathbb{Z} \rightarrow 0 \text { (by induction) } \rightarrow H_{n-1}\left(\mathbb{R} P^{n}\right) \rightarrow 0
$$

Now consider $n=2$. Then $\tilde{H}_{n-1}\left(\mathbb{R} P^{n-1}\right) \cong \mathbb{Z}$. We want to show $\tilde{H}_{n}\left(\mathbb{R} P^{n}\right)=0$ and $\tilde{H}_{n-1}\left(\mathbb{R} P^{n}\right)=\mathbb{Z} / 2$. What is p_{*} ? (Below, a is the antipodal map and \mathbb{I} the identity)

$$
\begin{aligned}
& \left(S^{n-1}, x_{0}\right) \xrightarrow{\subsetneq}\left(S^{n-1} \vee S^{n-1}, x_{0}\right) \xrightarrow{\mathbb{I} \circ a}\left(S^{n}, x_{0}\right) \\
& \downarrow p \quad \downarrow \cong \\
& \left(\mathbb{R} P^{n-1}, y_{0}\right) \rightarrow\left(\mathbb{R} P^{n-1}, \mathbb{R} P^{n-2}\right) \longrightarrow\left(\mathbb{R} P^{n-1} / \mathbb{R} P^{n-2}, \mathbb{R} P^{n-2} / \mathbb{R} P^{n-2}\right) .
\end{aligned}
$$

Recall

$$
\begin{aligned}
S^{n-1} & \xrightarrow{p} \mathbb{R} P^{n-1} \\
\xi \downarrow & \stackrel{\downarrow}{\xi \downarrow} \stackrel{1}{S^{n-1}} \underset{\mathbb{I}}{ } \rightarrow \mathbb{R} P^{n-1} / \mathbb{R} P^{n-2} \cong S^{n-1} .
\end{aligned}
$$

where ξ collapses equator to a point, and $\mathbb{I} \circ a$ is the antipodal map followed by the identity map. Now, recall $\operatorname{deg}(\mathbb{I} \circ a)=1+(-1)^{n}$, because $\operatorname{deg}(\mathbb{I})=1$ and $\operatorname{deg}(a)=$ $(-1)^{n}$.

$$
H_{q}\left(\mathbb{R} P^{n-1} / \mathbb{R} P^{n-2}\right)=H_{q}\left(\mathbb{R} P^{n-1}, \mathbb{R} P^{n-2}\right)
$$

Lecture 24 (March 9, 2009) -

We know $H_{q}(C, L)=H_{q}(C \otimes L)$ and $H_{q}(X ; L)=H_{q}(\Delta(X) ; L)$. Let R be a PID. A set

$$
F_{A}=\{F: A \rightarrow R \mid \text { f.g., nonzero }\}
$$

with $f(a) \neq 0$ for only finite \# of points. Then we can make F_{A} into a left R-module

$$
(f+g)(a)=f(a)+g(a) \text { and }(r f)(a)=r f(a) .
$$

Take $i: A \rightarrow F_{A}$ such that $i(a) b=1$ if $a=b$ and 0 if $a \neq b$. Then

$$
f=\sum f(a) i(a) .
$$

Then $F_{A} \xrightarrow{\varphi} F_{B}$. Then $\varphi(i(a))=\sum_{b \in B} c_{a}^{b} j(b)$, with $c_{a}^{b}=\varphi(i(a))(b)$. Then

$$
\varphi(f)(b)=\sum_{a} c_{b}^{a} f(a) \varphi(i(a))=\sum_{b \in B} c_{b}^{a} j(b)
$$

Fix an R-module L, with $t\left(F_{a}\right)=\coprod_{a \in A} L=\{g: A \rightarrow L\}$ finitely nonzero.
Unfortunately, this only works for free modules with a basis.
An R-module is free if $F \cong F_{A}$ for some A. Put $F_{A} \xrightarrow{\varphi} F_{B}$ and $t\left(F_{A}\right) \xrightarrow{t(\varphi)} t\left(F_{B}\right)$ with $t(\varphi)(g)=\sum_{c} \sum_{b} c_{a}^{b}$. Now,

$$
\varphi(f)=\varphi\left(\sum_{a} f(a) i(a)\right)=\sum_{a} f(a) \varphi(i(a))=\sum_{a} \sum_{b} f(a) c_{b}^{a} j(b) .
$$

