Lecture 1 (January 26, 2009) - Diamond Chapter 1.1-1.3

§1.1 in Diamond

Modular group

Start with

$$\mathsf{WP}_{\#}(\mathbb{Z}) \ \mathfrak{ce} \ \left\{ \begin{pmatrix} \mathsf{+} & \mathsf{\prime} \\ \mathsf{-} & \mathsf{.} \end{pmatrix} - \mathbf{Q}_{\#}(\mathbb{Z}) \ \mathsf{\dot{A}} + \mathsf{.} \quad \mathsf{,-ce} \ \mathsf{''} \right\}.$$

Let $\gamma - WP_{\#}(\mathbb{Z})$ and $\tau - \mathfrak{G} \mathfrak{C} \{ \}$. Then we define an action on \mathfrak{G} by

$$\gamma \dagger \tau \ \mathbf{e} \ \frac{\mathbf{+}\tau}{\mathbf{-}\tau}$$
.

If $-\mathbf{A}$!, then $\tau \mathbf{ce} \stackrel{\cdot}{\to} \mathbf{E}$ and $> \mathbf{ce} \quad \mathbf{E} \stackrel{+}{\to}$. If $-\mathbf{ce}$!, then $> \mathbf{ce} \quad \mathbf{E}$. We then let $\mathbb{H} \mathbf{ce} \{ > -\mathbb{C} | \mathrm{Im}(\tau) : ! \}.$

If $\tau - \mathbb{H}$ and $\gamma - WP_{\#}(\mathbb{Z})$, then $\gamma \tau - \mathbb{H}$, because

$$\operatorname{Im}(\gamma \tau)$$
 œ $\frac{\operatorname{Im}(\tau)}{|-\tau_{-}|^{\#}}$

(so that if $\operatorname{Im}(\gamma\tau)$! then $\operatorname{Im}(\tau)$!). Note here that " γ give the same action. It's simple to check that if $\operatorname{M} \operatorname{ce} \left(\begin{bmatrix} n & ! \\ 1 & n \end{smallmatrix} \right)$, then $\operatorname{M} \dagger \tau \operatorname{ce} \tau$, and if $\gamma \mathfrak{g} \gamma^{W} - W \mathbf{P}_{\#}(\mathbb{Z})$, then $(\gamma\gamma^{W})\tau \operatorname{ce} \gamma(\gamma^{W}\tau)$ (so this is indeed an action).

Definition. Let $\mathbf{5} - \mathbb{Z}$. A meromorphic function $\mathbf{0} \stackrel{\bullet}{\mathbf{A}} \mathbb{H} \stackrel{\bullet}{\mathbf{A}} \mathbb{C}$ is weakly modular of weight $\mathbf{5}$ if $\mathbf{0}(\gamma \tau) \stackrel{\bullet}{\mathbf{ce}} (-\tau \ \cdot)^{\mathbf{5}} \mathbf{0}(\tau) \mathbf{a} \gamma \stackrel{\bullet}{\mathbf{ce}} (\stackrel{+}{\cdot} \stackrel{\cdot}{}) - \mathbb{W} \mathbf{P}_{\#}(\mathbb{Z}) \mathbf{\beta} \tau - \mathbb{H}$.

From the first exercise in Diamond, we can check $WP_{\#}(\mathbb{Z})$ is generated by

$$\tau \text{ ce } \begin{pmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{l} & \mathbf{u} \end{pmatrix} \text{ and } = \text{ ce } \begin{pmatrix} \mathbf{l} & \mathbf{u} \\ \mathbf{u} & \mathbf{l} \end{pmatrix}.$$

Then it turns out $\tau \stackrel{\bullet}{\models} \tau$ " and $\tau \stackrel{\bullet}{\models} \frac{"}{\tau}$.

To check that a meromorphic function is weakly modular of weight **5**, one must only verify that $\mathbf{0}(\tau \quad \mathbf{"}) \mathbf{e} \mathbf{0}(\tau)$ and $\mathbf{0}(\quad \mathbf{"}\hat{\mathbf{l}}\tau) \mathbf{e} \tau^{\mathbf{5}} \mathbf{0}(\tau)$.

To proceed further, we first have to define the notion of a function being holomorphic at $f(\tau)$. If **0** is weakly modular of weight **5** with **0**(τ ") **ce 0**(τ), let

H \mathbf{e} {; - \mathbb{C} $\mathbf{\hat{A}}$ |; | "} be the open unit disc

and $\mathbf{H}^{\mathbb{W}} \otimes \mathbf{H} \stackrel{?}{\mathbf{i}} \{ ! \}$ the punctured open unit disc. Then the map $\tau \stackrel{?}{\mathbf{E}} / {}^{\#\pi 3\tau}$ is define on $\mathbb{H} \stackrel{?}{\mathbf{A}} \stackrel{\mathsf{H}^{\mathbb{W}}}{\mathbf{i}}$ and is holomorphic and \mathbb{Z} -periodic. Define $\mathbf{1} \stackrel{?}{\mathbf{i}} \stackrel{\mathsf{H}^{\mathbb{W}}}{\mathbf{i}} \stackrel{\mathsf{Z}}{\mathbb{C}}$ by

$$1(;) \text{ ce } 0(\log(;)\hat{\mathbf{l}}(\#\pi\mathbf{3})).$$

Note that $\mathbf{0}(\tau) \cong \mathbf{1}(\mathbf{I}^{\#\pi\mathbf{3}})$. If **0** is holomorphic on \mathbb{H} , then **1** is holomorphic on $\mathbf{H}^{\mathbb{W}}$. So

1(;) œ
$$\sum_{\mathbf{8}-\mathbb{Z}}$$
 +₈;⁸ (for ; − **H**^w).

Definition. We say **0** is holomorphic at if the corresponding function **1** can be extended to a holomorphic function on **H**, $\mathbf{0}(\tau) \approx \sum_{\mathbf{8}-\mathbb{Z}} +_{\mathbf{8}}/^{\#\pi \mathbf{38}\tau}$.

Note that to show a weakly holomorphic function of weight **5**, call it **0**, is holomorphic at is equivalent to showing that

$$\lim_{\mathrm{Im}(au)\ddot{\mathbf{A}}} \mathbf{0}(au)$$

is finite or bounded. Holly points out this is along *any path* that goes up on the imaginary axis (so we just need to find an upper bound).

Definition. Let $\mathbf{5} - \mathbb{Z}$. A function $\mathbf{0} \mathbf{k} \mathbb{H} \mathbf{A} \mathbb{C}$ is a modular form of weight $\mathbf{5}$ if

- (1) **0** is holomorphic on \mathbb{H} ,
- (2) **0** is weakly modular of weight **5**,
- (3) **0** *is holomorphic at*

The set of modular forms of weight **5** *is actually a* \mathbb{C} *-vector space, written* $\mathcal{M}_5(WP_{\#}(\mathbb{Z}))$ *.* Define

$$\mathcal{M}_5(\mathsf{WP}_{\texttt{\#}}(\mathbb{Z})) \xleftarrow{5-\mathbb{Z}} \mathcal{M}_5(\mathsf{WP}_{\texttt{\#}}(\mathbb{Z}))$$

which is a graded ring.

Examples. (1) The zero function " $\ddot{\mathbf{Y}}$ a modular form for all weights.

