Lecture 3 (January 16, 2009) -

We continue by showing transitivity of homotopy (so that it is indeed an equivalence relation).

Assume $f \cong f'$ and $f' \cong f''$ by F and F'. Then we can let

$$F''(s,t) = \begin{cases} F(2s,t) & s \in [0,1/2] \\ F'(2s-1,t) & s \in (1/2,1] \end{cases}$$

This is an explicit continuous function between f and f'', so $f \cong f''$. \Box

Now, let's show that give $\varphi: I \to I$ with $\varphi(0) = 0$ and $\varphi(1) = 1, \alpha \cong \alpha \circ \varphi$. Indeed,

$$\alpha_s(t) = \alpha((1-s)t + s\varphi(t)).$$

Exercise. Show associativity of the fundamental group using a direct parametrization.

Lecture 4 (January 21, 2009) -

Read pages 162-165, 1-4, 25-37, and 5-7 in Hatcher.

Let (X, x_0) be a pointed space.

Lecture 5 (January 23, 2009) -

Lifting Theorem

Take $\varphi: R \to S_1$ with $\varphi(t) = e^{2\pi i t}$.

Lifting Theorem. If X is star shaped from $\vec{0} \in X \subset \mathbb{R}^n$, X is compact, $f: X \to S_1$, $t_0 \in \mathbb{R}, \varphi(t_0) = f(x_0) \Longrightarrow \exists \tilde{f}: X \to \mathbb{R}$ s.t. $\varphi \circ \tilde{f} = f$, $\tilde{f}(x_0) = t_0$. In other words, there is a lift.

Proof. Take $\varphi: \left(-\frac{1}{2}, \frac{1}{2}\right) \to S^1 - \{-1\}$ a homeomorphism with inverse $\psi: S^1 - \{-1\} \to \left(-\frac{1}{2}, \frac{1}{2}\right)$. Then $\exists \delta > 0$ such that $\forall x, x' \in X$, $||x - x'|| < \delta$ implies that |f(x) - f(x')| < 2. Now choose n such that $\frac{||x||}{n} < \delta \ \forall x \in X$. Then $f(0), \left(\frac{1}{n}x\right), \ldots, f\left(\frac{n-1}{n}x\right), f(x)$ form a consecutive partition of non-antipodal points.

Lecture 6 (January 26, 2009) -

Degrees of paths

For a path α , we define deg $\alpha = \tilde{\alpha}(1)$ (where $\tilde{\alpha}$ is a lift for α). If $\alpha \sim \beta$, then deg $\alpha = \deg \beta$. If $H: I \times I \to S^1$, we get $\tilde{H}: I \times I \to \mathbb{R}$ with $\tilde{H}(0,0) = 0$ such that $\tilde{H}(0,t) = \tilde{\alpha}(t)$ (by unique lifting), $\tilde{H}(s,0) = 0$ (by unique lifting), and $\tilde{H}(1,0) = \tilde{\beta}(0)$ and $H(1,t) = \beta(t)$. Then $\tilde{H}(1,t) = \tilde{\beta}(t)$ by unique lifting. Finally, $\tilde{H}(s,1)$ is constant in S. Hence, $\tilde{\alpha}(1) = \tilde{\beta}(1)$. This means indeed deg $\alpha = \deg \beta$.

Now, we want to show deg : $\pi_1(S, 1) \to \mathbb{Z}$ is an isomorphism. Recall that $[\alpha] * [\beta] = [\alpha * \beta]$. If $\tilde{\alpha}(0) = 0$, $\tilde{\alpha}(1) = m = \deg \alpha$, then call $m + \tilde{\beta}(t)$ the path in \mathbb{R} from m to $m + \deg \beta$. Then $\tilde{\alpha} * (m + \tilde{\beta})$ covers $\alpha * \beta$, and $\tilde{\alpha} * (m + \tilde{\beta})$. Then the lift of $\alpha * \beta$ gives

$$(\alpha * \beta(1)) = \deg \alpha + \deg \beta.$$

Then ker deg = $[c_1]$. If deg $\alpha = 0$, this means $\tilde{\alpha}(1) = 0$ so $\tilde{\alpha}$ is a directed path: $\tilde{\alpha}(0) = 0$ = $\tilde{\alpha}(1)$. Then define $\tilde{\alpha}_s(t) = s\tilde{\alpha}(t)$ ($\tilde{\alpha}_0(t) = 0$, $\tilde{\alpha}_0 = c_0$, $\tilde{\alpha}_1(t) = \tilde{\alpha}$, $c_0 \sim \tilde{\alpha}$. Then we show $c_1 \sim \alpha$.

Of course,
$$\pi_1(D^2, 1) \cong 1$$
. For $\alpha : I \to D^2 \subset \mathbb{C}$ with $\alpha(0) = \alpha(1) = 1$, just take
 $\alpha_s(t) = s\alpha(t) + (1 - s) \cdot 1$.

Then $\alpha_0(t) = c_1(t)$ and $\alpha_1(t) = \alpha(t)$.

We claim there is no retract on the above: $\nexists r$ continuous s.t. $S^1 \xrightarrow{\iota} D^2 \xrightarrow{r} S^1$ with $r \circ \iota = \iota_{S^1}$. This follows from the fact π_1 is a topological invariant: we would need

$$\pi_1(S^1, 1) \xrightarrow{\ell_{\#}} \pi_1(D^2, 1) \xrightarrow{r_{\#}} \pi_1(S^1, 1)$$

such that $(r \circ i)_{\#} = r_{\#} \circ i_{\#}$. Of course, this is impossible, since we would need $\mathbb{Z} \to 1 \to \mathbb{Z}$. [this *r* has to be continuous b/c of the stuff we talked about lifting all used continuity]

If $f: D^2 \to D^2$ then f has a fixed point. Suppose f has no fixed points.

$$r(x) = tx + (1-t)f(x)$$
 for $t \ge 1$

Then ||r(x)|| = 1. **Exercise.** Check r is continuous.