So the matrix for φ is $\sum_{a} f(a) c_{b}^{a}$. Take the matrix for $t \varphi$,

$$
\sum_{a} f(a) c^{a}
$$

Hence,

$$
t(\varphi)(g)=\sum_{c} \sum_{b} c_{a}^{b} \varphi
$$

Now, t is strongly additive,

$$
\begin{gathered}
t(f+g)=t(f)+t(g), \text { and } \\
t\left(\coprod_{i \in I} F_{i}\right)=\coprod_{i \in I} t\left(F_{i}\right) \\
\left\{f: \bigcup_{i \in I} A_{i} \rightarrow L\right\} .
\end{gathered}
$$

The problem now is how to extend this from free modules to arbitrary modules. Start with any R-module M. Certainly, there is an F_{0}, F_{1} such that

$$
F_{1} \rightarrow F_{0} \xrightarrow{\partial} M \rightarrow 0 .
$$

Define $F_{0} \xrightarrow{\partial} M$ so that ∂ is onto. Then ker $\partial \subset F_{0}$ is a submodule, and hence free (for R a PID). [Hint: to prove this, use transfinite induction.] Then

$$
0 \rightarrow F_{1} \xrightarrow{\partial} F_{0} \rightarrow 0
$$

and we want (by construction) $H_{0}(F)=M$ and $H_{i}(F)=0$ (for $i>0$) (i.e., a resolution). By definition, $t_{i}(M)=H_{i}(F)$ for $i=0,1$. Then

$$
t_{0}(M)=M \otimes L \text { and } t_{1}(M)=M * L
$$

the torsion product. We want to be able to compute these things, now.

Proposition. Two short exact resolutions of M are chain homotopy equivalent.
Proof. We have

$$
\begin{gathered}
0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0 \\
f_{1} \downarrow \quad f_{2} \downarrow \\
0 \rightarrow G_{1} \rightarrow G_{0} \rightarrow M \rightarrow 0,
\end{gathered}
$$

where f_{1} and f_{2} are natural, with $f_{2}=f_{1} \mid F_{1}$.

Lecture 28 (March 20, 2009) -

Remember problem 20: Take the torus $T^{2}=S^{1} \times S^{1}$. Use $U=I \times S^{1}$ and $V=J \times S^{1}$. Then $U \cong S^{1}$ and $V \cong S^{1}$. For this problem, the MV maps are "obvious".
For problem 21: Take $S^{1} \vee \ldots \vee S^{1}$ (a disc minus smaller discs). Take

$$
U=D^{2}-\left(D_{1}^{2} \cup \ldots \cup D_{n}^{2}\right) \text { and } V=D^{2}-\left(D_{0}^{2}\right)
$$

Unnamed problem: Show $f, g: S^{n} \rightarrow S^{n}$ with $\forall x, f(x) \neq-g(x)$, are homotopic. Just connect them with a straight line (it can't go through the origin), then project.

Problem 25: We don't have to know anything about the map, just think of groups.
For $\prod_{i=1}^{k} S^{n_{i}}$, the rank is $b_{q}=\operatorname{rank} H_{q}(X ; \mathbb{Z})$ (Betti number), then $\sum_{q} b_{q} t^{q}$.

$$
\left(1+t^{n}\right)\left(\ldots+b_{j} t^{j}+\ldots\right)=\ldots+\left(b_{q}+b_{q-n}\right) t^{q}+\ldots
$$

We know $b_{q-n}=0$ if $q-n<0$.
Example. $U \subset I$ for cohomology, C is a free chain complex.

$$
0 \rightarrow \operatorname{Ext}\left(H_{q-1} C, L\right) \rightarrow H^{q}(C ; L) \rightarrow \operatorname{Hom}\left(H_{q} C, L\right) \rightarrow 0
$$

is split exact. We would have $f: C_{q} \rightarrow L \in H^{q}(C ; L)$, and $z: H_{q} C \rightarrow L$ in the latter. Suppose we changed z by taking $z+\partial c$. Then $f(z+\partial c)=f(z)+f(\partial c)=f(z)$ because $f(\partial c)=(\partial f)(c)$ but the coboundary is 0 .