(2) Constant functions are modular forms for weight œ!.

Definition. Let **5** *# be even. The Eisenstein series*

$$\mathbf{K}_{\mathbf{5}}(\tau) \stackrel{\mathbf{ce}}{\underset{(-\mathfrak{k}.)-\mathbb{Z}^{\#}}{\overset{\mathbf{''}}{\overbrace{(-\tau ..)^{5}}}},$$

where the prime denotes summing over $(-\beta.) - \mathbb{Z}^{\#}\dot{I}(\{!\beta!\})$.

Naturally, $K_5(\tau)$ is holomorphic on τ (Exercise 1.1.4(c)). We can compute that it is indeed weakly modular of weight 5. If $\gamma - (\uparrow \gamma) - WP_{\#}(\mathbb{Z})$, then

$$\mathbf{K}_{5}(\gamma\tau) \exp \sum_{\left(-\mathbf{W},\mathbf{W}\right)}^{\mathbf{W}} \frac{\mathbf{W}}{\left(-\mathbf{W}\left(\frac{+\tau}{-\tau}\right) - \mathbf{W}\right)^{5}} \exp \left(-\tau - \mathbf{U}\right)^{5} \sum_{\left(-\mathbf{W},\mathbf{W}\right)}^{\mathbf{W}} \frac{\mathbf{W}}{\left[\left(-\mathbf{W}_{+} - \mathbf{U}\right)\tau - \left(-\mathbf{W}, - \mathbf{U}\right)\right]^{5}} \exp \left(-\tau - \mathbf{U}\right)^{5} \mathbf{K}_{5}(\tau),$$

since

$$(-{}^{\mathsf{w}}\!\beta_{\cdot}{}^{\mathsf{w}})\left(\begin{array}{c} + & \prime\\ - & \cdot\end{array}\right)$$
 or $(-{}^{\mathsf{w}}\!+ & -{}^{\mathsf{w}}\!\beta_{\cdot}{}^{\mathsf{w}}, \dots{}^{\mathsf{w}}).$

Finally, $\mathbf{K}_{5}(\tau)$ is holomorphic at since it is bounded as $\text{Im}(\tau) \ddot{\mathbf{A}}$ (duh, because the terms are $\frac{\pi}{(-\tau_{-1})^{5}}$). Then the Fourier series of $\mathbf{K}_{5}(\tau)$ will be [page 5 of the book]

$$\mathbf{K}_{\mathbf{5}}(\tau) \ \mathbf{ce} \ \#\zeta(\mathbf{5}) \qquad \frac{\#(\#\pi\mathbf{3})^{5}}{(\mathbf{5}^{-*})^{*}} \sum_{\mathbf{8}\mathbf{ce}^{**}} \sigma_{\mathbf{5}^{-*}}(\mathbf{8}) \ ;^{\mathbf{8}},$$

where σ_5 "(8) $\underset{71867}{\text{e}} \sum_{1} 7^5$ ". We then have the normalized Eisenstein series

$$\frac{\mathbf{K}_{\mathbf{5}}(\tau)}{\#\zeta(\mathbf{5})} \mathbf{ \ e \ I}_{\mathbf{5}}(\mathbf{>}).$$

Then $\mathcal{M}_{\mathcal{H}}(\mathbb{WP}_{\#}(\mathbb{Z}))$ has dimension ", and $\mathbb{I}_{\mathscr{H}}(\tau)^{\#} \mathbb{B}\mathbb{I}_{\mathcal{H}}(\tau) - \mathcal{M}_{5}(\mathbb{WP}_{\#}(\mathbb{Z}))$. Further,

$$\sigma_{\rm C}({\bf 8}) \ {\bf \ e} \ \sigma_{\rm S}({\bf 8}) \ \ "\#>_{\rm 3 e''}^{\rm 8} \sigma_{\rm S}({\bf 3}) \sigma_{\rm S}({\bf 8} \ \ {\bf 3})$$

Definition. A cusp form of weight 5 is a modular form of weight 5 if in the Fourier expansion its leading coefficient is $+_{1} \times +_{1} \times +$

It's easy to see that $\mathcal{S}_5(WP_{\#}(\mathbb{Z}))$ is a vector subspace of $\mathcal{M}_5(WP_{\#}(\mathbb{Z}))$.

Example. Let $\mathbf{1}_{\#}(\tau) \otimes \mathbf{1}_{\$}(\tau) \otimes \mathbf{1}_{\$}(\tau) \otimes \mathbf{1}_{\$}(\tau) \otimes \mathbf{1}_{\$}(\tau)$, and $\Delta(\tau) \otimes \mathbf{1}_{\#}^{\$}(\tau) = \mathbf{1}_{\$}^{\$}(\tau) \otimes \mathbf{1}_{\$}^{\$}(\tau)$ with $\Delta(\tau) - S_{\#}(WP_{\#}(\mathbb{Z})).$

§1.2 Congruent Subgroups

Definition. A principal congruence subgroup of level $\mathbf{R} - \mathbb{N}$ is given by

$$\Gamma(\mathbf{R}) \ \mathbf{ce} \left\{ \begin{pmatrix} \mathbf{+} & \mathbf{i} \\ - & \mathbf{\cdot} \end{pmatrix} - \mathbf{WP}_{\#}(\mathbb{Z}) \ \mathbf{\hat{A}} \begin{pmatrix} \mathbf{+} & \mathbf{i} \\ - & \mathbf{\cdot} \end{pmatrix} \mathbf{f} \begin{pmatrix} \mathbf{-} & \mathbf{i} \\ \mathbf{I} & \mathbf{-} \end{pmatrix} \ \mathrm{mod} \ \mathbf{R} \right\},$$

where the reduction $mod \mathbf{R}$ is coefficient-wise in the matrix.

Note that $\Gamma(") \cong WP_{\#}(\mathbb{Z})$ and $\Gamma(\mathbb{R}) - WP_{\#}(\mathbb{Z})$ (with $WP_{\#}(\mathbb{Z}) \stackrel{\overset{\sim}{\mathsf{A}} WP_{\#}(\mathbb{Z}\widehat{\mathsf{I}}\mathbb{R}\mathbb{Z})$). It turns out $WP_{\#}(\mathbb{Z}\widehat{\mathsf{I}}\mathbb{R}\mathbb{Z}) \cong WP_{\#}(\mathbb{Z})\widehat{\mathsf{I}}\Gamma(\mathbb{R})$. Furthermore,

$$[\mathsf{WP}_{\#}(\mathbb{Z}) \land \Gamma(\mathsf{R})] \ \mathfrak{e} \ \mathsf{R}^{\$} \ \mathsf{t} \prod_{: \mathsf{IR}} \left(\mathsf{"} \ \frac{\mathsf{"}}{:^{\#}} \right)$$

Definition. $\Gamma \otimes WP_{\#}(\mathbb{Z})$ is a congruence subgroup of level R if $\Gamma(R) \otimes \Gamma$.