Todo. Read notes he gave.

Lecture 7 (January 28, 2009) -

Consider the quotient space D^n/S^{n-1} with $x \sim y$ if x = y or $x, y \in$ equiv class $\{[x]\} = X/A$.

Definition. A map p is a quotient map if $V \subset X/A$ is open $\Leftrightarrow p^{-1}(V)$ is open in X.

Lecture 9 (February 2, 2009) -

See handout on singular homology.

Lecture 13 (February 11, 2009) - δ

There is an identity map $\mathbf{1}: \Delta^n \to \Delta^n$ with $\Delta_n(\Delta^n) \to \Delta_n(X)$ where we send $\mathbf{1} \to \sigma$. Then we can have the boundary operator $\Delta_n(\Delta^n) \xrightarrow{\partial} \Delta_{n-1}(\Delta^n)$. We also have $\Delta_n(X) \xrightarrow{\partial} \Delta_{n-1}(X)$, with $\Delta_{n-1}(\Delta^n) \to \Delta_{n-1}(X)$ (this gives us a square diagram).

For X a set, define

 $A_X = \{ f : X \to \mathbb{Z} \mid f(x) \neq 0 \text{ for only finitely many } x \}.$

Let

$$(f+g)(x) = f(x) + g(x).$$

Then A_X forms an abelian group.

Lecture 15 (February 16, 2009) - Reduced homology

Suppose $A \subset X$ with $A \xrightarrow{\iota} X \xrightarrow{r} A$ with $r \circ i = 1_A$. Then A is a retract of X and r is said to be a retraction.

Lecture 17 (February 20, 2009) -

If $t: S^0 \to S^0$ and t(x) = -x, $t_1: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ given by $t(x_1, ..., x_{n+1}) = (-x_1, x_2, ..., x_{n+1})$, then $S^n = \{x \in \mathbb{R}^{n+1} : |x| = 1\}$. Further,

$$D^{n} = \{ x \in \mathbb{R}^{n+1} : x_{n+1} = 0, \ |x| \le \pi \}.$$

Now, we have $f: D^n \to S^n$. We want

$$f(x) = \begin{cases} -(\cos |x|)e_{n+1} + \frac{\sin |x|}{|x|}x & x \neq 0\\ -e_{n+1} & x = 0. \end{cases}$$

Then $f \circ t_1 = t_1 \circ f$, and f is equivariant.

$$f(\partial D^n) = \{e_{n+1}\} = p \subset S^n$$

Furthermore,

$$\begin{split} \tilde{H}_0(S^0) &\stackrel{+}{\to} \tilde{H}_0(S^0) \\ \text{with } H_1(D^1, S^0) \stackrel{\partial y}{\cong} \tilde{H}_0(S^0) \text{ and } H_1(D^1, S^0) \stackrel{\partial x}{\cong} \tilde{H}_0(S^0). \text{ Finally,} \\ \tilde{H}_1(S^1, p) \stackrel{f_*}{\to} \tilde{H}_1(D^1, S^1) \text{ and } \tilde{H}_1(S^1, p) \stackrel{f_*}{\to} H_1(D^1, S^0), \end{split}$$

with $H_1(D^1, S^0) \xrightarrow{t_*} \tilde{H}_1(D^1, S^1)$ and $H_1(S^1, p) \xrightarrow{t_*} \tilde{H}_1(S^1, p)$, where t_* is simply multiplication by -1. Finally, we have

$$\tilde{H}_1(S^1) \underset{\cong}{\cong} H_1(S^1, p) \text{ and } \tilde{H}_1(S^1) \underset{\cong}{\cong} \tilde{H}_1(S^1, p),$$

and $\tilde{H}_1(S^1) \xrightarrow{t_*} \tilde{H}_1(S^1)$. (this has to be re-diagrammized...)

Given a map $f: S^n \to S^n$ or $f: (D^n, S^{n-1}) \to (D^n, S^{n-1})$, we can define a degree deg f by $f_*(\alpha) = (\deg f)\alpha$. Then α generates $\tilde{H}_n(S^n)$. The degree has two properties, namely

- (1) deg $\mathbb{I} = 1$.
- (2) deg $f \circ g = (\deg f)(\deg g)$.
- (3) $f \cong g \Longrightarrow \deg f = \deg g$.
- (4) If f is a homotopy equivalence, then deg f is ± 1 .

(5) If
$$f: (D^n, S^{n-1}) \to (D^n, S^{n-1})$$
, then deg $f = \deg(f | S^{n-1})$.

Then

$$t_j(x_1, ..., x_{n+1}) = (x_1, ..., x_{j-1}, -x_j, x_{j+1}, ..., x_{n+1})$$
, and
 $s(x_1, ..., x_{n+1}) = (x_j, x_2, ..., x_{j-1}, x_1, x_{j+1}, ..., x_{n+1}).$

Clearly, $s \circ s = \mathbb{I}$ and $t_j = s \circ t_1 \circ s$, so that $\deg(t_i) = \deg t_1 = -1$.