Recall

$$
H_{q}\left(\mathbb{R} P^{n} ; \mathbb{Z}\right)= \begin{cases}\mathbb{Z} & \text { if } q=0 \\ \mathbb{Z} / 2 & \text { if } q \text { is odd and } 1 \leq q \leq n-1 \\ \mathbb{Z} & \text { if } q=n \text { and odd } \\ 0 & \text { otherwise }\end{cases}
$$

Similarly,

$$
H^{q}\left(\mathbb{R} P^{n} ; \mathbb{Z}\right)= \begin{cases}\mathbb{Z} & \text { if } q=0 \\ \mathbb{Z} / 2 & \text { if } q \text { is even and } 2 \leq q \leq n \\ \mathbb{Z} & \text { if } q=n \text { is odd } \\ 0 & \text { otherwise }\end{cases}
$$

Recall

$$
H_{q}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2\right)= \begin{cases}\mathbb{Z} / 2 & 0 \leq q \leq n \\ 0 & \text { otherwise }\end{cases}
$$

Take $R=\mathbb{Z} / 2$, which is a field! A module over a field is a vector space, so no torsion! Hence,

$$
H^{q}\left(\mathbb{R} P^{n}, \mathbb{Z} / 2\right)= \begin{cases}\mathbb{Z} / 2 & 0 \leq q \leq n \\ 0 & \text { otherwise }\end{cases}
$$

We say

$$
H^{*}\left(\mathbb{R} P^{n} ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2[\alpha] / \alpha^{n+1}
$$

Lecture 29 (March 30, 2009) -

Let Λ be a P.I.D. Let $\Delta_{q}(X, \Lambda)$ be the free Λ-module on the set $\Delta^{q} \xrightarrow{\sigma} X$. Then the boundary map $\Delta_{q} \xrightarrow{\partial} \Delta_{q-1}$, and face maps are $\Delta^{q-1} \rightarrow \Delta^{q}$, with $\partial \circ \partial=0$. Then we form

$$
\begin{aligned}
\Delta^{p}(X ; \Lambda) & =\operatorname{Hom}_{\Lambda}\left(\Delta_{q}(X ; \Lambda), \Lambda\right) \\
c & \mapsto(\gamma \mapsto c(\gamma))
\end{aligned}
$$

and we write $c(\gamma)=\langle c, \gamma\rangle$. Define $\Delta^{q} \xrightarrow{\Gamma} \Delta^{q+1}$ by $\langle\partial c, \alpha\rangle=\langle c, \partial \alpha\rangle$. Define a map $k: H^{n} X \rightarrow \operatorname{Hom}_{\Lambda}\left(H_{n} X, \Lambda\right)$. Given $x \in H^{n} X$ and $\xi \in H_{n} X$, let $z \in Z^{n} X$ represent x in the co-cycles and $\zeta \in Z_{n} X$ represent ξ in the cycles. Then $\langle x, \xi\rangle=\langle z, \zeta\rangle$ (Exercise), and set $k(x) \xi=\langle x, \xi\rangle$. This is well-defined with $\partial z=\partial \zeta=0$. We just need to check well-definedness:

$$
\begin{gathered}
\langle z+\partial y, \zeta+\partial \eta\rangle=\langle z, \zeta\rangle+\langle z, \partial \eta\rangle+\langle\partial y, \zeta\rangle+\langle\partial y, \partial \eta\rangle= \\
\langle z, \zeta\rangle+\langle\partial z, \eta\rangle+\langle y, \partial \zeta\rangle+\langle y, \partial \circ \partial \eta\rangle=\langle z, \zeta\rangle,
\end{gathered}
$$

because z is a co-cycle, ζ is a cycle, and $\partial \circ \partial=0$.
Theorem A.1. (Special case of Universal Coefficient Theorem) Let $H_{n-1} X$ be free. Then k is a natural equivalence.
Proof. Since $\Delta_{n} X / Z_{n} \cong B_{n-1} \subset \Delta_{n-1} X, B_{n-1}$ is free. Hence, Z_{n} is a direct summand of $\Delta_{n} X$, that is, there is a splitting $Z_{n} \leftrightarrow \Delta_{n} X$ (with \leftarrow given by r). Hence, for any $f \in \operatorname{Hom}_{\Lambda}\left(H_{n} X, \Lambda\right), \exists f$ such that $Z_{n} \rightarrow H_{n} \xrightarrow{f} \Lambda$ with $Z_{n} \subset \Delta_{n} X \xrightarrow{F} \Lambda$.

