Lecture 1 (January 26, 2009) - Diamond Chapter 1.1-1.3

§1.1 in Diamond

Modular group

Start with

$$
W P_{\#}(\mathbb{Z}) œ\left\{\left(\begin{array}{cc}
+ & , \\
- & .
\end{array}\right)-Q_{\#}(\mathbb{Z}) \grave{A}+. \square,-\infty "\right\} .
$$

Let $\gamma-\mathbf{W} \boldsymbol{P}_{\#}(\mathbb{Z})$ and $\tau-\mathbb{E} œ \mathbb{C} \cup\{\infty\}$. Then we define an action on \mathbb{E} by

$$
\gamma \dagger \tau \text { œ } \frac{ \pm \tau \square,}{-\tau \square} .
$$

If - Á!, then τ œ

$$
\mathbb{H} œ\{>-\mathbb{C} \mid \operatorname{Im}(\tau) \square!\} .
$$

If $\tau-\mathbb{H}$ and $\gamma-\mathrm{WP}_{\#(\mathbb{Z})}$, then $\gamma \tau-\mathbb{H}$, because

$$
\operatorname{Im}(\gamma \tau) œ \frac{\operatorname{Im}(\tau)}{|-\tau \square \cdot|^{\#}}
$$

(so that if $\operatorname{Im}(\gamma \tau) \square!$ then $\operatorname{Im}(\tau) \square!$). Note here that ${ }^{\prime} \gamma$ give the same action. It's simple to check that if $\operatorname{Mœ}\left(\begin{array}{c}"! \\ \vdots \\ \vdots\end{array}\right)$, then $\operatorname{M\dagger } \tau \propto \tau$, and if $\gamma ß \gamma^{w}-W P_{\#}(\mathbb{Z})$, then $\left(\gamma \gamma^{\mathrm{ly}} \tau\right.$ œ $\gamma\left(\gamma^{\mathrm{w}}\right)$ (so this is indeed an action).
Definition. Let $5-\mathbb{Z}$. A meromorphic function 0 À $\mathbb{H} \ddot{A} \mathbb{C}$ is weakly modular of weight 5 if $\mathrm{O}(\gamma \tau) œ(-\tau \square .)^{5} \mathrm{O}(\tau) \mathrm{a} \gamma œ\binom{+}{-.}-,\mathrm{WP} \neq(\mathbb{Z}) \mathrm{B} \tau-\mathbb{H}$.

From the first exercise in Diamond, we can check $W P_{\#}(\mathbb{Z})$ is generated by

$$
\tau œ\left(\begin{array}{cc}
" & " \\
! & "
\end{array}\right) \text { and }=œ\left(\begin{array}{cc}
! & \square " \\
" & !
\end{array}\right) .
$$

Then it turns out τ 厓 $\tau \square$ " and τ 厓 $\square \bar{\tau}$.
To check that a meromorphic function is weakly modular of weight 5 , one must only verify that $\mathrm{O}\left(\tau \square \square^{\prime \prime}\right) œ 0(\tau)$ and $\mathrm{O}(\square$ " $\hat{\imath} \tau) œ \tau^{5} \mathrm{O}(\tau)$.

To proceed further, we first have to define the notion of a function being holomorphic at ∞. If 0 is weakly modular of weight 5 with $0\left(\tau \square^{\prime \prime}\right) œ 0(\tau)$, let

$$
\mathrm{H} œ\{;-\mathbb{C} \grave{A}|;| \% "\} \text { be the open unit disc }
$$

and $H^{w} œ H ~ I ̈ ~\{!\}$ the punctured open unit disc. Then the map τ E $/{ }^{\# 3}$ is define on $\mathbb{H} \ddot{\mathrm{A}} \mathrm{H}^{\mathrm{w}}$ and is holomorphic and \mathbb{Z}-periodic. Define $1 A \mathrm{~A}^{\mathrm{w}} \mathrm{A} \mathbb{C}$ by

$$
1(;) \text { œ0 }(\log (;) \hat{\imath}(\# \pi 3)) .
$$

Note that $0(\tau) œ 1\left(/^{\# 3}\right)$. If 0 is holomorphic on \mathbb{H}, then 1 is holomorphic on H^{w}. So

$$
1(;) œ \sum_{8-\mathbb{Z}}+_{8} ;^{8} \text { (for ; }-\mathrm{H}^{W} \text {. }
$$

Definition. We say 0 is holomorphic at ∞ if the corresponding function 1 can be extended to a holomorphic function on $\mathrm{H}, \mathrm{O}(\tau) \varliminf_{8-\mathbb{Z}}+_{8} /^{\# \pi 3} \tau$.

Note that to show a weakly holomorphic function of weight 5 , call it 0 , is holomorphic at ∞ is equivalent to showing that

$$
\lim _{\operatorname{Im}(\tau) \dot{A} \infty} O(\tau)
$$

is finite or bounded. Holly points out this is along any path that goes up on the imaginary axis (so we just need to find an upper bound).
Definition. Let $5-\mathbb{Z}$. A function 0 ÀHH $\ddot{A} \mathbb{C}$ is a modular form of weight 5 if
(1) 0 is holomorphic on \mathbb{H},
(2) 0 is weakly modular of weight 5 ,
(3) 0 is holomorphic at ∞.

The set of modular forms of weight 5 is actually a \mathbb{C}-vector space, written $\mathcal{M}_{5}(\mathrm{WP} \neq(\mathbb{Z}))$. Define

$$
\mathcal{M}_{5}(\mathrm{WP} \#(\mathbb{Z})) \underset{5-\mathbb{Z}}{\bigoplus_{-}} \mathcal{M}_{5}(\mathrm{WP} \#(\mathbb{Z}))
$$

which is a graded ring.
Examples. (1) The zero function " \ddot{Y} a modular form for all weights.
(2) Constant functions are modular forms for weight œ!.

Definition. Let $5 \square$ \#be even. The Eisenstein series

$$
\mathrm{K}_{5}(\tau) \underset{(-\beta)-\mathbb{Z}^{\#}}{\mathrm{~W}} \frac{\mathrm{l}}{(-\tau \cdot)^{5}}
$$

where the prime denotes summing over $\left(-\mathbb{ß}_{\mathrm{S}}\right)-\mathbb{Z}^{\boldsymbol{\#}}(\{!ß!\})$.
Naturally, $\mathrm{K}_{5}(\tau)$ is holomorphic on τ (Exercise 1.1.4(c)). We can compute that it is indeed weakly modular of weight 5 . If $\gamma-\binom{+}{-.}-,W P_{\#}(\mathbb{Z})$, then
since