Antipodal map

 $a(x_1, ..., x_{n+1}) = (-x_1, ..., -x_{n-1})$, and $a(\vec{x}) = -\vec{x}$. Then $a = a \mid S^n$, and deg $a = (-1)^{n+1}$. Suppose $f(x) \neq x$ for all x, with $f : S^n \to S^n$. That is, each x goes to a point different from x. If deg $f \neq (-1)^{n+1}$, then f has a pixed point. If

$$L f = 1 + -1 \qquad f$$

•

If $X = U \cup V$ where U and V are open, then the Mayer-Vietoris sequence

$$\dots \xrightarrow{\Delta} H_q(U \cap V) \xrightarrow{i} H_q(U) \oplus H_q(V) \xrightarrow{j} H_q(X) \xrightarrow{\Delta} H_{q-1}(U \cap V) \to \dots$$

is exact where $i(\alpha) = (i_{1*}\alpha, i_{2*}\alpha)$ and $j(\beta, \gamma) = j_{1*}\beta - j_{2*}\gamma$ and where

$$U \cap V \xrightarrow{i_1} U$$
$$i_2 \downarrow \qquad \downarrow j_1$$
$$V \xrightarrow{j_2} U \cup V.$$

The boundary map Δ is defined to be the composition

$$H_q(U \cup V) \to H_q(U \cup V, U) \rightleftharpoons H_q(V, U \cap V) \xrightarrow{\partial_*} H_{q-1}(U \cap V)$$

where the middle map is excision. Excision and the exact sequence of a pair give the diagram

$$\begin{array}{ccc} H_q(U \cap V) \xrightarrow{i_{2*}} H_q(V) \longrightarrow H_q(V, U \cap V) \xrightarrow{\partial_*} H_{q-1}(U \cap V) \xrightarrow{i_{2*}} \\ i_{1*} \downarrow & j_{2*} \downarrow & = \downarrow & i_{1*} \downarrow \\ H_q(U) \xrightarrow{j_{1*}} H_q(U \cup V) \longrightarrow H_q(U \cup V, U) \xrightarrow{\partial_*} H_{q-1}(U) \xrightarrow{j_{1*}} \end{array}$$

The proof from here is algebra. In simpler notation, the Barrett-Whitehead lemma states that given a commutative diagram with exact rows and where c is an isomorphism,

$$A_q \xrightarrow{f} B_q \xrightarrow{g} C_q \xrightarrow{\partial} A_{q-1} \xrightarrow{f} B_{q-1}$$
$$a \downarrow b \downarrow c \downarrow = \downarrow a \qquad \downarrow b$$
$$\overline{A}_q \xrightarrow{\rightarrow} \overline{B}_q \xrightarrow{g} \overline{C}_q \xrightarrow{\partial} \overline{A}_{q-1} \xrightarrow{f} \overline{B}_{q-1}$$

there is a long exact sequence

$$\dots \xrightarrow{\Delta} A_q \xrightarrow{i} \overline{A}_q \oplus B_q \xrightarrow{j} \overline{B}_q \xrightarrow{\Delta} A_{q-1} \xrightarrow{i} \dots$$

with $i(\alpha) = (a(\alpha), f(\alpha)), \ j(\overline{\alpha}, \beta) = \overline{f}(\overline{\alpha}) - b(\beta)$, and $\Delta = \partial \circ c^{-1} \circ \overline{g}$.

Lecture 19 (February 25, 2009) -

Proposition. [pg 169 Hatcher] Let $A \subset S^n$ such that $A \cong D^k$. Then $\tilde{H}_q(S^n - A) = 0$.

Proof. We will use induction. When k = 0, we have $S^n - D^0 = \mathbb{R}^n$, which is homotopic to a point. Now, $D^k \cong D^{k-1} \times I$. Assume $\tilde{H}_q(S^n - A) \neq 0$. Then take

$$h: D^{k-1} \times I \xrightarrow{\approx} A.$$

Let

$$A' = h\left(D^{k-1} \times \left[0, \frac{1}{2}\right]\right), A'' = h\left(D^{k-1} \times \left[\frac{1}{2}, 1\right]\right)$$

with $A' \cup A'' = A$ and $A' \cap A'' \cong D^{k-1}$. Then $S^n - A = (S^n - A^1) \cap (S^n - A)$. Hence, we get the Mayer-Vietoris sequence

$$\tilde{H}_q(S^n - A) \to \tilde{H}_q(S^n - A') \oplus \tilde{H}_q(S^n - A'') \to \tilde{H}_q(S^n - A' \cap A'').$$

Here, $y_i \in \tilde{H}_q(S^n - A)$ is mapped to $y_i \neq 0$ in $\tilde{H}_q(S^n - A_1)$ where $A_1 = A'$ or A''. Then

$$y_0 \mapsto y_1 \mapsto \dots \mapsto y_i \in \tilde{H}_q(S^n - A_i).$$

Now, since $\bigcup S^n - A_i = S^n - h(D^{k-1} \times \{t\}) = S^n - \bigcap A_i$. So,

$$\tilde{H}_q(S^n - A_i) \to \tilde{H}_q(S^n \cap A_i) = 0$$
 (by induction)

with y = 0 in $\tilde{H}_q(S^n \cap A_i)$. We get a string of the y_i 's which are all non-zero but end up mapping to something zero, so we have a contradiction (that $y_0 \neq 0$). \Box

Jordan-Brouwer Separation Theorem (still page 169--part b of the proposition)

Let Σ^m, S^n be such that $\Sigma^m \cong S^m$. Then

$$\tilde{H}_q(S^n - \Sigma^m) = \begin{cases} \mathbb{Z} & q = n - m - 1\\ 0 & q \neq n - m - 1. \end{cases}$$