Definition.
$$\Gamma_{\mathbf{l}}(\mathbf{R}) \ \mathbf{ce} \left\{ \begin{pmatrix} \mathbf{+} & \mathbf{,} \\ - & \mathbf{.} \end{pmatrix} - \mathbf{WP}_{\mathbf{\#}}(\mathbb{Z}) \right\} with$$

 $\begin{pmatrix} \mathbf{+} & \mathbf{,} \\ - & \mathbf{.} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{\ddagger} & \mathbf{\ddagger} \\ \mathbf{!} & \mathbf{\ddagger} \end{pmatrix} \pmod{\mathbf{R}}.$
 $\Gamma_{\mathbf{"}}(\mathbf{R}) \ \mathbf{ce} \left\{ \begin{pmatrix} \mathbf{+} & \mathbf{,} \\ - & \mathbf{.} \end{pmatrix} - \mathbf{WP}_{\mathbf{\#}}(\mathbb{Z}) \right\} with$
 $\begin{pmatrix} \mathbf{+} & \mathbf{,} \\ - & \mathbf{.} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{"} & \mathbf{\ddagger} \\ \mathbf{!} & \mathbf{"} \end{pmatrix} \pmod{\mathbf{R}}.$

Further,

$$\Gamma(\mathbf{R}) \ \ \mathbb{C} \ \Gamma_{\mathbf{I}}(\mathbf{R}) \ \ \mathbb{C} \ \ \Gamma_{\mathbf{I}}(\mathbf{R}) \ \ \mathbb{C} \ \ \mathbb{WP}_{\#}(\mathbb{Z}).$$

$$\Gamma(\mathbf{R}) \ \underline{=} \ \ \Gamma_{\mathbf{I}}(\mathbf{R}) \ \ \text{and} \ \ \ \Gamma_{\mathbf{I}}(\mathbf{R}) \ \underline{=} \ \ \Gamma_{\mathbf{I}}(\mathbf{R}).$$

Lecture 2 (February 2, 2009) - Diamond Chapter 1.3-1.5

Definition. For $\gamma \propto \begin{pmatrix} + & \prime \\ - & \cdot \end{pmatrix} - WP_{\#}(\mathbb{Z})$, define the factor of automorphy $4(\gamma \beta >)$ for $\tau - \mathbb{H}$ by $4(\gamma \beta \tau) \approx -\tau$...

Definition. For **5** – \mathbb{Z} , the weight-k operator $[\gamma]_5$ on **0** Å \mathbb{H} Ä \mathbb{C}_4 is

 $\mathbf{0}([\gamma]_5)(\tau) \ \mathbf{e} \ \mathbf{4}(\gamma \mathbf{b} \tau)^{-5} \mathbf{0}(\gamma \tau).$

Definition. Let Γ be a congruent subgroup. We say **0** $\mathring{A} \boxplus \mathring{A} \mathbb{C}$ is weakly modular of weight **5** for Γ if

- (a) **0** is meromorphic, and
- (b) $\mathbf{0}[\gamma]_{\mathbf{5}} \mathbf{e} \mathbf{0} \mathbf{a} \gamma \Gamma$

Lemma. $a\gamma \beta \gamma^{W} - WP_{\#}(\mathbb{Z})\beta \tau - \mathbb{H},$

- (a) $4(\gamma \gamma^{W} \beta \tau) \approx 4(\gamma \beta \gamma^{W} \tau) \dagger 4(\gamma^{W} \beta \tau)$
- (b) $(\gamma\gamma^{w})(\tau)$ œ $\gamma(\gamma^{w}\tau)$
- (c) $[\gamma \gamma^{W}]_{5}$ œ $[\gamma]_{5}[\gamma^{W}]_{5}$
- (d) $\operatorname{Im}(\gamma \tau)$ ce $\operatorname{Im}(\tau) \mathbf{\hat{1}} |\mathbf{4}(\gamma \mathbf{\beta} \tau)|^{\#}$.

Definition. If Γ is a congruence subgroup $\mathbf{5} - \mathbb{Z}\mathbf{60} \ \mathbf{A} \boxplus \mathbf{A} \mathbb{C}$, then $\mathbf{0}$ is a modular form for Γ if (1) $\mathbf{0}$ is holomorphic, (2) $\mathbf{0}$ is weight- $\mathbf{5}$ invariant under Γ , and (3) $\mathbf{0}[\gamma]_5$ is holomorphic at for all $\gamma - \mathbf{WP}_{\#}(\mathbb{Z})$.

If +: \mathbf{ce} ! in all the Fourier expansions of (3), then we say **0** is a cusp form for Γ . Recall we defined

$$\mathcal{M}_5(\mathsf{WP}_{\texttt{\#}}(\mathbb{Z})) \xleftarrow{}{5}_{-\mathbb{Z}} \mathcal{M}_5(\mathsf{WP}_{\texttt{\#}}(\mathbb{Z})) \text{ and } \mathcal{S}(\mathsf{WP}_{\texttt{\#}}(\mathbb{Z})) \xleftarrow{}{5}_{-\mathbb{Z}} \mathcal{S}_5(\mathsf{WP}_{\texttt{\#}}(\mathbb{Z})).$$

We can write $WP_{\#}(\mathbb{Z}) \cong \bigcup_{4} \Gamma \alpha_{4}$ (a finite union), and $\mathbf{0}[\gamma \alpha_{4}] \cong \mathbf{0}[\alpha_{4}]$. Also, $\mathbf{0}[\gamma]_{5} \cong \mathbf{0}$.

§1.3 Complex Tori

Definition. A lattice is a subgroup of the form $\Lambda \oplus \omega_{\mathbb{T}} \mathbb{Z} \ \check{S} \ \omega_{\#} \mathbb{Z} \ \otimes \mathbb{C}$ such that $\{\omega_{\mathbb{T}} \mathsf{B} \omega_{\#}\}$ are linearly independent over \mathbb{R} , and we requires $\omega_{\mathbb{T}} \widehat{\mathsf{I}} \omega_{\#} - \mathbb{H}$.

Definition. A complex torus is a quotient of \mathbb{C} by a lattice, that is, $\mathbb{C}\hat{\mathbf{I}}\Lambda$.

Proposition. Let $\phi \models \mathbb{C}\widehat{1} \land \stackrel{\sim}{\to} \mathbb{C}\widehat{1} \land \stackrel{w}{\to} be a holomorphic map. Then b76, - <math>\mathbb{C}$ with $7 \land \S \land$, and $\psi(D \land) \oplus 7D$, \land^{w} . The map is invertible if and only if $7 \land \oplus \land^{w}$.

Corollary. If $\phi \models \mathbb{C} \uparrow \Lambda \stackrel{\sim}{\to} \mathbb{C} \uparrow \Lambda^{\blacksquare}$ is a holomorphic map between complex tori with

 $\phi(\mathbf{D} \quad \Lambda) \ \mathbf{ce} \ \mathbf{7} \mathbf{D} \quad , \quad \Lambda^{\mathrm{w}}\!,$

and $\mathbf{7}\Lambda \ \mathbf{\$} \ \Lambda$, then the following are equivalent

(a) ϕ is a group homomorphism.

(b) , $-\Lambda^{W}$, so $\phi(\mathbf{D} - \Lambda)$ œ $\mathbf{7D} - \Lambda^{W}$. (c) $\phi(\mathbf{!})$ œ $\mathbf{!}$.

In particular, there exists a holomorphic group isomorphism between $\mathbb{C}\hat{\mathbf{I}}\Lambda$ and $\mathbb{C}\hat{\mathbf{I}}\Lambda^{\mathsf{w}}$ if and only if there exists $\mathbf{7} - \mathbb{C}$ such that $\mathbf{7}\Lambda \mathbf{e} \Lambda^{\mathsf{w}}$.