Finally, $\mathrm{K}_{5}(\tau)$ is holomorphic at ∞ since it is bounded as $\operatorname{Im}(\tau) \ddot{\mathrm{A}} \infty$ (duh, because the terms are $\left.\frac{(-\tau \square .)^{5}}{(}\right)$. Then the Fourier series of $K_{5}(\tau)$ will be [page 5 of the book]

$$
\mathrm{K}_{5}(\tau) œ \#(5) \square \frac{\#\left(\#_{2} 3^{5}\right)^{\infty}}{(5 \square) \times} \sum_{8 \propto \underbrace{\prime}}^{\infty} \sigma_{5 \square "}(8) ;{ }^{8},
$$

where $\sigma_{5 \square "}(8) \propto \sum_{7 \text { I8ß7 }} 7{ }^{5 \square}{ }^{\circ}$. We then have the normalized Eisenstein series

$$
\frac{K_{5}(\tau)}{\#(5)} \text { œl }{ }_{5}(\ngtr .
$$

Then $\mathcal{M}_{)}\left(\mathrm{XP}_{\#}(\mathbb{Z})\right)$ has dimension ", and I $\left.\%(\tau)^{\#} \mathbb{S I}\right)(\tau)-\mathcal{M}_{5}\left(\mathrm{XP}_{\#}(\mathbb{Z})\right)$. Further,

$$
\sigma_{l}(8) œ \sigma_{\$}(8) \square " \# \sum_{\text {ß®®" }}^{8 \square} \sigma_{\$}(3) \sigma_{\$}(8 \square 3) .
$$

Definition. A cusp form of weight 5 is a modular form of weight 5 if in the Fourier expansion its leading coefficient is \dagger œ!. The set of cusp forms are denoted $\mathcal{S}_{5}(\mathrm{WP} \#(\mathbb{Z}))$, and $\mathcal{S}\left(\mathrm{WP}_{\#}(\mathbb{Z})\right) œ \bigoplus_{5-\mathbb{Z}} \mathcal{S}_{5}\left(\mathrm{WP}_{\#}(\mathbb{Z})\right)$.

It's easy to see that $\mathcal{S}_{5}\left(\mathrm{WP}_{\#}(\mathbb{Z})\right)$ is a vector subspace of $\mathcal{M}_{5}\left(\mathrm{WP}_{\#}(\mathbb{Z})\right)$.
Example. Let $1_{\#}(\tau)$ œ'! $\mathrm{K}_{\%}(\tau) ß 1_{\$}(\tau)$ œ" $\% \mathrm{~K} \cdot(\tau)$, and $\Delta(\tau) œ 1_{\#}^{\$}(\tau) \square \not \# 1_{\$}^{\#}(\tau)$ with $\Delta(\tau)-\mathcal{S}^{\prime \prime}{ }^{\#}(\mathrm{WP} \#(\mathbb{Z}))$.

§1.2 Congruent Subgroups

Definition. A principal congruence subgroup of level $\mathrm{R}-\mathbb{N}$ is given by

$$
\Gamma(R) œ\left\{\left(\begin{array}{cc}
+ & , \\
- & .
\end{array}\right)-W P_{\neq(\mathbb{Z})} \dot{A}\left(\begin{array}{cc}
+ & , \\
- & .
\end{array}\right),\left(\begin{array}{cc}
\prime \prime & ! \\
! & "
\end{array}\right) \bmod R\right\},
$$

where the reduction $\bmod \mathrm{R}$ is coefficient-wise in the matrix.
 turns out $W P_{\#}(\mathbb{Z} \hat{I} \mathbb{Z}) \geq W P_{\#}(\mathbb{Z}) \hat{I} \Gamma(R)$. Furthermore,

$$
\left[\mathrm{UP} \mathrm{\#}_{\#}(\mathbb{Z}) \mathrm{À} \Gamma(\mathrm{R})\right] œ \mathrm{R}^{\$}+\prod_{: \mid \mathrm{R}}(" \square \stackrel{"}{\vdots}) \% \infty .
$$

Definition. $\quad \Gamma \bigcirc \mathrm{WP}_{\#}(\mathbb{Z})$ is a congruence subgroup of level R if $\Gamma(\mathrm{R}) \odot \Gamma$.
Definition. $\Gamma_{!}(\mathrm{R}) œ\left\{\left(\begin{array}{cc}+ & , \\ - & .\end{array}\right)-W P_{\#}(\mathbb{Z})\right\}$ with

$$
\left(\begin{array}{ll}
+ & , \\
- & .
\end{array}\right),\left(\begin{array}{ll}
\ddagger & \ddagger \\
! & \ddagger
\end{array}\right)(\bmod R)
$$

$\Gamma u(\mathrm{R}) œ\left\{\left(\begin{array}{cc}+ & , \\ - & .\end{array}\right)-\mathrm{WP} \#(\mathbb{Z})\right\}$ with

$$
\left(\begin{array}{ll}
+ & , \\
- & .
\end{array}\right),\left(\begin{array}{ll}
n & \ddagger \\
! & "
\end{array}\right)(\bmod R) .
$$

Further,

$$
\begin{aligned}
& \Gamma(\mathrm{R}) \circledast \Gamma_{n}(\mathrm{R}) \odot \Gamma_{!}(\mathrm{R}) \circledast \mathrm{WP}_{\#}(\mathbb{Z}) \\
& \Gamma(\mathrm{R})=\Gamma_{n}(\mathrm{R}) \text { and } \Gamma_{n}(\mathrm{R})=\Gamma_{!}(\mathrm{R}) .
\end{aligned}
$$

Lecture 2 (February 2, 2009) - Diamond Chapter 1.3-1.5

Definition. For $\gamma \propto\left(\begin{array}{cc}+ & , \\ - & .\end{array}\right)-W P_{\#}(\mathbb{Z})$, define the factor of automorphy $\mathbb{U}(\gamma ß \ngtr)$ for $\tau-\mathbb{H}$ by $\mathbb{4}(\gamma ß \sim) œ-\tau \square \ldots$
Definition. For $5-\mathbb{Z}$, the weight-k operator $[\gamma]_{5}$ on $0 \dot{A} \mathbb{H} \ddot{A} \mathbb{C}_{4}$ is

$$
\mathrm{O}\left([\gamma]_{5}\right)(\tau) œ 4(\gamma ß \tau){ }^{\square 5} 0(\gamma \tau)
$$

Definition. Let Γ be a congruent subgroup. We say 0 À $\mathbb{H} \not{A} \mathbb{C}$ is weakly modular of weight 5 for Γ if
(a) 0 is meromorphic, and
(b) $0[\gamma]_{5} œ 0 \quad \mathrm{a} \gamma-\Gamma$

Lemma. $\quad \mathrm{a} \gamma \beta \gamma^{\mathrm{w}}-\mathrm{W} P_{\neq(\mathbb{Z})}(\mathbb{ß} \tau-\mathbb{H}$,
(a) $4\left(\gamma \gamma^{4} \mathbb{B}_{\tau}\right) œ 4\left(\gamma ß \gamma^{W} \tau\right)+4\left(\gamma^{\mathrm{N}^{\prime}} \tau\right)$
(b) $\left(\gamma \gamma^{\text {以 }}(\tau)\right.$ œ $\gamma\left(\gamma^{\mathrm{w}} \tau\right)$
(c) $\left[\gamma \gamma{ }^{w_{5}}\right.$ œ $[\gamma]_{5}\left[\gamma{ }^{\omega_{5}}\right.$
(d) $\left.\operatorname{Im}(\gamma \tau) œ \operatorname{Im}(\tau)|\hat{\boldsymbol{I}}| 4(\gamma ß \tau)\right|^{\#}$.

Definition. If Γ is a congruence subgroupß5- $\mathbb{Z} ß O A \notin H A \mathbb{C}$, then 0 is a modular form for Γ if (1) 0 is holomorphic, (2) 0 is weight- 5 invariant under Γ, and (3) $0[\gamma]_{5}$ is holomorphic at ∞ for all $\gamma-W P_{\#}(\mathbb{Z})$.