Proof. We proceed by induction on m. First, m = 0. Then

$$\tilde{H}_q(S^n - S^0) = \tilde{H}_q(S^{n-1}) = \begin{cases} \mathbb{Z} & q = n-1 \\ 0 & q \neq n-1 \end{cases}$$

(recall the reduced homology is precisely that for the S^{n-1} sphere). Now, notice

 $\Sigma^m \cong S^m = D^m_- \cup D^m_+$ [where D^m_- and D^m_+ are two hemispheres]

with $S^n - D^m_-$, $S^n - D^m_+$. Then the Mayer-Vietoris sequence is

$$0 \to \tilde{H}_{q+1}((S^n - D^m_-) \cup (S^n - D^m_+)) \stackrel{\underline{\partial}}{\Rightarrow} \tilde{H}_q(S^n - \Sigma^m) \to 0,$$

where

$$\tilde{H}_{q+1}((S^n - D^m_-) \cup (S^n - D^m_+)) = \tilde{H}_{q+1}(S^n - (D^m_- \cap D^m_+)) = H_q(S^n - \Sigma^{m-1}).$$

Hence,

$$\tilde{H}_q(S^n - \Sigma^m) \stackrel{=}{\leftarrow} \tilde{H}_{q+1}(S^n - \Sigma^{m-1}) \stackrel{=}{\leftarrow} \dots \leftarrow \tilde{H}_{q+m}(S^n - \Sigma^0) = \tilde{H}_{q+m}(S^{n-1})$$

but we know the last guy is just

$$\begin{cases} \mathbb{Z} & q = n - m - 1\\ 0 & \text{otherwise.} \ \Box \end{cases}$$

Using the above theorem, we know for example that $\tilde{H}_0(S^2 - \Sigma^1) = \mathbb{Z}$.

Now, consider $S^1 \hookrightarrow S^3$.

Lecture 20 (February 27, 2009) -

Jordan-Brouwer

Recall last time we computed

$$\tilde{H}_q(S^n - \Sigma^m) = \begin{cases} \mathbb{Z} & \text{if } \varphi = n - m - 1\\ 0 & \text{otherwise.} \end{cases}$$

If X is path connected and given by $g: I \to X$, then $\exists f: I \to X$ such that

Further, X is connected if any map $h: X \to \dot{I}$ is constant.

Lemma. If X is path connected, then X is connected.

Proof. Suppose $h: X \to \dot{I}$ is onto. Then there exists an x_0 such that $h(x_0) = 0$, and there exists an x_1 such that $h(x_1) = 1$. Define $g(0) = x_0$ and $g(1) = x_1$. First, notice that $h \circ f(0) = 0$ and $h \circ f(1) = 1$. Hence, we can't have such a continuous function. \Box

This shows $H_0(S^n - \Sigma^{n-1}) = \mathbb{Z} \oplus \mathbb{Z}$, so that it has two path components, say U and V (so $S^n - \Sigma^{n-1} = U \cup V$).

Proposition. Let $\Sigma^{n-1} \subset S^n$. Then $\Sigma^{n-1} = \partial U = \partial V$, with $\partial U = \overline{U} - \overset{\circ}{U}$, where $\overset{\circ}{U}$ is the interior.

Proof. Assume U and V are open with $\overline{U} \subset S^n - V$. Take $S^n = U \cup V \cup \Sigma$. Then $U = (S^n - V) - \Sigma$ and $\overline{U} \subset S^n - V$. We have

$$\partial U = \overline{U} - U \subset (S^n - V) - U = S^n - (U \cup V) = \Sigma.$$

Hence, $\partial V \subset \Sigma$. We want to show $\Sigma \subset \partial U$ and $\Sigma \subset \partial V$, that is, $\Sigma \subset \overline{U} \cap \overline{V}$. Let $x \in \Sigma$ and let N be any open neighborhood of x in S^n . Let $A \subset \Sigma^{n-1} \cap N$ with $\Sigma^{n-1} - A \cong D^{n-1}$. By the Lemma,

$$\tilde{H}_0(S^n - (\Sigma^{n-1} - A)) = 0$$

(the reduced homology of the complement of the disk is 0). Since $S^n - (\Sigma^{n-1} - A)$ is path connected, if $p \in U$ and $q \in V$, then there is a path w in $S^n - (\Sigma^{n-1} - A)$ from p to q which meets Σ^{n-1} , and hence must meet A.

Lecture 22 (March 4, 2009) - Real projective space

Attaching a cell to X

We have a map $g: S^{n-1} \to X$ and $Z = X \cup_g D^n := X \amalg D^n / x \sim g(x)$ with $x \in S^{n-1}$ and $g(x) \in X$ (with \amalg disjoint union).

Example. Take $X = \{*\}$ a one-point space. Then $Z = S^n$.

We can define $\mathbb{R}P^n := S^n/x \sim -x$. But we don't need the whole sphere, we can take one hemisphere with just antipodal points on the boundary identified: that is D^n with $\mathbb{R}P^{n-1}$. Now, we can do the following. Take $S^{n-1} \xrightarrow{g} \mathbb{R}P^{n-1}$ with g(x) = g(-x). Then

$$\mathbb{R}P^n = \mathbb{R}P^{n-1} \cup_q D^n$$

Remember $\mathbb{Z}/2$ acts on S^n by the antipodal map:

$$\mathbb{Z}/2 \to \operatorname{Homeo}(S^n)$$

with $S^n/(\mathbb{Z}/2)$ the set of orbits. Define a projection map $S^n \xrightarrow{p} \mathbb{R}P^n$ such that $V \subset \mathbb{R}P^n$ is open if and only if $p^{-1}(V)$ is open. Consider