Take **7** $\mathbf{ce} \frac{\mathbf{u}}{\omega_{\#}}$. Then $\frac{\mathbf{u}}{\omega_{\#}} \Lambda \mathbf{ce} \frac{\omega_{\mathbf{u}}}{\omega_{\#}} \mathbb{Z} \mathbf{\check{S}} \mathbb{Z} \mathbf{ce} \Lambda_{\tau}$, where we let Λ_{τ} be the lattice for $\frac{\omega_{\mathbf{u}}}{\omega_{\#}} \mathbb{Z} \mathbf{\check{S}} \mathbb{Z}$. Is it possible to get $\Lambda_{\tau} \mathbf{ce} \Lambda_{\tau}$? The answer will be yes: through an element of $\mathbb{WP}_{\#}(\mathbb{Z})$.

Definition. A nonzero holomorphic homomorphism between complex tori is called an isogeny.

Example. We define a multiplication-by-**[R]** map to be the isogeny:

 $[\mathbf{R}] \, \mathbf{\hat{A}} \, \mathbb{C} \, \mathbf{\hat{I}} \, \Lambda \, \mathbf{\ddot{R}} \, \mathbb{C} \, \mathbf{\hat{I}} \, \Lambda \, \text{ with } \, \mathbf{D} \, \Lambda \, \mathbf{\dot{E}} \, \mathbf{R} \, \mathbf{D} \, \Lambda.$

Note $\mathbf{R} \Lambda \mathbf{S} \Lambda$ so that it is indeed an isogeny. Then ker($[\mathbf{R}]$) $\mathbf{z} (\mathbb{Z} \mathbf{\hat{1}} \mathbf{8} \mathbb{Z})^{\#}$. [Ramin says Alina Cojocaru, along with many other people, have made a career of researching this kernel and the information it provides!]

Example. Let $\mathbf{R} - \mathbb{N}$ and let $\mathbf{G} \ \mathbf{S} \ \mathbf{I} \ [\mathbf{R}]$ be such that $\mathbf{G} \ \mathbf{z} \ \mathbb{Z} \ \mathbf{\hat{I}} \ \mathbf{R} \ \mathbb{Z}$, so $\mathbf{G} \ \mathbf{\hat{K}}$ A as lattices. Then we have a map

jx-7 (R)-(3i, 17:'3%:'01x)7:R-)(z3t1(7\$ (3n1x%))':\$-3m1x\$7':\$3a1x)7:R ''%-3r1(75)

(remember this comes from the Eisenstein series, **K**_%), and **1**_{\$}(Λ) **c** "%! $\sum_{\omega - \Lambda} \sqrt[w]{\frac{\pi}{\omega}}$.

If we let $\Delta \simeq 1_{\#}^{\$} \#(1_{\$}^{\#} \acute{A} !)$, then recall for elliptic curves of characteristic #, we have the Weierstrass normal form, $C^{\#} \simeq \%B^{\$} +B$, $(+B^{\$} \#(,\# \acute{A} !))$.

§1.5 - Modular curves and moduli spaces

We will call two complex tori equivalent, $\mathbb{C}\widehat{\mathbf{1}} \Lambda \mu \mathbb{C}\widehat{\mathbf{1}} \Lambda^{\mathsf{w}}$ if **b7** such that $\mathbf{7}\Lambda \mathbf{ce} \Lambda^{\mathsf{w}}$. Furthermore, we will call $\tau \mu \tau^{\mathsf{w}}$ equivalent $(\tau \mathbf{8} \tau^{\mathsf{w}} - \mathbb{H})$ if there is a $\gamma - \mathbf{WP}_{\#}(\mathbb{Z})$ such that $\tau \mathbf{ce} \gamma \tau^{\mathsf{w}}$. Our goal is to form an equivalence between the tori μ and the $\tau \mu$.

Definition. Let $\mathbf{R} - \mathbb{N}$. An enhanced elliptic curve for $\Gamma_{\mathbf{I}}(\mathbf{R})$ is an orded pair ($\mathbf{I} \ \mathbf{G}$) where \mathbf{I} is a complex torus and \mathbf{G} is a cyclic subgroup of order \mathbf{R} .

We say $(I \ BG) \mu (I \ BG^{W})$ (an equivalence relation) if there is an isomorphism such that $I \ A \ I^{W}$ and $G \ A \ G^{W}$. Denote $W_{!}(R) \ ce$ {enhanced elliptic curves for $\Gamma_{"}(R)$ } $\hat{I} \ \mu$.

Definition. Let $\mathbf{R} - \mathbb{N}$. An enhanced elliptic curve for $\Gamma_{\mathbf{u}}(\mathbf{R})$ is an orded pair $(\mathbf{I} \ \mathbf{\beta} \mathbf{T})$ where \mathbf{I} is a complex torus and \mathbf{T} is a point of order \mathbf{R} .

We say $(I \ BT) \mu (I \ BT)$ if there exists an isomorphism $I \ A I \ and T \ A T$. Denote $W_{-}(R)$ **ce** {enhanced elliptic curves for $\Gamma_{-}(R)$ } **î** μ .

Definition. Let $\mathbf{R} - \mathbb{N}$. An enhanced elliptic curve for $\Gamma(\mathbf{R})$ is an orded pair $(\mathbf{I} \, \mathbf{\beta}(\mathbf{T} \, \mathbf{\beta} \, \mathbf{U}))$ where \mathbf{I} is a complex torus and $\mathbf{T} \, \mathbf{\beta} \, \mathbf{U} - \mathbf{I} \, [\mathbf{R}]$ where $I_{\mathbf{R}}(\mathbf{T} \, \mathbf{\beta} \, \mathbf{U}) \, \mathbf{e}^{I^{\#\pi 3} \mathbf{\hat{I}} \mathbf{R}}$.

We say $(I \ B(T \ B U)) \mu (I \ B(T \ B U))$ if there exists an isomorphism $I \ A I \ B T \ A T \ B$ and $U \ A U^{W}$. Denote $W(\mathbf{R}) \ \mathbf{e}$ {enhanced elliptic curves for $\Gamma(\mathbf{R})$ } $\hat{\mathbf{I}} \mu$.

These critters, W₁BW_"B and W are called **moduli spaces**.

Let $\Gamma \otimes WP_{\#}(\mathbb{Z})$ be a congruence subgroup:

] (
$$\Gamma$$
) ³ Γ **Î** \mathbb{H} œ { Γ_{τ} **À** τ – \mathbb{H} } orbits.
]_!(**R**) ³ $\Gamma_{!}$ (**R**)**Î** \mathbb{H} **ß**]_"(**R**) ³ $\Gamma_{"}$ (**R**)**Î** \mathbb{H} , and] (**R**) œ Γ (**R**)**Î** \mathbb{H} .

Notation. We use brackets instead of parentheses in $[I \ BG]B[I \ BT]B$ and $[I \ B(TBU)]$ to represent the equivalence classes under the appropriate relation.