If \dagger ¢! in all the Fourier expansions of (3), then we say 0 is a cusp form for Γ. Recall we defined

$$
\mathcal{M}_{5}(\mathrm{WP} \#(\mathbb{Z})) \underset{5-\mathbb{Z}}{\bigoplus_{5}} \mathcal{M}_{5}\left(\mathrm{WP}_{\#}(\mathbb{Z})\right) \text { and } \mathcal{S}(\mathrm{WP} \#(\mathbb{Z})) œ \bigoplus_{5-\mathbb{Z}} \mathcal{S}_{5}(\mathrm{WP} \#(\mathbb{Z}))
$$

We can write $\mathrm{WP} \neq(\mathbb{Z}) œ \bigcup_{4} \Gamma \alpha_{4}$ (a finite union), and $0\left[\gamma \alpha_{4}\right]$ œ0 $\left[\alpha_{4}\right]$. Also, $0[\gamma]_{5} œ 0$.

§1.3 Complex Tori

Definition. A lattice is a subgroup of the form $\Lambda œ \omega^{\prime} \mathbb{Z}$ S $\omega_{\# \mathbb{Z}} \mathbb{C}$ such that $\left\{\omega_{n} \aleph_{\omega \#}\right\}$ are linearly independent over \mathbb{R}, and we requires $\omega_{\|} \uparrow \omega_{\#}-\mathbb{H}$.
Definition. A complex torus is a quotient of \mathbb{C} by a lattice, that is, $\mathbb{C} \hat{\Lambda} \Lambda$.
Proposition. Let ϕ ÀCl̂ Λ Ä $\mathbb{C} \hat{I} \Lambda^{\mathrm{w}}$ be a holomorphic map. Then $\mathrm{b} 7 \mathfrak{B},-\mathbb{C}$ with $7 \Lambda \S \Lambda$, and $\psi(\mathrm{D} \square \Lambda) œ 7 \mathrm{D} \square, \square \Lambda \mathrm{w}$. The map is invertible if and only if $7 \Lambda œ \Lambda^{\mathrm{w}}$.
Corollary. If ϕ ÀCl $\Lambda A ̈ \mathbb{C} I \Lambda^{\mathrm{w}}$ is a holomorphic map between complex tori with

$$
\phi(\mathrm{D} \square \Lambda) œ 7 \mathrm{D} \square, \square \Lambda,
$$

and $7 \Lambda \S \Lambda$, then the following are equivalent
(a) ϕ is a group homomorphism.
(b) , $\quad \Lambda^{\mathrm{w}}$, so $\phi(\mathrm{D} \square \Lambda) \propto 7 \mathrm{D} \square \Lambda^{\mathrm{w}}$.
(c) ϕ (!) œ!.

In particular, there exists a holomorphic group isomorphism between $\mathbb{C} \hat{\Lambda} \Lambda$ and $\mathbb{C} \hat{1} \Lambda^{\mathrm{w}}$ if and only if there exists $7-\mathbb{C}$ such that 7Λ œ Λ^{w}.

Take $7 œ \frac{"}{\omega_{\#}}$. Then $\frac{"}{\bar{\omega}_{\#}} \Lambda œ \frac{\omega^{\prime \prime}}{\bar{\omega}_{\#}} \mathbb{Z}$ Š $\mathbb{Z} œ \Lambda_{\tau}$, where we let Λ_{τ} be the lattice for $\frac{\omega^{\prime \prime}}{\omega_{\# t}} \mathbb{Z}$ Š \mathbb{Z}. Is it possible to get $\Lambda_{\tau} œ \Lambda_{\tau}$? The answer will be yes: through an element of $\mathrm{WP}_{\text {\# }}(\mathbb{Z})$.

Definition. A nonzero holomorphic homomorphism between complex tori is called an isogeny.

Example. We define a multiplication-by-[R$]$ map to be the isogeny:

Note $\mathrm{R} \Lambda \S \Lambda$ so that it is indeed an isogeny. Then $\operatorname{ker}([\mathrm{R}]) \mathrm{z}(\mathbb{Z} \hat{1} 8 \mathbb{Z})^{\#}$. [Ramin says Alina Cojocaru, along with many other people, have made a career of researching this kernel and the information it provides!]
Example. Let $\mathbb{R}-\mathbb{N}$ and let $\mathrm{G} \S \mid[\mathbb{R}]$ be such that $G z \mathbb{Z} \hat{R} \mathbb{Z}$, so $\mathrm{G}^{"} \Lambda$ as lattices. Then we have a map
(remember this comes from the Eisenstein series, $K_{\%}$, and $1_{\$}(\Lambda) œ " \% \sum_{\omega-\Lambda} \frac{\mathrm{w}}{}{ }^{\omega}$.. If we let $\Delta œ 1_{\#}^{\$} \square \# I_{\$}^{\#} A ́!$, then recall for elliptic curves of characteristic \#, we

§1.5-Modular curves and moduli spaces

We will call two complex tori equivalent, $\mathbb{C} \hat{I} \Lambda \mu \mathbb{C} \hat{I} \Lambda^{\mathrm{w}}$ if b7 such that 7Λ œ Λ^{w}. Furthermore, we will call $\tau \mu \tau^{\mathrm{w}}$ equivalent $\left(\tau ß \tau^{\mathrm{w}}-\mathbb{H}\right)$ if there is a $\gamma-\mathrm{WP} \not{ }_{\#}(\mathbb{Z})$ such that τ œ $\gamma \tau^{\mathrm{w}}$. Our goal is to form an equivalence between the tori μ and the $\tau \mu$.

Definition. Let $\mathrm{R}-\mathbb{N}$. An enhanced elliptic curve for $\Gamma_{!}(\mathrm{R})$ is an orded pair (I ßG) where I is a complex torus and G is a cyclic subgroup of order R .
We say (I ßG) μ (I VSGy (an equivalence relation) if there is an isomorphism such that

Definition. Let $\mathrm{R}-\mathbb{N}$. An enhanced elliptic curve for $\Gamma_{n}(\mathrm{R})$ is an orded pair (I IST) where I is a complex torus and T is a point of order R .
We say (I IST) μ (I VTT W if there exists an isomorphism I A I wand T Al Tw. Denote $W(R) œ\left\{\right.$ enhanced elliptic curves for $\left.\Gamma_{n}(R)\right\} \hat{I} \mu$.