$$H_q(D^n, S^{n-1}) \stackrel{=}{\Rightarrow} H_q(Z, X)$$

where $Z = \mathbb{R}P^{n-1} \cup_g D^n$ where $g: S^{n-1} \to \mathbb{R}P^{n-1}$. We then get the diagram

$$(D^{n}, S^{n-1}) \xrightarrow{f} (Z, X)$$

$$\downarrow \cong \qquad \downarrow \cong$$

$$(D^{n}, A) \rightarrow (Z, A')$$

$$\uparrow = \qquad \uparrow =$$

$$(D^{n} - U, A - U) \rightarrow (Z - U', A' - U')$$

such that $f|S^{n-1}=g$ with $A'=X\cup f(A)$ and $U'=X\cup f(U).$

Now, we know that

$$H_q(D^n, S^{n-1}) = \begin{cases} Z & \text{if } q = n \\ 0 & \text{if } q \neq n. \end{cases}$$

Now let's look at the exact sequence of the pair $(\mathbb{R}P^n, \mathbb{R}P^{n-1})$.

$$\begin{split} 0 \to H_n(\mathbb{R}P^{n-1}) \to H_n(\mathbb{R}P^n) \to H_n(\mathbb{R}P^n, \mathbb{R}P^{n-1}) \xrightarrow{\partial} H_{n-1}(\mathbb{R}P^{n-1}) \to H_{n-1}(\mathbb{R}P^n) \to 0 \\ 0 \to \tilde{H}_q(\mathbb{R}P^{n-1}) \to \tilde{H}_q(\mathbb{R}P^n) \to 0 \text{ if } q \neq n, n-1. \end{split}$$

For example, for $\mathbb{R}P^0 = \{*\}$, $\tilde{H}_q(\mathbb{R}P^0) = 0$.

We then <u>claim</u> that $\tilde{H}_q(\mathbb{R}P^n) = 0$ if q > n. *Proof.* It's true if n = 0, and true if n = 1, and true for n > 1 by induction.

Recall the diagram

$$H_n(D^n, S^{n-1}) = H_{n-1}(S^{n-1})$$
$$|| f \qquad \qquad \downarrow p_*$$
$$0 \to \tilde{H}_n(\mathbb{R}P^n) \to H_n(\mathbb{R}P^n, \mathbb{R}P^{n-1}) \to \tilde{H}_{n-1}(\mathbb{R}P^{n-1}) \to \tilde{H}_{n-1}(\mathbb{R}P^n) \to 0.$$

with $S^{n-1} \xrightarrow{p} \mathbb{R}P^{n-1}$ and notice

$$H_n(\mathbb{R}P^n, \mathbb{R}P^{n-1}) = H_n(D^n, S^{n-1}) = H_{n-1}(S^{n-1}) = \mathbb{Z}.$$

Theorem. [page 144 of Hatcher]

$$H_q(\mathbb{R}P^n) = \begin{cases} \mathbb{Z} & \text{if } q = 0\\ \mathbb{Z}/2 & \text{if } q = \text{is odd and } 1 \leq q < n\\ \mathbb{Z} & \text{if } q = n \text{ is odd}\\ 0 & \text{otherwise.} \end{cases}$$

Proof. We have shown the q = 0 case. Assume it's true for some k = n - 1 with n odd. Look at the above diagram. Assume we've already done the induction from 1 to 2 and know that $H_{n-1}(\mathbb{R}P^{n-1}) = 0$ since n - 1 is even. We don't know anything about $\tilde{H}_q(\mathbb{R}P^n)$ or $H_{n-1}(\mathbb{R}P^n)$. However, if you think about it $\tilde{H}_{n-1}(\mathbb{R}P^n) = 0$ and $\tilde{H}_n(\mathbb{R}P^n) = \mathbb{Z}$. We get the diagram (look above and use what we learned):

$$0 \to H_n(\mathbb{R}P^{n-1}) \to \mathbb{Z} \to 0$$
 (by induction) $\to H_{n-1}(\mathbb{R}P^n) \to 0$.

Now consider n = 2. Then $\tilde{H}_{n-1}(\mathbb{R}P^{n-1}) \cong \mathbb{Z}$. We want to show $\tilde{H}_n(\mathbb{R}P^n) = 0$ and $\tilde{H}_{n-1}(\mathbb{R}P^n) = \mathbb{Z}/2$. What is p_* ? (Below, *a* is the antipodal map and I the identity)

$$\begin{array}{ccc} (S^{n-1}, x_0) \xrightarrow{\subseteq} (S^{n-1} \vee S^{n-1}, x_0) \xrightarrow{\mathbb{I} \circ a} (S^n, x_0) & & \\ \downarrow p & & \downarrow \cong & \\ (\mathbb{R}P^{n-1}, y_0) \to (\mathbb{R}P^{n-1}, \mathbb{R}P^{n-2}) \longrightarrow (\mathbb{R}P^{n-1}/\mathbb{R}P^{n-2}, \mathbb{R}P^{n-2}/\mathbb{R}P^{n-2}). \end{array}$$

Recall

$$S^{n-1} \xrightarrow{p} \mathbb{R}P^{n-1}$$

$$\xi \downarrow \qquad \downarrow$$

$$S^{n-1} \lor S^{n-1} \xrightarrow{\mathbb{R}P^{n-1}} \mathbb{R}P^{n-2} \cong S^{n-1}.$$

where ξ collapses equator to a point, and $\mathbb{I} \circ a$ is the antipodal map followed by the identity map. Now, recall deg $(\mathbb{I} \circ a) = 1 + (-1)^n$, because deg $(\mathbb{I}) = 1$ and deg $(a) = (-1)^n$.

$$H_q(\mathbb{R}P^{n-1}/\mathbb{R}P^{n-2}) = H_q(\mathbb{R}P^{n-1},\mathbb{R}P^{n-2}).$$

Lecture 24 (March 9, 2009) -

We know $H_q(C, L) = H_q(C \otimes L)$ and $H_q(X; L) = H_q(\Delta(X); L)$. Let R be a PID. A set

$$F_A = \{F : A \to R \mid \text{f.g., nonzero}\}$$

with $f(a) \neq 0$ for only finite # of points. Then we can make F_A into a left R-module

$$(f+g)(a) = f(a) + g(a)$$
 and $(rf)(a) = rf(a)$.