Theorem. (a) Let $W_{\mathbf{I}}(\mathbf{R}) \propto \left\{ \begin{bmatrix} \mathbf{I} & {}_{\tau} \mathbf{\beta} \mathbf{\beta} \frac{\mathbf{u}}{\mathbf{R}} & \Lambda_{\tau} \mathbf{\check{U}} \end{bmatrix} \mathbf{\check{A}} \tau - \mathbb{H} \right\}$. Then

(b) The moduli space for $\Gamma_1(N)$ is

$$S_1(N) = \{ [E_\tau, 1/N + \Lambda_\tau] : \tau \in \mathcal{H} \}.$$

Two points $[E_{\tau}, 1/N + \Lambda_{\tau}]$ and $[E_{\tau'}, 1/N + \Lambda_{\tau'}]$ are equal if and only if $\Gamma_1(N)\tau = \Gamma_1(N)\tau'$. Thus there is a bijection

$$\psi_1: S_1(N) \xrightarrow{\sim} Y_1(N), \qquad [\mathbf{C}/\Lambda_{\tau}, 1/N + \Lambda_{\tau}] \mapsto \Gamma_1(N)\tau.$$

(c) The moduli space for $\Gamma(N)$ is

$$S(N) = \{ [\mathbf{C}/\Lambda_{\tau}, (\tau/N + \Lambda_{\tau}, 1/N + \Lambda_{\tau})] : \tau \in \mathcal{H} \}.$$

Two points $[\mathbf{C}/\Lambda_{\tau}, (\tau/N + \Lambda_{\tau}, 1/N + \Lambda_{\tau})], [\mathbf{C}/\Lambda_{\tau'}, (\tau'/N + \Lambda_{\tau'}, 1/N + \Lambda_{\tau'})]$ are equal if and only if $\Gamma(N)\tau = \Gamma(N)\tau'$. Thus there is a bijection

 $\psi: \mathcal{S}(\mathfrak{I} \mathcal{S})^{(\underline{M})} \xrightarrow{\sim} \mathcal{I}(\mathfrak{I} \mathcal{S})^{(\underline{M})} = [\mathbb{V}/\mathcal{K}_{\tau}, (\mathfrak{I}/\mathcal{K} + \mathcal{M}_{\tau}, 1/N + \Lambda_{\tau})] \mapsto \Gamma(N)\tau.$

Lecture 5 (March 2, 2009) - Diamond Chapter 3.2

Let Z § C. Recall O À Z Ä © meromorphic on Z means it has a Laurent expansion

$$\mathbf{0}(\mathbf{D}) \propto \sum_{\mathbf{8} \approx \mathbf{7}} \mathbf{+}_{\mathbf{8}} (\mathbf{>} - \tau)^{\mathbf{8}}$$

for . I> in some disk about τ , where $+_8 - \mathbb{C}\mathbf{B} \mathbf{7} - \mathbb{Z}$.

Definition. The order of $\mathbf{0}$ at τ is

 $\nu_{\tau}(0)$ œ **7**

and when $\mathbf{0}$ $\mathbf{1}$, we say $\mathbf{e}_{\tau}(\mathbf{0})$ ce

Definition. A function $0 \ \mathbf{\hat{A}} \boxplus \mathbf{\ddot{R}} \mathbb{C}$ is an automorphic form of weight with respect to Γ if

(1) **0** is meromorphic on \mathbb{H} .

(2) $\mathbf{0}[\gamma]_{\mathbf{5}}$ ce $\mathbf{0}$ for all $\gamma - \Gamma$.

(3) **0** is meromorphic at the cusps of (i.e., $\mathbf{0}[\alpha]_5$ is meromorphic at for all $\alpha - WP_{\#}(\mathbb{Z})$).

Let = be a cusp of Γ , with = $-\mathbb{Q}$ { }. Let $\alpha - WP_{\#}(\mathbb{R})$ with $\alpha()$ $\mathfrak{e} = (with \alpha "(=) \mathfrak{e})$. Then $\alpha "\Gamma_{=}\alpha$ gives and so it is generated by $\# \begin{pmatrix} " & 2 \\ ! & " \end{pmatrix}$ for some positive integer 2.

We claim $\mathbf{0}[\alpha]_{\mathbf{5}}[\sigma]_{\mathbf{5}} \mathbf{\mathfrak{c}} \mathbf{0}[\alpha]_{\mathbf{5}}$ for any $\sigma - \alpha$ " $\Gamma_{=}\alpha$. Indeed,

$$\begin{array}{c} \mathbf{0}[\alpha]_{\mathbf{5}}[\sigma]_{\mathbf{5}} \stackrel{\mathbf{\alpha}}{=} \mathbf{0}[\alpha\sigma]_{\mathbf{5}}(\tau) \stackrel{\mathbf{\alpha}}{=} \mathbf{0}[\gamma\alpha]_{\mathbf{5}}(\tau) \stackrel{\mathbf{\alpha}}{=} \mathbf{4}(\gamma\alpha\mathbf{\beta}\tau) \stackrel{\mathbf{5}}{=} \mathbf{0}(\gamma\alpha(\tau)) \stackrel{\mathbf{5}}{=} \mathbf{0}(\gamma\alpha(\tau)) \stackrel{\mathbf{5}}{=} \mathbf{0}(\gamma\alpha(\tau)) \stackrel{\mathbf{5}}{=} \mathbf{0}[\gamma]_{\mathbf{P}}(\alpha(\tau)) \mathbf{4}(\alpha\mathbf{\beta}\tau) \stackrel{\mathbf{5}}{=} \mathbf{0}[\alpha]_{\mathbf{5}}(\tau). \end{array}$$

Hence, it is invariant under any element in that subgroup. For $\sigma \in ([1, 2])^{\beta}$ we get

0[
$$\alpha$$
]₅(τ **2**) **œ 0**[α]₅(**"** $\sigma(\tau)$) **œ 0**[α]₅(τ),

where $\mathbf{0}[\alpha]_{\mathbf{5}}$ has period **2** when **5** is even.

Define $\varphi(\mathbf{1}) \mathbf{\alpha} (\mathbf{1} \mathbf{\mathscr{m}} \mathbf{\varepsilon} ")(;)$ for $\mathbf{1} \mathbf{\alpha} \mathbf{0} [\alpha]_{\mathbf{5}}$.

Theorem. $\varphi(\mathbf{1})$ is meromorphic if and only if $\mathbf{1}(\mathbf{D})$ is meromorphic.

Proof. We know there exists a Laurent expansion for ; in the punctured disk,

$$\varphi(;) \underset{8 \times 8}{\text{e}} +_{8};^{8}.$$

Now, $\mathbf{0}[\alpha]_{\mathbf{5}}$ meromorphic at means $\varphi(\mathbf{;})$ is meromorphic at !. If **5** is odd, and $\mathbf{M} - \Gamma$ then $\mathbf{0}(\mathbf{D}) \approx \mathbf{0}(\mathbf{D})$. If $\mathbf{M} \hat{\mathbf{A}} \Gamma$, then $\mathbf{0}[\alpha]_{"}$ has period #**2** and ; $\mathbf{e} / \pi^{3\mathbf{D}\hat{\mathbf{1}}\mathbf{2}}$. [etc look at pg 74]. \Box

Recall $\mathbf{E} \overset{\mathbf{e}}{\mathbf{5}} \bigoplus_{\mathbf{Z}} \mathbf{E}_{\mathbf{5}}(\Gamma)$. Now, $\mathbf{0} - \mathbf{E}_{\mathbf{5}}(\Gamma)$ is not well-defined on $\mathbf{N}(\Gamma)$ if for $\gamma \tau \mathbf{\beta} \gamma^{\mathbf{W}} \tau$ in $\Gamma \tau$, $\mathbf{0}(\gamma \tau) \overset{\mathbf{e}}{\mathbf{c}} \mathbf{4}(\gamma \mathbf{\beta} \tau)^{\mathbf{5}} \mathbf{0}(\tau) \overset{\mathbf{f}}{\mathbf{A}} \mathbf{4}(\gamma^{\mathbf{W}} \mathbf{\beta} \tau)^{\mathbf{5}} \mathbf{0}(\tau) \overset{\mathbf{e}}{\mathbf{c}} \mathbf{0}(\gamma^{\mathbf{W}} \tau)$. If $\mathbf{5} \overset{\mathbf{e}}{\mathbf{c}} \mathbf{1}$, then $\mathbf{0}$ is γ -invariant and so is well-defined on $\mathbf{N} \mathbf{D} \Gamma$).