Definition. Let $\mathrm{R}-\mathbb{N}$. An enhanced elliptic curve for $\Gamma(\mathrm{R})$ is an orded pair $(\mathrm{I} B(\mathrm{~T} \mathrm{SU}))$ where I is a complex torus and $\mathrm{T} \mathbb{S U}-\mathrm{I}[\mathrm{R}]$ where $/ \mathrm{R}(\mathrm{T} ß \mathrm{~S}) \propto /^{\# \pi} \mathrm{~B} \mathrm{R}$.
 and $U A^{i l} U^{W}$. Denote $W(R)$) $\{$ enhanced elliptic curves for $\Gamma(R)\} \hat{\imath} \mu$.
These critters, W@WWß and Ware called moduli spaces.
Let $\Gamma ® \mathrm{WP}_{\#}(\mathbb{Z})$ be a congruence subgroup:

$$
\begin{gathered}
](\Gamma)^{3} \quad \Gamma \hat{I} \mathbb{H} œ\left\{\Gamma_{\tau} \text { À }-\mathbb{H}\right\} \text { orbits. } \\
]_{!}(\mathrm{R})^{3} \quad \Gamma_{!}(\mathrm{R}) \hat{l} \mathbb{H} ß \quad\right] \quad \mathrm{R}(\mathrm{R})^{3} \quad \Gamma "(\mathrm{R}) \hat{l} \mathbb{H}, \quad \text { and }\right](\mathrm{R}) œ \Gamma(\mathrm{R}) \hat{\mathrm{l}} \mathbb{H} .
\end{gathered}
$$

Notation. We use brackets instead of parentheses in $[I ß G] ß[I ß T]$ ß and $[I ß(T ß U)]$ to represent the equivalence classes under the appropriate relation.

(b) The moduli space for $\Gamma_{1}(N)$ is

$$
\mathrm{S}_{1}(N)=\left\{\left[E_{\tau}, 1 / N+\Lambda_{\tau}\right]: \tau \in \mathcal{H}\right\} .
$$

Two points $\left[E_{\tau}, 1 / N+\Lambda_{\tau}\right]$ and $\left[E_{\tau^{\prime}}, 1 / N+\Lambda_{\tau^{\prime}}\right]$ are equal if and only if $\Gamma_{1}(N) \tau=\Gamma_{1}(N) \tau^{\prime}$. Thus there is a bijection

$$
\psi_{1}: \mathrm{S}_{1}(N) \xrightarrow{\sim} Y_{1}(N), \quad\left[\mathbf{C} / \Lambda_{\tau}, 1 / N+\Lambda_{\tau}\right] \mapsto \Gamma_{1}(N) \tau
$$

(c) The moduli space for $\Gamma(N)$ is

$$
\mathrm{S}(N)=\left\{\left[\mathbf{C} / \Lambda_{\tau},\left(\tau / N+\Lambda_{\tau}, 1 / N+\Lambda_{\tau}\right)\right]: \tau \in \mathcal{H}\right\}
$$

Two points $\left[\mathbf{C} / \Lambda_{\tau},\left(\tau / N+\Lambda_{\tau}, 1 / N+\Lambda_{\tau}\right)\right],\left[\mathbf{C} / \Lambda_{\tau^{\prime}},\left(\tau^{\prime} / N+\Lambda_{\tau^{\prime}}, 1 / N+\Lambda_{\tau^{\prime}}\right)\right]$ are equal if and only if $\Gamma(N) \tau=\Gamma(N) \tau^{\prime}$. Thus there is a bijection

Lecture 5 (March 2, 2009) - Diamond Chapter 3.2

Let $\mathrm{Z} \S \mathbb{C}$. Recall 0 ÀZ $̈$ © meromorphic on Z means it has a Laurent expansion

$$
\left.0(\mathrm{D}) \bigodot_{8 œ \exists}^{\infty} \mathrm{t}_{8}(\geqslant\rceil \tau\right)^{8}
$$

for $. I>$ in some disk about τ, where $\dagger_{8}-\mathbb{C} ß 7-\mathbb{Z}$.
Definition. The order of 0 at τ is

$$
\nu_{\tau}(0) \text { œ } 7
$$

and when 0^{\prime} !, we say @(0) œ ∞.
Definition. A function $0 \dot{A} H H A \not \subset \mathbb{C}$ is an automorphic form of weight with respect to Γ if
(1) 0 is meromorphic on \mathbb{H}.
(2) $0[\gamma]_{5}$ œ 0 for all $\gamma-\Gamma$.
(3) 0 is meromorphic at the cusps of ∞ (i.e., $\mathrm{O}[\alpha]_{5}$ is meromorphic at ∞ for all $\alpha-W P_{\#}(\mathbb{Z})$.

Let $=$ be a cusp of Γ, with $=-\mathbb{Q} \cup\{\infty\}$. Let $\alpha-\mathbf{W P}_{\#}(\mathbb{R})$ with $\alpha(\infty) œ=($ with $\alpha^{\square "}(\Rightarrow \propto \infty)$. Then $\alpha^{\square "} \Gamma_{=} \alpha$ gixes ∞ and so it is generated by " $\left(\begin{array}{ll}" & 2 \\ ! & "\end{array}\right)$ for some positive integer 2 .

We claim $\mathrm{O}[\alpha]_{5}[\sigma]_{5} œ 0[\alpha]_{5}$ for any $\sigma-\alpha^{\square "} \Gamma_{=} \alpha$. Indeed,

$$
\begin{aligned}
& \left.\mathrm{O}[\alpha]_{5}[\sigma]_{5} œ 0[\alpha \sigma]_{5}(\tau) œ 0[\gamma \alpha]_{5}(\tau) \text { œ4(} \gamma \alpha ß \tau\right)^{\square 5} \mathrm{O}(\gamma \alpha(\tau)) \\
& \text { œ4 }(\gamma ß \alpha(\tau))^{\square 5} 4(\alpha ß \tau){ }^{\square 5} 0(\gamma \alpha(\tau)) œ 0[\gamma]_{\mathrm{p}}(\alpha(\tau)) 4(\alpha ß \tau)^{\square 5} œ 0[\alpha]_{5}(\tau) .
\end{aligned}
$$

Hence, it is invariant under any element in that subgroup. For σ œ „ ($\left.\begin{array}{l}" 2 \\ !\end{array}\right)$ Bwe get

$$
0[\alpha]_{5}(\tau \square 2) œ 0[\alpha]_{5}(, \quad \sigma(\tau)) œ 0[\alpha]_{5}(\tau),
$$

where $0[\alpha]_{5}$ has period 2 when 5 is even.

Define $\varphi(1)$ œ (1\% " $)(;)$ for $1 \propto 0[\alpha]_{5}$.
Theorem. $\varphi(1)$ is meromorphic if and only if $1(\mathrm{D})$ is meromorphic.
Proof. We know there exists a Laurent expansion for ; in the punctured disk,

$$
\varphi(;) \underset{8 \propto \sum_{\infty}}{\infty} \text { tr }_{8} ;^{8} .
$$

Now, $\mathrm{O}[\alpha]_{5}$ meromorphic at ∞ means $\varphi(;)$ is meromorphic at !. If 5 is odd, and $\square \mathrm{M}-\Gamma$
 74].