Take $i : A \to F_A$ such that i(a)b = 1 if a = b and 0 if $a \neq b$. Then

 $f = \sum f(a) i(a).$

Then $F_A \xrightarrow{\varphi} F_B$. Then $\varphi(i(a)) = \sum_{b \in B} c_a^b j(b)$, with $c_a^b = \varphi(i(a))(b)$. Then $\varphi(f)(b) = \sum_a c_b^a f(a)\varphi(i(a)) = \sum_{b \in B} c_b^a j(b)$.

Fix an *R*-module *L*, with $t(F_a) = \coprod_{a \in A} L = \{g : A \to L\}$ finitely nonzero. Unfortunately, this only works for free modules with a basis.

An *R*-module is free if $F \cong F_A$ for some *A*. Put $F_A \xrightarrow{\varphi} F_B$ and $t(F_A) \xrightarrow{t(\varphi)} t(F_B)$ with $t(\varphi)(g) = \sum_c \sum_b c_a^b$. Now,

$$\varphi(f) = \varphi\left(\sum_{a} f(a)i(a)\right) = \sum_{a} f(a)\varphi(i(a)) = \sum_{a} \sum_{b} f(a)c_{b}^{a}j(b).$$

So the matrix for φ is $\sum_{a} f(a)c_{b}^{a}$. Take the matrix for $t\varphi$,

$$\sum_a f(a)c^a$$

Hence,

$$t(\varphi)(g) = \sum_{c} \sum_{b} c_a^b \varphi.$$

Now, t is strongly additive,

$$t(f+g) = t(f) + t(g), \text{ and}$$
$$t(\coprod_{i \in I} F_i) = \coprod_{i \in I} t(F_i)$$
$$\{f : \bigcup_{i \in I} A_i \to L\}.$$

The problem now is how to extend this from free modules to arbitrary modules. Start with any *R*-module *M*. Certainly, there is an F_0 , F_1 such that

$$F_1 \to F_0 \xrightarrow{\partial} M \to 0.$$

Define $F_0 \xrightarrow{\partial} M$ so that ∂ is onto. Then ker $\partial \subset F_0$ is a submodule, and hence free (for R a PID). [Hint: to prove this, use transfinite induction.] Then

$$0 \to F_1 \xrightarrow{\partial} F_0 \to 0$$

and we want (by construction) $H_0(F) = M$ and $H_i(F) = 0$ (for i > 0) (i.e., a resolution). By definition, $t_i(M) = H_i(F)$ for i = 0, 1. Then

$$t_0(M) = M \otimes L$$
 and $t_1(M) = M * L$,

the torsion product. We want to be able to compute these things, now.

Proposition. Two short exact resolutions of M are chain homotopy equivalent.

Proof. We have

$$\begin{array}{ccc} 0 \to F_1 \to F_0 \to M \to 0 \\ f_1 \downarrow & f_2 \downarrow & \downarrow \mathbb{I}_M \\ 0 \to G_1 \to G_0 \to M \to 0, \end{array}$$

where f_1 and f_2 are natural, with $f_2 = f_1 | F_1$.

Lecture 28 (March 20, 2009) -

Remember problem 20: Take the torus $T^2 = S^1 \times S^1$. Use $U = I \times S^1$ and $V = J \times S^1$. Then $U \cong S^1$ and $V \cong S^1$. For this problem, the MV maps are "obvious".

For problem 21: Take $S^1 \vee \ldots \vee S^1$ (a disc minus smaller discs). Take

$$U = D^2 - (D_1^2 \cup ... \cup D_n^2)$$
 and $V = D^2 - (D_0^2)$.

Unnamed problem: Show $f, g: S^n \to S^n$ with $\forall x, f(x) \neq -g(x)$, are homotopic. Just connect them with a straight line (it can't go through the origin), then project.

Problem 25: We don't have to know anything about the map, just think of groups.

For
$$\prod_{i=1}^{k} S^{n_i}$$
, the rank is $b_q = \operatorname{rank} H_q(X; \mathbb{Z})$ (Betti number), then $\sum_{q} b_q t^q$.
 $(1+t^n)(\dots+b_j t^j+\dots) = \dots + (b_q+b_{q-n})t^q+\dots$

We know $b_{q-n} = 0$ if q - n < 0.

Example. $U \subset I$ for cohomology, C is a free chain complex.

$$0 \to \operatorname{Ext}(H_{q-1}C, L) \to H^q(C; L) \to \operatorname{Hom}(H_qC, L) \to 0$$

is split exact. We would have $f: C_q \to L \in H^q(C; L)$, and $z: H_qC \to L$ in the latter. Suppose we changed z by taking $z + \partial c$. Then $f(z + \partial c) = f(z) + f(\partial c) = f(z)$ because $f(\partial c) = (\partial f)(c)$ but the coboundary is 0.