 $\mathbf{E}_{\mathbf{I}}(\Gamma)$ is the field of meromorphic functions on $\mathbf{N}(\Gamma)$, denoted by $\mathbb{C}(\mathbf{N}(\Gamma))$.

Example. Let $4 \mathfrak{G}^{\mathsf{w}}(\#) \frac{\mathbf{1}_{\Delta}^{\mathsf{g}}}{\Delta}$ where the numerator is in $\mathcal{M}_{\mathsf{w}}(\mathsf{WP}_{\#}(\mathbb{R}))$ (a modular form) and Δ is in $\mathcal{S}_{\mathsf{w}}(\mathsf{WP}_{\#}(\mathbb{R}))$ (a cusp form). Then if $4 - \mathsf{E}_{!}(\mathsf{WP}_{\#}(\mathbb{R}))$ and 4 has a pole at , it makes sense to think of $4 \mathsf{A} \setminus (\mathsf{w}) \overset{\mathsf{H}}{\to} \mathfrak{S}$.

Fact. $\mathbb{C}(4) \cong \mathsf{E}_!(\mathsf{WP}_{\#}(\mathbb{Z})).$

Fact. If $\mathbf{0} - \mathbf{E}_{\mathbf{5}}(\Gamma)$, then if $\mathbf{0} \land \mathbf{1}$, then $\mathbf{E}_{\mathbf{5}}(\Gamma) \simeq \mathbf{E}_{\mathbf{1}}(\Gamma)$.

Consider

Y

$$\mathbf{\tilde{A}}\ \pi(\mathbf{Y})\ \mathbf{\tilde{A}}\ \mathbf{Z}$$

where **Y** § \mathbb{H}^{\dagger} $\beta \pi$ (**Y**) § (Γ) β and **Z** § \mathbb{C} . Let $\pi(\tau) - (\Gamma)$ be not a cusp. Recalling that $0 (>) \cong \sum_{8 \otimes 7} +_8 (> \tau)^8$, we can think of local coordinates as

>
$$\tau \stackrel{Q}{E} (> \tau)^2$$
 ce;²

so we can write $0(>) \times \sum_{80c7} +_8; ^{8\hat{1}2}$. Then

$$u_{\pi(\tau)}(\mathbf{0}) \ \mathbf{e} \ \frac{\mathbf{7}}{\mathbf{2}} \ \mathbf{e} \ \frac{\nu_{\tau}(\mathbf{0})}{\mathbf{2}}.$$

If $\pi(=)$ is a cusp, consider the cases **5** even/odd. If $\mathbb{M} - \Gamma$, then

Also, define

$$\eta(\tau)$$
 œ ;_{#%} (" ;⁸) _{8œ}" (" ;⁸)

where ; $_{\#\%} \times /^{\#\pi 3D\hat{1}\#\%}$.

Proposition. Let $5\beta R - \mathbb{Z}$ such that 5(R ") œ #%. Define $\varphi_5(\tau)$ œ $\eta(\tau)^5 \eta(R\tau)^5$. If $W_5(\Gamma_3(R))$ \acute{A} ! for 3 œ ! β " then $W_5(\Gamma_3(R))$ œ $\mathbb{C} \varphi_5$. If 5 œ "# and R œ ", then $W_{"\#}(WP_{\#}(\mathbb{Z}))$ œ $\mathbb{C} \Delta$, where $\Delta(\tau)$ œ $(\#\pi)^{"\#}\eta(\tau)^{\#\%}$.

Differentials

Let **Z** § \mathbb{C} with **Z** open. We define the meromorphic differentials of degree 8 on **Z** to be $\Omega^{\mathbb{C}8}(\mathbb{Z}) \cong \{\mathbf{0}(;)(.;)^8 | \mathbf{0} \text{ is meromorphic on } \mathbb{Z} \},\$

where ; is the local variable on \mathbf{Z} . Let

$$\Omega(\mathbf{Z}) \stackrel{\text{\tiny{CEB}}}{\mathbf{8}} - \mathbb{N}^{\Omega^{\mathbf{CEB}}}(\mathbf{Z})$$

Let $(.;)^{8}(.;)^{7} \approx (.;)^{8} {}^{7}$. Let $\varphi \land Z_{"} \dddot{A} Z_{\#}$ be such that φ is holomorphic $\varphi^{\ddagger} \land \Omega^{\complement 8}(Z_{\#}) \dddot{A} \Omega^{\complement 8}(Z_{"})$

defined by

$$\mathbf{O}(;\mathbf{D})(.;\mathbf{D})^{\mathbf{8}} \stackrel{\mathbf{}}{\models} \mathbf{O}(\varphi(;\cdot))(.\varphi(;\cdot))^{\mathbf{8}} \stackrel{\mathbf{}_{\mathbf{C}}}{\bullet} \mathbf{O}(\varphi(;\cdot))(\varphi^{\mathbf{W}}(;\cdot))^{\mathbf{8}}(.;\cdot)^{\mathbf{8}}.$$

Let \mathbf{N} be a Riemann surface, and let $\{\mathbf{Y}_4\}_{4-\mathbb{N}}$ be neighborhoods of \mathbf{N} , and $\{\mathbf{Z}_4\}_{4-\tau}$ neighborhoods of \mathbb{C} . Let the φ_4 be the coordinate charts. Define a differential ω on \mathbf{N} to be a tuple $\omega \mathbf{e} (\omega_4)_{4-\mathbb{N}} - \prod \Omega^{\mathbf{E}\mathbf{B}}(\mathbf{Z}_4)$ that is compatible with respect to the transition maps.

Now, we want $\omega - \Omega^{\mathbb{C}8}(\mathbb{N}(\Gamma))$ to pullback to a differential on $\mathbb{H}\mathbf{B}$

$$\mathbb{H}^{\ddagger} \tilde{\mathbf{A}} \mathbf{N}(\Gamma) \tilde{\mathbf{A}} \mathbb{C}.$$

Let $\mathbf{Y}_{4}^{W} \mathbf{ce} \mathbf{Y}_{4} \quad \mathbb{H} \text{ and } \mathbf{Z}_{4}^{W} \mathbf{ce} (\varphi \% \pi) (\mathbf{Y}_{4}^{W}). \text{ Recall } \omega \mid \mathbf{Z}_{4^{W}} - \Omega^{\mathbb{C}8} (\mathbf{Z}_{4}^{W}). \text{ Define}$

$$\pi^{\ddagger}(\omega)\mathbf{I}_{\mathbf{Y}_{4}^{\texttt{u}}} \stackrel{\textbf{3}}{\rightarrow} (\varphi \ \textbf{\%}\pi)^{\ddagger} \left(\omega \ \mathbf{I}_{\mathbf{Z}_{4}^{\texttt{u}}}\right) \ \textbf{@ 0} (\tau) (.>)^{\textbf{8}}$$

on Y_4^{U} . We claim these local patches glue together because of compatibility.