Recall E œ $\bigoplus_{\mathbb{Z}} \mathbb{E}_{5}(\Gamma)$. Now, $0-\mathbf{E}_{5}(\Gamma)$ is not well-defined on $\backslash(\Gamma)$ if for $\gamma \tau ß \gamma^{\omega}$ in $\Gamma \tau, \mathrm{O}(\gamma \tau)$ œ $4(\gamma \mathbb{S} \tau)^{5} \mathrm{O}(\tau)$ Á $\mathrm{A}\left(\gamma^{\Downarrow} \mathrm{B} \tau\right)^{5} \mathrm{O}(\tau) œ 0\left(\gamma^{\omega} \tau\right)$. If 5 œ!, then 0 is γ-invariant and so is well-defined on $\backslash 母$).
$E_{!}(\Gamma)$ is the field of meromorphic functions on $\backslash(\Gamma)$, denoted by $\mathbb{C}(\backslash(\Gamma))$.
Example. Let $4 œ "\left(\# \frac{1 \text { 要 }}{\Delta}\right.$ where the numerator is in $\mathcal{M} " \#(\mathrm{WP} \#(\mathbb{R}))$ (a modular form) and Δ is in $\mathcal{S}^{\prime \prime} \#(\mathrm{WP} \neq(\mathbb{R}))$ (a cusp form). Then if $4-\mathrm{E}_{!}(\mathrm{WP} \#(\mathbb{R}))$ and 4 has a pole at ∞, it makes sense to think of $4 A ̀$ (") \ddot{A} ©

Fact. $\mathbb{C}(4) œ E_{!}\left(W P_{\#}(\mathbb{Z})\right)$.
Fact. If $0-E_{5}(\Gamma)$, then if $0 A$! , then $E_{5}(\Gamma) œ E_{!}(\Gamma)$.
Consider

$$
Y \AA \bar{T} \pi(Y) \AA \AA Z
$$

where $\mathrm{Y} \S \mathbb{H}^{\ddagger} ß \pi(\mathrm{Y}) \S \backslash(\Gamma) ß$ and $\mathrm{Z} \S \mathbb{C}$. Let $\pi(\tau)-\backslash(\Gamma)$ be not a cusp. Recalling that $0\left(\ngtr \propto \sum_{8 œ \ni}^{\infty}+_{8}(>\square \tau)^{8}\right.$, we can think of local coordinates as

$$
\Rightarrow \square \text { E. }^{\varrho}(\geqslant \square \tau)^{2} œ ;^{2}
$$

so we can write $0\left(\nrightarrow œ \sum_{8 œ 7}^{\infty} \dagger_{8} ;{ }^{\text {il } 2}\right.$. Then

$$
\nu_{\pi(\tau)}(0) œ \frac{7}{2} œ \frac{\nu_{\tau}(0)}{2} .
$$

If $\pi(\Rightarrow$ is a cusp, consider the cases 5 even/odd. If $\square M-\Gamma$, then

$$
\begin{aligned}
& \alpha^{\square "} \Gamma=\alpha \text { œØ, }\left(\begin{array}{ll}
" & 2 \\
! & "
\end{array}\right) \dot{U} ß(\infty) \text { } \alpha=\text { and } \\
& \nu_{\pi(\neq}(0) œ \frac{7}{\#} œ \begin{cases}\frac{\nu \rightrightarrows(0)}{\#} & \text { if } \alpha^{\square "} \Gamma_{=} \alpha œ \npreceq\left(\begin{array}{ll}
" & 2 \\
! & "
\end{array}\right) \text { Ùand } 5 \text { is odd } . \\
\nu=(0) & \text { otherwise. }\end{cases}
\end{aligned}
$$

Also, define

$$
\eta(\tau) œ ; \# \nexists \prod_{8 \propto ®^{\prime}}^{\infty}\left(" \square ;^{8}\right)
$$

where ; \#\%œ/ \#rai \#\%.
Proposition. Let $5 ß<-\mathbb{Z}^{\square}$ such that $5\left(\mathrm{R} \square^{"}\right) œ \neq$ Define $\varphi_{5}(\tau) œ \eta(\tau)^{5} \eta(\mathrm{R} \tau)^{5}$. If $\mathbf{W}_{5}\left(\Gamma_{3}(\mathrm{R})\right) \mathrm{A}!$ for $3 œ!$ §" then $\mathrm{W}_{5}\left(\Gamma_{3}(\mathrm{R})\right) œ \mathbb{C} \varphi_{5}$. If 5 œ" \#and R œ", then $\mathrm{W}_{\#}(\mathrm{WP} \#(\mathbb{Z})) œ \mathbb{C} \Delta$, where $\Delta(\tau) œ(\# \pi)^{" \#} \eta(\tau){ }^{\# \%}$.

Differentials

Let $Z \S \mathbb{C}$ with Z open. We define the meromorphic differentials of degree 8 on Z to be

$$
\Omega^{\mathbb{B}}(Z) œ\left\{0(;)(. ;)^{8} \mathrm{I} 0 \text { is meromorphic on } Z\right\},
$$

where ; is the local variable on Z. Let

$$
\Omega(\mathbf{Z}) \wp_{\mathbf{8}-\mathbb{N}} \Omega^{\mathbb{B}}(\mathbf{Z})
$$

Let $(. ;)^{8}(. ;)^{7}$ œ(.;) ${ }^{8 \square 7}$. Let φ ÀZ" Ä $Z_{\#}$ be such that φ is holomorphic

$$
\varphi^{\ddagger} A \Omega^{\mathbb{B}}\left(Z_{\#}\right) \ddot{\mathrm{A}} \Omega^{⿷ B}\left(Z^{\prime \prime}\right)
$$

defined by

Let \backslash be a Riemann surface, and let $\left\{\mathrm{Y}_{4}\right\}_{4-\mathrm{N}}$ be neighborhoods of \backslash, and $\left\{Z_{4}\right\}_{4-\tau}$ neighborhoods of \mathbb{C}. Let the φ_{4} be the coordinate charts. Define a differential ω on \backslash to be a tuple $\omega œ\left(\omega_{4}\right)_{4-\mathrm{N}}-\prod \Omega^{⿷ B}\left(\mathbf{Z}_{4}\right)$ that is compatible with respect to the transition maps.

Now, we want $\omega-\Omega^{\mathbb{B}}(\backslash(\Gamma))$ to pullback to a differential on $\mathbb{H} ß$

$$
\mathbb{H}^{\ddagger} A^{\mathbb{}} \backslash(\Gamma) \AA \mathbb{C} .
$$

$$
\pi^{\ddagger}(\omega){I_{Y_{4}{ }^{3}}} \quad(\varphi \%)^{\ddagger}\left(\omega I_{Z_{4}^{w}}\right) œ 0(\tau)\left(.>^{8}\right.
$$

on $\mathrm{Y}_{4}^{\mathrm{w}}$. We claim these local patches glue together because of compatibility.
We define a global differential on \mathbb{H} to be $0(\tau)(. \tau)^{8}$. We then claim that 0 is an automorphic form of weight \#8.

$$
0(\tau)(. \tau)^{8} œ 0\left(\gamma(\ngtr)(.(\gamma \tau))^{8} œ 0(\gamma(\tau))\left(\gamma^{\rightsquigarrow} \tau\right)\right)^{8}(. \tau)^{8} .
$$

We saw last time that $\gamma^{\aleph}(\tau) œ 4(\gamma \mathbb{S} \tau)^{\square \#}$. Hence, the above equals

$$
0(\gamma(\tau))\left(4(\gamma ß \tau)^{\square \neq 8}\right)(. \tau)^{8} œ 0(\tau)(. \tau)^{8}
$$

so it is weakly modular of weight \#8. Next, we need to show that $0[\alpha]_{\# 8}$ is meromorphic at ∞ for all $\alpha-\mathrm{VP}_{\#}(\mathbb{Z})$. As before, let $=œ \alpha(\infty)$. Let $\rho(\mathrm{D}) œ /^{\# \text { \#na } 2}$ œ; . Since $\omega-\Omega^{\mathbb{B}}(\backslash(\Gamma))_{8}$ is meromorphic on $\backslash(\Gamma)$, when we restrict to Z, we can $\omega l_{\mathrm{z}} œ 1(;)(. ;)^{8}$, where 1 is meromorphic (particularly, at!). Then

$$
\begin{aligned}
& \text { œ0 }(\tau)(. \tau)^{8}
\end{aligned}
$$

where we defined $\mathrm{O}(\tau)$ in the last equality. Now we just need to show $\mathrm{O}(\tau)$ is meromorphic at ∞ :

$$
0(\tau) œ 1[\delta]_{\# 8}(;)\left(\frac{\# \pi 3}{2}\right)^{8} ; 8 \text {, where ; œ/ } /^{\# \pi-3 \hat{\imath} 2} .
$$