Now, restrict $F \mid B_{n-1}=0$ to the boundaries, so that $\partial F=0$ as $\langle\partial F, \alpha\rangle=\langle F, \partial \alpha\rangle$. Hence, $F \in Z^{n} X$ is a co-cycle. Let F represent $x \in H^{n} X$. If $\xi \in H_{n} X$ is represented by $\zeta \in Z_{n}$, then

$$
k(x) \xi=\langle x, \xi\rangle=\langle F, \zeta\rangle=f(\xi)
$$

We claim ker $k=0$. Let $z \in Z^{n} X$ represent x and assume $k(x)=0$. We want to show $x=0$. Then $\forall \zeta \in Z_{n},\langle z, \zeta\rangle=0$. We claim $z \in \boldsymbol{B}^{n} \boldsymbol{X}$. For all $\beta \in B_{n-1}, \exists \gamma \in \Delta_{n} X$ such that $\beta=\partial \gamma$. If β is also the boundary of γ_{1}, that is, $\beta=\partial \gamma_{1}$, then obviously $\partial\left(\gamma-\gamma_{1}\right)=0$ so that $\gamma-\gamma_{1} \in Z_{n} X$ (is a cycle) and by assumption that $\langle z, \zeta\rangle=0$,

$$
\left\langle z, \gamma-\gamma_{1}\right\rangle=0,
$$

so $\langle z, \gamma\rangle=\left\langle z, \gamma_{1}\right\rangle$. Then $z \circ \partial^{-1}: B_{n-1} \rightarrow \Lambda$ and $\beta \mapsto\langle z, \gamma\rangle$ is well-defined.
Since $H_{n-1} X$ is free, B_{n-1} is a summand of Z_{n-1}, and hence B_{n-1} is a summand of $\Delta_{n-1} X$. Let $f: \Delta_{n-1} X \rightarrow \Lambda$ extend to $z \circ \partial^{-1}$. Then $f \in \Delta^{n-1} X$, and $\forall \sigma$,

$$
\langle\partial f, \sigma\rangle=\langle f, \partial \sigma\rangle=\left\langle z \circ \partial^{-1}, \partial \sigma\right\rangle=\langle z, \sigma\rangle .
$$

Then $\partial f=z \in B^{n} X$, which is exactly what we claimed! (see bold part above) Hence, $x=0$ in $H^{n}(X)$.

We want to know $H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-\{0\}\right)$. We can't use excission on this, and it turns out

$$
H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-\{0\}\right)= \begin{cases}\Lambda & q=n \\ 0 & q \neq n\end{cases}
$$

We know this already about $H_{q}\left(D^{n}, S^{n-1}\right)$. Then

$$
\begin{aligned}
& \ldots \rightarrow H_{q}\left(S^{n-1}\right) \rightarrow H_{q}\left(D^{n}\right) \rightarrow H_{q}\left(D^{n}, S^{n-1}\right) \rightarrow H_{q-1}\left(S^{n-1}\right) \rightarrow \ldots \\
& \cong \downarrow \quad \downarrow \cong \quad \downarrow \text { § } \\
& \ldots \rightarrow H_{q}\left(\mathbb{R}^{n}-\{0\}\right) \rightarrow H_{q}\left(\mathbb{R}^{n}\right) \rightarrow H_{q}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-\{0\}\right) \rightarrow H_{q-1}\left(\mathbb{R}^{n}-\{0\}\right) \rightarrow \ldots
\end{aligned}
$$

so by the Five Lemma the penultimate \downarrow is also an isomorphism.

Lecture 30 (April 1, 2009) -

$C W$ spaces (JHC Whitehead).
A $C W$ space is a Hausdorff space partitioned into a collection of $\left\{e_{\alpha}\right\}$ of disjoint subsets such that
(1) $\exists F_{\alpha}: D^{n(\alpha)} \rightarrow X$ with $F_{\alpha} \mid \stackrel{\mathrm{O}}{D}^{n(\alpha)}$ a homeomorphism onto e_{α}.