We define a global differential on \mathbb{H} to be $\mathbf{0}(\tau)(.\tau)^{\mathbf{8}}$. We then claim that **0** is an automorphic form of weight #8.

$$\mathbf{0}(\tau)(\boldsymbol{.} \tau)^{\mathbf{8}} \times \mathbf{0}(\gamma(\boldsymbol{\flat}))(\boldsymbol{.} (\gamma\tau))^{\mathbf{8}} \times \mathbf{0}(\gamma(\tau))(\gamma^{\mathbf{W}}(\tau))^{\mathbf{8}}(\boldsymbol{.} \tau)^{\mathbf{8}}.$$

We saw last time that $\gamma^{W}(\tau) \mathbf{c} \mathbf{4}(\gamma \mathbf{\beta} \tau)^{\#}$. Hence, the above equals

$$\mathbf{0}(\gamma(\tau))\big(\mathbf{4}(\gamma\mathbf{B}\tau)^{~~\mathbf{\#8}}\big)(\textbf{.}\,\tau)^{\mathbf{8}} \ \mathbf{0} \ \mathbf{0}(\tau)(\textbf{.}\,\tau)^{\mathbf{8}}$$

so it is weakly modular of weight #8. Next, we need to show that $\mathbf{0}[\alpha]_{\#8}$ is meromorphic at for all $\alpha - \mathbf{WP}_{\#}(\mathbb{Z})$. As before, let = $\mathbf{ee} \alpha($). Let $\rho(\mathbf{D}) \mathbf{ee} / ^{\#\pi 3\mathbf{D}\hat{\mathbf{1}}_2} \mathbf{ee}$; Since $\omega - \Omega^{\mathbf{CE8}}(\mathbf{N}(\Gamma))$ is meromorphic on $\mathbf{N}(\Gamma)$, when we restrict to \mathbf{Z} , we can $\omega \mathbf{I}_{\mathbf{Z}} \mathbf{ee} \mathbf{1}(;)(.;)^{\mathbf{8}}$, where **1** is meromorphic (particularly, at !). Then

$$\pi^{\dagger}(\omega)\mathbf{I}_{\mathbf{Y}^{u}} \ \mathbf{e} \ (\rho \ \mathbf{\%\delta})^{\dagger}(\mathbf{1}(;)(.;)^{8}\mathbf{I}_{\mathbf{Z}}) \ \mathbf{e} \ \mathbf{\$}(\rho \ \mathbf{\%\delta}(\tau)) \left((\varphi \ \mathbf{\%\delta})^{\mathbf{w}}(\tau)\right)^{8}(.\tau)^{8} \\ \mathbf{e} \ \mathbf{\$}\left(/^{\#\pi 3\delta(\tau)\widehat{\mathbf{1}}\mathbf{2}}\right) \left(/^{\#\pi 3\delta(s)\widehat{\mathbf{1}}\mathbf{2}}\right)^{8} \left(\frac{\#\pi 3}{\mathbf{2}}\right)^{8} (\delta^{\mathbf{w}}(\tau))^{8}(.\tau)^{8} \\ \mathbf{e} \ \mathbf{\$}\left(/^{\#\pi 3\delta(\tau)\widehat{\mathbf{1}}\mathbf{2}}\right) \left(/^{\#\pi 3\delta(s)\widehat{\mathbf{1}}\mathbf{2}}\right)^{8} \left(\frac{\#\pi 3}{\mathbf{2}}\right)^{8} \mathbf{4}(\delta\mathbf{B}\tau)^{-\#8}(.\tau)^{8} \\ \mathbf{e} \ \mathbf{0}(\tau) (.\tau)^{8}$$

where we defined $\mathbf{0}(\tau)$ in the last equality. Now we just need to show $\mathbf{0}(\tau)$ is meromorphic at :

 $0(\tau) \otimes 1[\delta]_{\#8}(;)(\frac{\#\pi 3}{2})^8; 8$, where ; $e / {}^{\#\pi 3\tau \hat{1}2}.$

Then $0[\alpha]_{\#8}(\tau) \approx 1[\alpha'']_{\#8}[\alpha]_{\#8}(\tau) \dagger \left(\frac{\#\pi 3}{2}\right)^8$; ⁸ $\approx 1(\tau) \left(\frac{\#\pi 3}{2}\right)^8$; ⁸, which is mero-morphic at ; **e**! because of this statement.

Hence, given $\omega - \Omega^{\mathbb{C}8}(\mathbb{N}(\Gamma))$, the function **0** defining the pullback is an automorphic form of weight **#8**. The converse is also true: given an automorphic form of weight **#8**, we can construct a meromorphic differential on $\mathbb{N}(\Gamma)$ of degree **8**.

Theorem 3.3.1. Let **5** – \mathbb{N} be even and let Γ be a congruence subgroup of $WP_{\#}(\mathbb{Z})$. The map

$$\omega \, \grave{\mathsf{A}} \, \mathcal{A}_{\mathbf{5}}(\Gamma) \, \, \dddot{\mathsf{A}} \, \, \Omega^{\mathrm{CES}\, \widehat{\mathbf{1}}\, \mathrm{\#}}(\mathbf{N}(\Gamma)) \, \, \textit{with} \, \, \mathbf{0} \, \, \grave{\mathbf{E}} \, \left(\omega_{4}\right)_{\mathbf{4}-\mathbf{N}}$$

where (ω_4) pulls back to $\mathbf{0}(\tau)(\boldsymbol{\cdot} \tau)^{\mathbf{5}\hat{\mathbf{1}}\#} - \Omega^{\mathbf{E}\mathbf{5}\hat{\mathbf{1}}\#}(\mathbb{H})$ is an isomorphism of complex vector spaces.

Lecture 6 (March 9, 2009) - Diamond Chapter 3.4-3.6

Riemann-Roch Theorem

Let \mathbf{N} be a compact Riemann surface.

Definition. A divisor on \mathbf{N} is a finite sum $\sum_{B-\mathbf{N}} \mathbf{8}_B \mathbf{B}$ with $\mathbf{8}_B - \mathbb{Z}$ where all but finitely

many are **!**.