Then $0[\alpha]_{\nexists 8}(\tau) œ 1\left[\alpha^{\square "}\right]_{\neq 8}[\alpha]_{\neq 8}(;) \dagger\left(\frac{\# \pi 3}{2}\right)^{8} ;{ }^{8} \propto 1(;)\left(\frac{\# \pi 3}{2}\right)^{8} ;{ }^{8}$, which is mero-morphic at ; œ! because of this statement.

Hence, given $\omega-\Omega^{\mathbb{B}}(\backslash(\Gamma))$, the function 0 defining the pullback is an automorphic form of weight \#8. The converse is also true: given an automorphic form of weight \#8, we can construct a meromorphic differential on $\backslash(\Gamma)$ of degree 8.

Theorem 3.3.1. Let $5-\mathbb{N}$ be even and let Γ be a congruence subgroup of $\backslash P_{\neq(\mathbb{Z})}$. The map

$$
\omega \hat{\mathrm{A}} \mathcal{A}_{5}(\Gamma) \ddot{\mathrm{A}} \Omega^{\text {Бî }} \#(\backslash(\Gamma)) \text { with } 0 \text { È }\left(\omega_{4}\right)_{4-\mathrm{N}}
$$

where $\left(\omega_{4}\right)$ pulls back to $0(\tau)(. \tau)^{5 \hat{1} \#}-\Omega^{\Phi(\Phi)} \#(\mathbb{H})$ is an isomorphism of complex vector spaces.

Lecture 6 (March 9, 2009) - Diamond Chapter 3.4-3.6

Riemann-Roch Theorem

Let \ be a compact Riemann surface.
Definition. A divisor on \backslash is a finite sum $\sum_{\mathrm{B}-1} 8_{\mathrm{B}} \mathrm{B}$ with $8_{\mathrm{B}}-\mathbb{Z}$ where all but finitely many are!.
We have a homomorphism deg $\operatorname{ÀDiv}(\backslash) \ddot{A} \mathbb{Z}$ with $\operatorname{deg}\left(\sum 8_{B} B\right) œ \sum 8_{B}$. This gives a partial order: $\sum 8_{B} B \quad \sum 8_{B}^{W} B$ if $8_{B} \quad 8_{B}^{W} a B$. Denote $\mathbb{C}(\backslash)$ the meromorphic functions on \backslash. Then $0-\mathbb{C}(\backslash)^{\ddagger}$, so define $\operatorname{div}(0) œ \sum \nu_{\mathrm{B}}(0) \chi$. Denote $\left\{\operatorname{div}(0) I 0-\mathbb{C}(\backslash)^{\ddagger}\right\}$ by Div ${ }^{j}$. Notice
(1) $\operatorname{div}\left(0^{\prime \prime} 0_{\#}\right) œ \operatorname{div}\left(0^{\prime}\right) \square \operatorname{div}\left(0_{\#}\right) \quad$ and $(2) \operatorname{deg}(\operatorname{div}(0)) œ!$.
(2) follows because $\operatorname{deg}(0) œ \sum_{B-0 \square "(C)} \operatorname{mult}_{B}(0)$, so $\operatorname{deg}(0) œ \sum_{B-0 \square "(!)} \operatorname{mult}_{B}(0)$, and $\operatorname{deg}(0) œ \sum_{B-0 \square "(\infty)} \operatorname{mult}_{B}(0)$. So

$$
\operatorname{div}(0) œ \sum_{B-0 \square "(!)} \operatorname{mult}_{\mathrm{B}}(0) \square \sum_{\mathrm{B}-0 \square{ }^{[\prime \prime}(\infty)} \operatorname{mult}_{\mathrm{B}}(0) œ!.
$$

Define Div! to be the divisors $(\mathrm{H}-\operatorname{Div}(\backslash)$) of degree H œ!. Because of what we just showed, $\mathrm{Div}^{j} ® \mathrm{Div}^{!}$, so then want to look at $\mathrm{Div}^{!} \mathrm{I} \mathrm{Div}^{j}$.

Definition. The linear space of a divisor is

$$
\mathrm{P}(\mathrm{H}) œ!\cup\left\{0-\mathbb{C}(\backslash)^{\ddagger} \operatorname{Idiv}(0) \square H \quad!\right\} .
$$

The dimension of this space is denoted $\mathbf{j}(\mathrm{H})$. It is a fact that $\operatorname{dim} \mathbf{j}(\mathrm{H}) \% \infty$.
Given $\omega-\Omega^{\mathbb{B}}(\backslash)$ a non-zero differential 8-form on \backslash, then for all $B-\backslash$, we have a local representation $\omega_{\mathrm{B}} œ_{\mathrm{B}}(;)(. ;)^{8}$, where ; is the local coordinate about \backslash. We will define $\operatorname{div}(\omega)^{3} \quad \sum \nu_{!}\left(0_{B}\right) \mathrm{B}\left(\right.$ with $\nu_{\mathrm{B}}(\omega)$).

Exercise. Why is $\nu_{!}$cofinite of nonzeros?
Notice $\operatorname{div}\left(\omega_{n} \omega_{\#}\right) œ \operatorname{div}\left(\omega_{n}\right) \square \operatorname{div}\left(\omega_{\#}\right)$.
Definition. If $\lambda-\Omega^{\prime \prime}(\backslash)$, then $\operatorname{div}(\lambda)$ is a canonical divisor.
Theorem. Let \backslash be a compact Riemann surface of genus 1 Let $\operatorname{div}(\lambda)$ be a canonical divisor on \backslash. Then for any divisor $\mathrm{H}-\operatorname{Div}^{!}(\backslash)$,

$$
\mathrm{j}(\mathrm{H}) œ \operatorname{deg}(\mathrm{H}) \square 1 \square " \square \mathrm{j}(\operatorname{div}(\lambda) \square \mathrm{H})
$$

Corollary 3.4.2 [in Diamond].
Note if $0-\Delta_{\#}(\Gamma)$ is nonzero, then the associated $\omega(0)-\Gamma^{\prime \prime}(\backslash(\Gamma))$ will have canonical divisor $\operatorname{div}(\omega)$, so has degree \#l \# For 5 even, $\omega^{5 \hat{i}}$ \# will have a divisor of degree $\left.5(1\rceil^{"}\right)$. Since $\mathcal{A}_{5}(\Gamma)$ is $\mathbb{C}(\backslash) 0$ for any nonzero 0 of weight 5 . The same holds for $\Omega^{\text {®ì } \#}(\backslash(\Gamma))$. So all $\omega-\Omega^{\text {®î } \#}(\backslash(\Gamma))$ has degree 5(1 $\left.{ }^{\text {" }}\right)$.