Recall

$$H_q(\mathbb{R}P^n;\mathbb{Z}) = egin{cases} \mathbb{Z} & ext{if } q = 0 \ \mathbb{Z}/2 & ext{if } q ext{ is odd and } 1 \le q \le n-1 \ \mathbb{Z} & ext{if } q = n ext{ and odd} \ 0 & ext{otherwise.} \end{cases}$$

Similarly,

$$H^{q}(\mathbb{R}P^{n};\mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{if } q = 0\\ \mathbb{Z}/2 & \text{if } q \text{ is even and } 2 \leq q \leq n\\ \mathbb{Z} & \text{if } q = n \text{ is odd}\\ 0 & \text{otherwise.} \end{cases}$$

Recall

$$H_q(\mathbb{R}P^n, \mathbb{Z}/2) = \begin{cases} \mathbb{Z}/2 & 0 \le q \le n \\ 0 & \text{otherwise.} \end{cases}$$

Take $R = \mathbb{Z}/2$, which is a field! A module over a field is a vector space, so no torsion! Hence,

$$H^q(\mathbb{R}P^n,\mathbb{Z}/2) = \begin{cases} \mathbb{Z}/2 & 0 \le q \le n \\ 0 & \text{otherwise.} \end{cases}$$

We say

$$H^*(\mathbb{R}P^n;\mathbb{Z}/2) = \mathbb{Z}/2[\alpha]/\alpha^{n+1}$$

Lecture 29 (March 30, 2009) -

Let Λ be a P.I.D. Let $\Delta_q(X, \Lambda)$ be the free Λ -module on the set $\Delta^q \xrightarrow{\sigma} X$. Then the boundary map $\Delta_q \xrightarrow{\partial} \Delta_{q-1}$, and face maps are $\Delta^{q-1} \to \Delta^q$, with $\partial \circ \partial = 0$. Then we form

$$\Delta^{p}(X;\Lambda) = \operatorname{Hom}_{\Lambda}(\Delta_{q}(X;\Lambda),\Lambda)$$
$$c \mapsto (\gamma \mapsto c(\gamma))$$

and we write $c(\gamma) = \langle c, \gamma \rangle$. Define $\Delta^q \xrightarrow{\Gamma} \Delta^{q+1}$ by $\langle \partial c, \alpha \rangle = \langle c, \partial \alpha \rangle$. Define a map $k : H^n X \to \operatorname{Hom}_{\Lambda}(H_n X, \Lambda)$. Given $x \in H^n X$ and $\xi \in H_n X$, let $z \in Z^n X$ represent x in the co-cycles and $\zeta \in Z_n X$ represent ξ in the cycles. Then $\langle x, \xi \rangle = \langle z, \zeta \rangle$ (Exercise), and set $k(x)\xi = \langle x, \xi \rangle$. This is well-defined with $\partial z = \partial \zeta = 0$. We just need to check well-definedness:

$$\begin{array}{l} \langle z + \partial y, \zeta + \partial \eta \rangle = \langle z, \zeta \rangle + \langle z, \partial \eta \rangle + \langle \partial y, \zeta \rangle + \langle \partial y, \partial \eta \rangle = \\ \langle z, \zeta \rangle + \langle \partial z, \eta \rangle + \langle y, \partial \zeta \rangle + \langle y, \partial \circ \partial \eta \rangle = \langle z, \zeta \rangle, \end{array}$$

because z is a co-cycle, ζ is a cycle, and $\partial \circ \partial = 0$.

Theorem A.1. (Special case of Universal Coefficient Theorem) Let $H_{n-1}X$ be free. Then k is a natural equivalence.

Proof. Since $\Delta_n X/Z_n \cong B_{n-1} \subset \Delta_{n-1}X$, B_{n-1} is free. Hence, Z_n is a direct summand of $\Delta_n X$, that is, there is a splitting $Z_n \leftrightarrow \Delta_n X$ (with \leftarrow given by r). Hence, for any $f \in \operatorname{Hom}_{\Lambda}(H_n X, \Lambda), \exists f$ such that $Z_n \to H_n \xrightarrow{f} \Lambda$ with $Z_n \subset \Delta_n X \xrightarrow{F} \Lambda$. \Box

Now, restrict $F | B_{n-1} = 0$ to the boundaries, so that $\partial F = 0$ as $\langle \partial F, \alpha \rangle = \langle F, \partial \alpha \rangle$. Hence, $F \in Z^n X$ is a co-cycle. Let F represent $x \in H^n X$. If $\xi \in H_n X$ is represented by $\zeta \in Z_n$, then

$$k(x)\xi = \langle x,\xi \rangle = \langle F,\zeta \rangle = f(\xi).$$

We claim ker k = 0. Let $z \in Z^n X$ represent x and assume k(x) = 0. We want to show x = 0. Then $\forall \zeta \in Z_n$, $\langle z, \zeta \rangle = 0$. We claim $z \in B^n X$. For all $\beta \in B_{n-1}$, $\exists \gamma \in \Delta_n X$ such that $\beta = \partial \gamma$. If β is also the boundary of γ_1 , that is, $\beta = \partial \gamma_1$, then obviously $\partial(\gamma - \gamma_1) = 0$ so that $\gamma - \gamma_1 \in Z_n X$ (is a cycle) and by assumption that $\langle z, \zeta \rangle = 0$,

$$\langle z, \gamma - \gamma_1 \rangle = 0,$$

so $\langle z, \gamma \rangle = \langle z, \gamma_1 \rangle$. Then $z \circ \partial^{-1} : B_{n-1} \to \Lambda$ and $\beta \mapsto \langle z, \gamma \rangle$ is well-defined.