We can now define the n-skeleton $X^{n}=\bigcup\left\{e_{\alpha}: n(\alpha) \leq n\right\}$.
(2) If we let $f_{\alpha}=F_{\alpha} \mid S^{n(\alpha)-1}$, then this maps into $X^{n(\alpha)-1}$. We say X is finite if there are only finitely many cells. A subset $A \subset X$ is a (finite) CW -subspace if it is closed, and a union of (finitely many) e_{α} 's.
(3) (Closure-Finiteness) Each point in X is contained in a finite subcomplex.
(4) (Weak topology) X has the topology of the direct limit of the finite subcomplexes (which means A is closed \leftrightarrow each finite subcomplex is closed).'
Theorem A2. $\underset{\alpha, n(\alpha)=n}{\amalg H_{q}\left(D^{n}, S^{n-1}\right) \xrightarrow{\amalg F_{\alpha}} H_{q}\left(X^{n}, X^{n-1}\right) \text { is an isomorphism, where }}$

$$
H_{q}\left(D^{n}, S^{n-1}\right)= \begin{cases}0 & q \neq n \\ \text { free } \Gamma \text {-module } & q=n\end{cases}
$$

Proof. See appendix.

Lecture 31 (April 3, 2009) -

Theorem. $H_{n}(X)=H_{n}\left(C_{*}\right)$, where $C_{n}=H_{n}\left(X^{n}, X^{n-1}\right)$.
$C^{n}=H^{n}\left(X^{n}, X^{n-1}\right)=\operatorname{Hom}_{\Lambda}\left(C_{n}, \Lambda\right)$, the dual of homology (this is cohomology).

Excision

Let $U \subset A \subset X$ with $\bar{U} \subset \stackrel{\mathrm{o}}{A}$. We have

$$
\mathrm{H}_{q}(X-U, A-U) \rightarrow H_{q}(X, A)
$$

is an isomorphism. By the UCT,

$$
\begin{gathered}
0 \rightarrow \operatorname{Ext}\left(H_{q-1}(X ; A), L\right) \rightarrow H^{q}(X, A ; L) \rightarrow \underset{\operatorname{Hom}\left(H_{q}(X, A), L\right) \rightarrow 0}{=\downarrow i^{*} \mid}=\downarrow i^{*}=\downarrow\left(i_{*}^{*}\right) \\
=\downarrow \rightarrow \operatorname{Ext}\left(H_{q-1}(X-U, A-U), L\right) \rightarrow H^{q}(X-U, A-U ; L) \rightarrow \operatorname{Hom}\left(H_{q}(X-U, A-U), L\right) \rightarrow 0 .
\end{gathered}
$$

By the Five Lemma, the middle is also an isomorphism.

Cup product

Consider $H^{p}(X, A) \otimes H^{q}(X, B) \rightarrow H^{p+q}(X, A \cup B)$ given by $u \otimes v \mapsto u \cup v$.
Properties. (1) First, we have a map $f: X \rightarrow Y$. We get $f^{*}(u \cup v)=f^{*} u \cup f^{*} v$.
(2) It is bilinear and associative. This covers a host of identities, like

$$
\begin{aligned}
& r(u \cup v)=(r u) \cup v-u \cup(r v) \\
& \left(u_{1}+u_{2}\right) \cup v=u_{1} \cup v+u_{2} \cup v \\
& \quad(u \cup v) \cup w=u \cup(v \cup w) .
\end{aligned}
$$

(3) We say $u \cup v=(-1)^{p q} u \cup v$.
(4) Think of $i: H \hookrightarrow X$, and let $u \in H^{p}(A)$. Then $\partial u=H^{p+1}(X, A)$. Let $v \in H^{q}(X)$. Then $\partial u \cup v=\partial\left(u \cup i^{*} v\right)$. Further, $i^{*} v \in H^{q}(A)$.
(5) We specify $u_{0} \in H^{0}(X)=\operatorname{Hom}\left(H_{0}(X), \Lambda\right)$ where $u_{0}=(1 \mapsto 1)$. Hence, $u_{0} \cup v=$ v and it acts as the identity.