Dimension formulas

If 5 is even, and $0-\mathcal{A}_{5}(\Gamma)$ is nonzero, we have

$$
\nu_{\pi(\tau)}() \quad \nu_{\tau}()
$$

for τ a noncusp of period 2. Further, $\nu_{\pi(\Theta}(0)^{3} \quad \nu_{=}(0)$ for =a cusp.
Define (formally)

$$
\operatorname{div}(0) œ \sum \nu_{\mathrm{B}}(0) \mathrm{B} .
$$

What does it mean to be holomorphic? This exactly means $\operatorname{div}(1)$!. Then

$$
\begin{gathered}
\mathcal{M}_{5}(\Gamma) œ\left\{1-\mathcal{A}_{5}(\Gamma) \mid \operatorname{div}(1) \quad!\right\} œ\left\{0!0-\mathcal{A}_{5} \mid \operatorname{div}(0!0) \quad!\right\} \mathbf{z} \\
\left\{0_{!}-\mathbb{C}(\backslash(\Gamma)) \mid \operatorname{div}(0!) \square \operatorname{div}(0) \quad!\right\} .
\end{gathered}
$$

Definition. $\lfloor\operatorname{div} 0\rfloor \propto \sum\left\lfloor\nu_{B}(0)\right\rfloor$ B.
We know

$$
\operatorname{div}\left(0_{!}\right) \square \operatorname{div}(0) \quad!\text { í } \quad \operatorname{div}\left(0_{!}\right) \square\lfloor\operatorname{div}(0)\rfloor \quad!.
$$

So

$$
\mathcal{M}_{5}(\Gamma) \text { z } \mathrm{P}(\lfloor\operatorname{div} 0\rfloor)
$$

Hence, $\operatorname{dim}\left(\mathcal{M}_{5}(\Gamma)\right) œ j(\lfloor\operatorname{div} 0\rfloor)$.
 of period \#\#\$, and cusps, respectively, with sizes $\varepsilon_{\#} \S_{\varepsilon_{\$}} \varepsilon_{\varepsilon_{\infty}}$, respectively. Define

$$
\operatorname{div}(. \tau) œ \sum \overline{\#}_{\# \# \beta} \mathrm{~B}_{\# \beta} \square \sum \underset{\$}{\#} \mathrm{~B}_{\$ 13} \square \sum \mathrm{~B}_{3}
$$

From 3.3, recall $H_{!}(\omega) œ \nu_{\pi(\tau)}(0) \square \frac{5}{\#}\left(" \square \frac{"}{2}\right)$ with $\tau-\mathbb{H}$ and ω is associated to 0 .
Then

$$
\lfloor\operatorname{div}(0)\rfloor \propto \operatorname{div}(\omega) \square \sum\left\lfloor\frac{5}{\#} \left\lvert\, \mathrm{B}_{\# \#} \square \sum\left\lfloor\frac{5}{\$}\right\rfloor \mathrm{B}_{\$ \mathbb{B}} \square \sum \frac{2}{\#} \mathrm{~B}_{3}\right.\right.
$$

So

$$
\begin{aligned}
& \text { — \#1 }
\end{aligned}
$$

For $\mathcal{S}_{5}(\Gamma)$, we have the same things, but we use $\left\lfloor\operatorname{div} 0 \square \sum \mathrm{~B}_{3}\right\rfloor$. Then

$$
\operatorname{div}(0!) \square \operatorname{div}(0) \square \sum \mathrm{B}_{3} \quad!
$$

yields $\operatorname{deg}\left(\left\lfloor\operatorname{div}(0) \square \sum B_{3}\right\rfloor\right) œ \operatorname{deg}(\lfloor\operatorname{div} 0\rfloor) \square \varepsilon_{\infty}$. So for 5%

$$
\operatorname{dim}\left(\mathcal{S}_{5}(\Gamma)\right) œ j(\lfloor\operatorname{div} 0\rfloor) \square \varepsilon_{\infty}
$$

If 5 is nonpositive, we want $\mathcal{M}_{!}(\Gamma)$.

Lecture 7 (March 30, 2009) - Diamond Chapter 4

We define the Eisenstein space of weight 5

$$
\Sigma_{5}(\Gamma) œ \mathcal{M}_{5}(\Gamma) \hat{I} \mathcal{S}_{5}(\Gamma)
$$

We will be computing the bases of these Eisenstein spaces, which are Eisenstein series. In this talk, we will only consider $5 \quad \$$. Recall

$$
\mathrm{K}_{5}(\tau) \underset{(-ß)-\mathbb{Z}+{ }^{+1}\{!\}}{\mathrm{w}} \frac{1}{(-\tau \square \cdot)^{5}},
$$

and the normalized Eisenstein series

$$
I_{5}(\tau) œ K_{5}(\tau) \mid \text { I\# }(5) .
$$

Now notice we can write

$$
\begin{aligned}
& \text { œ } \zeta(5) \sum_{\substack{(-\beta))}} \frac{"}{(-\tau \square \cdot)^{5}} .
\end{aligned}
$$

Hence,

Define

$$
\mathrm{T}_{\square} œ\left\{\left(\begin{array}{cc}
" & 8 \\
! & "
\end{array}\right) \text { À8 }-\mathbb{Z}\right\} .
$$

We claim that we can rewrite the above as

$$
I_{5}(\tau) œ_{\overline{\#}}^{"} \sum_{\gamma-T_{0} \mathrm{i} \mathrm{w}^{2}\{(\mathbb{Z})} 1(\gamma ß \psi)^{\square 5} .
$$

Then

$$
\left(\begin{array}{ll}
\prime \prime & 8 \\
! & "
\end{array}\right)\left(\begin{array}{cc}
+ & , \\
- & .
\end{array}\right) œ\left(\begin{array}{cc}
+\square 8- & , \square 8 . \\
- & .
\end{array}\right) .
$$

It is easy to show that $I_{5}(\tau)$ is a weakly modular form of weight 5 .
We claim that

$$
\operatorname{dim}\left(\operatorname{I}_{5}(\Gamma)\right) œ \begin{cases}\Sigma_{\infty} & 5 \text { \%and even } \\ \sum_{\infty}^{\text {reg }} & 5 \text { \$ is odd and } \square M \hat{A} \Gamma \\ \Sigma_{\infty} \square^{\prime \prime} & 5 œ \# \\ \sum_{\infty}^{\text {reg }} \hat{\imath} \# & 5 œ " \text { and } \square M \hat{A} \Gamma \\ " & 5 œ! \\ ! & 5 \%!\text { or }(5 \square!\text { is odd and } \square M-\Gamma)\end{cases}
$$

Now let us look at the Eisenstein series for $\Gamma\left(\begin{array}{ll}R\end{array}\right)(5 \quad \$)$. First, take $R-\mathbb{Z}^{\square}$ and let @- $(\mathbb{Z} \hat{I} R \mathbb{Z})^{\#}$ a row vector of order R. Let

$$
\delta œ\left(\begin{array}{cc}
+ & , \\
-@ & \cdot @
\end{array}\right),
$$

 define

$$
\mathrm{I}_{5}^{@}(\tau) œ \varepsilon_{\mathrm{R}} \sum_{\substack{(-ß))^{\prime} @(\bmod \mathrm{R}) \\ \operatorname{gcd}\left(-\mathrm{B}_{\mathrm{A}}\right) œ{ }^{\prime \prime}}}(-\tau \square \cdot)^{\square 5} .
$$