Since $H_{n-1}X$ is free, B_{n-1} is a summand of Z_{n-1} , and hence B_{n-1} is a summand of $\Delta_{n-1}X$. Let $f: \Delta_{n-1}X \to \Lambda$ extend to $z \circ \partial^{-1}$. Then $f \in \Delta^{n-1}X$, and $\forall \sigma$,

$$\langle \partial f, \sigma \rangle = \langle f, \partial \sigma \rangle = \langle z \circ \partial^{-1}, \partial \sigma \rangle = \langle z, \sigma \rangle.$$

Then $\partial f = z \in B^n X$, which is exactly what we claimed! (see bold part above) Hence, x = 0 in $H^n(X)$. \Box

We want to know $H_n(\mathbb{R}^n, \mathbb{R}^n - \{0\})$. We can't use excission on this, and it turns out

$$H_n(\mathbb{R}^n, \mathbb{R}^n - \{0\}) = \begin{cases} \Lambda & q = n \\ 0 & q \neq n \end{cases}$$

We know this already about $H_q(D^n, S^{n-1})$. Then

$$\begin{array}{ccc} \dots \to H_q(S^{n-1}) \to H_q(D^n) \to H_q(D^n, S^{n-1}) \to H_{q-1}(S^{n-1}) \to \dots \\ & \cong & \downarrow & \downarrow & \cong & \downarrow & \downarrow & \cong \\ \dots \to H_q(\mathbb{R}^n - \{0\}) \to H_q(\mathbb{R}^n) \to H_q(\mathbb{R}^n, \mathbb{R}^n - \{0\}) \to H_{q-1}(\mathbb{R}^n - \{0\}) \to \dots \end{array}$$

so by the Five Lemma the penultimate \downarrow is also an isomorphism.

Lecture 30 (April 1, 2009) -

CW spaces (JHC Whitehead).

A CW space is a Hausdorff space partitioned into a collection of $\{e_{\alpha}\}$ of disjoint subsets such that

(1) $\exists F_{\alpha}: D^{n(\alpha)} \to X$ with $F_{\alpha} \mid D^{n(\alpha)}$ a homeomorphism onto e_{α} .

We can now define the *n*-skeleton $X^n = \bigcup \{e_\alpha : n(\alpha) \le n\}.$

(2) If we let $f_{\alpha} = F_{\alpha} | S^{n(\alpha)-1}$, then this maps into $X^{n(\alpha)-1}$. We say X is finite if there are only finitely many cells. A subset $A \subset X$ is a (finite) CW-subspace if it is closed, and a union of (finitely many) e_{α} 's.

(3) (Closure-Finiteness) Each point in X is contained in a finite subcomplex.

(4) (Weak topology) X has the topology of the direct limit of the finite subcomplexes (which means A is closed \leftrightarrow each finite subcomplex is closed).

Theorem A2.
$$\prod_{\alpha, n(\alpha)} = n \overset{H_q(D^n, S^{n-1})}{\longrightarrow} \overset{\coprod F_{\alpha}}{\longrightarrow} H_q(X^n, X^{n-1}) \text{ is an isomorphism, where} \\ H_q(D^n, S^{n-1}) = \begin{cases} 0 & q \neq n \\ \text{free } \Gamma \text{-module} & q = n. \end{cases}$$

Proof. See appendix.

Lecture 31 (April 3, 2009) -

Theorem. $H_n(X) = H_n(C_*)$, where $C_n = H_n(X^n, X^{n-1})$. $C^n = H^n(X^n, X^{n-1}) = \operatorname{Hom}_{\Lambda}(C_n, \Lambda)$, the dual of homology (this is cohomology).

Excision

Let $U \subset A \subset X$ with $\overline{U} \subset \overset{\mathbf{0}}{A}$. We have $\mathbf{H}_q(X - U, A - U) \to H_q(X, A)$

is an isomorphism. By the UCT,

$$\begin{array}{c} 0 \to \operatorname{Ext}(H_{q-1}(X;A),L) \to H^q(X,A;L) \to \operatorname{Hom}(H_q(X,A),L) \to 0 \\ &= \downarrow i^* | \qquad = \downarrow i^* \qquad = \downarrow (i_*)^* \\ 0 \to \operatorname{Ext}(H_{q-1}(X-U,A-U),L) \to H^q(X-U,A-U;L) \to \operatorname{Hom}(H_q(X-U,A-U),L) \to 0. \end{array}$$

By the Five Lemma, the middle is also an isomorphism.

Cup product

Consider $H^p(X, A) \otimes H^q(X, B) \to H^{p+q}(X, A \cup B)$ given by $u \otimes v \mapsto u \cup v$.

Properties. (1) First, we have a map $f: X \to Y$. We get $f^*(u \cup v) = f^*u \cup f^*v$.

(2) It is bilinear and associative. This covers a host of identities, like

$$r(u \cup v) = (ru) \cup v - u \cup (rv)$$

$$(u_1 + u_2) \cup v = u_1 \cup v + u_2 \cup v$$

$$(u \cup v) \cup w = u \cup (v \cup w).$$

(3) We say $u \cup v = (-1)^{pq} u \cup v$.

(4) Think of $i : H \hookrightarrow X$, and let $u \in H^p(A)$. Then $\partial u = H^{p+1}(X, A)$. Let $v \in H^q(X)$. Then $\partial u \cup v = \partial(u \cup i^*v)$. Further, $i^*v \in H^q(A)$.

(5) We specify $u_0 \in H^0(X) = \text{Hom}(H_0(X), \Lambda)$ where $u_0 = (1 \mapsto 1)$. Hence, $u_0 \cup v = v$ and it acts as the identity.