We claim that $I_{5}^{@}(\tau) œ \varepsilon_{R} \sum_{\gamma-\left(T_{\square} \cap \Gamma(\mathrm{R})\right) і \Gamma \Gamma(\mathrm{R}) \delta} 4(\gamma \mathcal{S} \tau)^{\square 5}$.
Proof. Let's write $\gamma-\Gamma(\mathrm{R})$ as $\left(\begin{array}{cc}\mathrm{R}<\square^{\prime \prime} & \mathrm{R}= \\ \mathrm{R}> & \mathrm{R} ?{ }^{\prime \prime}\end{array}\right)$. Then

$$
\gamma \delta œ\left(\begin{array}{cc}
\underbrace{\ddagger}_{-} \\
\mathrm{R}>\square\left(\mathrm{R} ? \square^{\prime \prime}\right)-@ & \underbrace{\ddagger}_{\cdot} \\
\mathrm{R} \geqslant \square\left(\mathrm{R} \geqslant \square^{\prime \prime}\right) \cdot @
\end{array}\right) .
$$

Notice indeed $\operatorname{gcd}(-\aleph$.$) œ".$
Proposition. For all $\left.\gamma-\mathrm{WP}_{\#}(\mathbb{Z})^{\mathrm{l}},\left(\mathrm{I}{ }_{5}^{@} \gamma\right]\right)(\tau)$ œl ${ }_{5}^{@}(\gamma(\tau))$.
Proof. We have

$$
\begin{aligned}
& \text { œ } \varepsilon_{R} \sum_{\gamma^{\mu}\left(T_{\square} \cap \Gamma(R)\right) i \Gamma(R) \delta} 4\left(\gamma^{\mu} \mathcal{\beta} \beta \tau\right)^{\square 5} \\
& \text { œ } \varepsilon_{\mathbf{R}} \sum_{\gamma^{\mathrm{w}}\left\llcorner\left(\mathrm{~T}_{\square} \cap \Gamma(\mathrm{R})\right) і ̈ \Gamma(\mathrm{R}) \delta \gamma\right.} 4\left(\gamma^{\mathrm{w}} \mathrm{~B}_{\boldsymbol{T}}\right)^{\square 5} \\
& \text { œ } \varepsilon_{\mathrm{R}} \mathrm{I}{ }_{5}^{@}(\tau) \text {. }
\end{aligned}
$$

(where we write

$$
\left.4\left(\gamma^{4} \mathcal{B} \gamma(\tau)\right) œ 4\left(\gamma^{W} \gamma ß\right) i ̂ 4(\gamma ß \tau) .\right)
$$

Corollary. $\quad{ }_{5}^{@}(\tau)-\mathcal{M}_{5}(\Gamma(R))$.
Proof. It is holomorphic on \mathbb{H}, and for all $\gamma-\Gamma(\mathbb{R})$, each γ reduces to Mmod \mathbf{R}. So by our proposition above, @ œ@ Hence, I @ is weight-5 invariant with respect to $\Gamma(\mathrm{R})$. Fourier coefficients satisfy $\left|+_{8}\right| \ddot{Y}-\S$ where $-ß<$ are positive constants.

Now we can create modular forms for any congruence subgroup of level R, namely

$$
\mathrm{I}{ }_{5 \Omega}^{@}(\tau) œ \sum_{\gamma_{4}-\Gamma(\mathrm{R}) \mathrm{I} \Gamma} \mathrm{I}{ }_{5}^{@}\left[\gamma_{4}\right]_{5}(\tau) .
$$

We can show that

$$
\lim _{\operatorname{Im}(\tau) \ddot{A} \infty} 15_{5}^{@}(\tau) œ \begin{cases}(, ")^{5} & \text { if @œe," } \overline{\left(!\aleph^{\prime \prime}\right)}, \text { unless } 5 \text { is odd and } \mathrm{R} \text { is " or \# } \\ ! & \text { otherwise. }\end{cases}
$$

In this exceptional case, $M-\Gamma(R)$, so that $\operatorname{dim}\left(\Sigma_{5}(\Gamma(R))\right)$ œ!. Hence, $\Sigma_{5}(\Gamma(R))$ has a trivial basis. Now, I ${ }_{5}^{@}$ is nonvanishing at ∞ if @œ," $\overline{\left(!\Re^{\prime \prime}\right)}$, and vanishes at ∞ otherwise.

What about for any @œ $\overline{\left(-\mathcal{R}_{1}\right)}$? Take any @œ $\overline{\left(-\aleph_{.}\right)}-(\mathbb{Z} \mathbf{I} \mathbb{Z})^{\#}$ of order R with its corresponding

$$
\delta œ\left(\begin{array}{ll}
+ & , \\
- & .
\end{array}\right)
$$

Take any cusp $=œ++^{\hat{\gamma}}-\mathrm{w}-\mathbb{Q} \cup\{\infty\}$ such that some matrix

$$
\alpha œ\left(\begin{array}{cc}
+^{w} & , w \\
-w & , w
\end{array}\right)
$$

takes ∞ to $=$ The Fourier series $\left.\{ }_{5}^{@} \alpha\right]_{5}$ describes the behavior at $\mathrm{I}{ }_{5}^{@}$. By our earlier proposition, I $\left.{ }_{5}^{@} \alpha\right]_{5}$ œI ${ }_{5}^{\text {@ }}$ œI $\int_{5}^{\left(!\beta^{\prime}\right) \delta \alpha}$ since

$$
\left(!\aleph^{\prime \prime}\right)\left(\begin{array}{cc}
+ & , \\
- & .
\end{array}\right) œ(- \text { ß. }) œ @
$$

So $\left.\bar{I}{ }_{5}^{〔} \alpha\right]_{5}$ is non-vanishing at ∞ only when $\overline{\left(!\aleph^{\prime \prime}\right) \delta \alpha} \propto$, $\overline{\left(!\Omega^{\prime \prime}\right)}$ if and only if $\overline{\left(!\aleph^{\prime \prime}\right) \delta}$ œ , $\left(!\aleph^{\prime \prime}\right) \alpha^{\square^{" 1}}$ if and only if

$$
\binom{+}{-w}, \quad,\binom{\cdot}{-}(\bmod R)
$$

if and only if $\Gamma(\mathrm{R})=\varnothing \Gamma(\mathrm{R})(\square . \hat{I}-)$. So $\mathrm{I}{ }_{5}^{@}$ is nonvanishing at $\Gamma(\mathrm{R})(\square . \hat{l}-)$ and vanishes at all other cusps. If 5 is even and $R \quad$ \# pick a set of vectors

$$
\{\propto \propto\{\overline{(-\Omega)} \text { s.t. the quotients } \square . \hat{l}-\text { represent all cusps at } \Gamma(\mathrm{R})\} .
$$

By the above, the $\left\{1{ }_{5}^{9}\right\}$ are linearly independent. This set has Σ_{∞} elements (which is the dimension of $\Sigma_{5}(\Gamma(R))$), so it is a basis.