We have a homomorphism deg \grave{A} Div(\aleph) $\ddot{A} \mathbb{Z}$ with deg($\sum B_B B$) $\mathfrak{E} \sum B_B$. This gives a partial order: $\sum B_B B \sum B_B^* B$ if $B_B B_B^* B^*_B B$. Denote $\mathbb{C}(\aleph)$ the meromorphic functions on \aleph . Then $\mathbf{0} - \mathbb{C}(\aleph)^{\ddagger}$, so define div($\mathbf{0}$) $\mathfrak{E} \sum \nu_B(\mathbf{0}) \chi$. Denote {div($\mathbf{0}$) $\mathbf{10} - \mathbb{C}(\aleph)^{\ddagger}$ } by Div^j. Notice

(1) $\operatorname{div}(\mathbf{0}_{"}\mathbf{0}_{\#}) \cong \operatorname{div}(\mathbf{0}_{"}) \quad \operatorname{div}(\mathbf{0}_{\#}) \quad \text{and (2) } \operatorname{deg}(\operatorname{div}(\mathbf{0})) \cong \mathbf{!}.$

(2) follows because deg(0) $\bigotimes \sum_{B=0} \mathbb{I}(C)$ mult_B(0), so deg(0) $\bigotimes \sum_{B=0} \mathbb{I}(P)$ mult_B(0), and deg(0) $\bigotimes \sum_{B=0} \mathbb{I}(C)$ mult_B(0). So

$$\operatorname{div}(\boldsymbol{0}) \underset{B-\boldsymbol{0}^{"}(\boldsymbol{I})}{\overset{}{\underset{}}} \operatorname{mult}_{B}(\boldsymbol{0}) \underset{B-\boldsymbol{0}^{"}(\boldsymbol{-})}{\overset{}{\underset{}}} \operatorname{mult}_{B}(\boldsymbol{0}) \text{ ce } \boldsymbol{I}.$$

Define Div[!] to be the divisors (H - Div(N)) of degree $H \times !$. Because of what we just showed, $Div^{j} \otimes Div^{!}$, so then want to look at $Div^{!}\hat{1}Div^{j}$.

Definition. The linear space of a divisor is

$$\mathbf{P}(\mathbf{H}) \mathbf{\boldsymbol{\omega}} \mathbf{!} \quad \{\mathbf{0} - \mathbb{C}(\mathbf{N})^{\mathsf{T}} \mathbf{I} \operatorname{div}(\mathbf{0}) \quad \mathbf{H} \quad \mathbf{!}\}.$$

The dimension of this space is denoted $\mathbf{j}(\mathbf{H})$. It is a fact that dim $\mathbf{j}(\mathbf{H})$

Given $\omega - \Omega^{\complement}(\mathbf{N})$ a non-zero differential **8**-form on \mathbf{N} , then for all $\mathbf{B} - \mathbf{N}$, we have a local representation $\omega_{\mathbf{B}} \simeq \mathbf{0}_{\mathbf{B}}(;)(.;)^{\mathbf{8}}$, where ; is the local coordinate about \mathbf{N} . We will define div $(\omega) \stackrel{\mathbf{3}}{\rightarrow} \sum \nu_{\mathbf{I}}(\mathbf{0}_{\mathbf{B}})\mathbf{B}$ (with $\nu_{\mathbf{B}}(\omega)$).

Exercise. Why is $\nu_{\mathbf{l}}$ cofinite of nonzeros?

Notice div($\omega_{"}\omega_{\#}$) **ce** div($\omega_{"}$) div($\omega_{\#}$).

Definition. If $\lambda - \Omega''(\mathbf{N})$, then div (λ) is a canonical divisor.

Theorem. Let \wedge be a compact Riemann surface of genus 1. Let $\operatorname{div}(\lambda)$ be a canonical divisor on \wedge . Then for any divisor $H - \operatorname{Div}^{!}(\wedge)$,

 $\mathbf{j}(\mathbf{H})$ ce deg(\mathbf{H}) 1 " $\mathbf{j}(\operatorname{div}(\lambda) = \mathbf{H})$.

Corollary 3.4.2 [in Diamond].

Note if $\mathbf{0} - \Delta_{\#}(\Gamma)$ is nonzero, then the associated $\omega(\mathbf{0}) - \Gamma''(\mathbf{N}(\Gamma))$ will have canonical divisor div(ω), so has degree #1 #. For 5 even, $\omega^{5\hat{1}\#}$ will have a divisor of degree $\mathbf{5}(\mathbf{1} \ \mathbf{0})$. Since $\mathcal{A}_{\mathbf{5}}(\Gamma)$ is $\mathbb{C}(\mathbf{N})\mathbf{0}$ for any nonzero 0 of weight 5. The same holds for $\Omega^{\mathbb{C}5\hat{1}\#}(\mathbf{N}(\Gamma))$. So all $\omega - \Omega^{\mathbb{C}5\hat{1}\#}(\mathbf{N}(\Gamma))$ has degree $\mathbf{5}(\mathbf{1} \ \mathbf{0})$.

Dimension formulas

If **5** is even, and **0** – $\mathcal{A}_{\mathbf{5}}(\Gamma)$ is nonzero, we have

$$u_{\pi(au)}() =
u_{ au}()$$

for τ a noncusp of period **2**. Further, $\nu_{\pi(=)}(\mathbf{0}) \stackrel{\mathbf{3}}{\rightarrow} \nu_{=}(\mathbf{0})$ for = a cusp.

Define (formally)

div(**0**) ce
$$\sum \nu_{\mathbf{B}}(\mathbf{0})$$
 B.

What does it mean to be holomorphic? This exactly means div(1) !. Then

$$\begin{aligned} \mathcal{M}_5(\Gamma) & \textup{ce} \left\{ \mathbf{1} - \mathcal{A}_5(\Gamma) \, | \, \operatorname{div}(\mathbf{1}) \quad \mathbf{!} \right\} & \textup{ce} \left\{ \mathbf{0}_1 \mathbf{0} - \mathcal{A}_5 \, | \, \operatorname{div}(\mathbf{0}_1 \mathbf{0}) \quad \mathbf{!} \right\} \\ & \left\{ \mathbf{0}_1 - \mathbb{C}(\mathbf{N}(\Gamma)) \, | \, \operatorname{div}(\mathbf{0}_1) \quad \operatorname{div}(\mathbf{0}) \quad \mathbf{!} \right\}. \end{aligned}$$

Definition. $\lfloor \operatorname{div} \mathbf{0} \rfloor \cong \sum \lfloor \nu_{\mathbf{B}}(\mathbf{0}) \rfloor \mathbf{B}.$

We know

$$\operatorname{div}(\mathbf{0}_{!}) \quad \operatorname{div}(\mathbf{0}) \quad ! \quad \mathbf{i} \quad \operatorname{div}(\mathbf{0}_{!}) \quad \lfloor \operatorname{div}(\mathbf{0}) \rfloor \quad !$$

So

 $\mathcal{M}_{\boldsymbol{5}}(\Gamma) \boldsymbol{\mathsf{Z}} \boldsymbol{\mathsf{P}}(\lfloor \operatorname{div} \boldsymbol{\mathsf{0}} \rfloor).$

Hence, dim($\mathcal{M}_{\mathbf{5}}(\Gamma)$) **ce** $\mathbf{j}(\lfloor \operatorname{div} \mathbf{0} \rfloor)$.

Claim. Let $\omega - \Omega^{\text{(E5)}\#}(\mathbf{N}(\Gamma))$ whose pullback is $\mathbf{0}(\tau)(.\tau)^{\mathbf{5}^{1}\#}$. Write $\{\mathbf{B}_{\#\mathbf{B}}\}$ $\{\mathbf{B}_{\#\mathbf{B}}\}$ $\{\mathbf{B}_{\#\mathbf{B}}\}$ $\{\mathbf{B}_{\#\mathbf{B}}\}$ of period # \mathbf{B} , and cusps, respectively, with sizes $\varepsilon_{\#}\mathbf{B}\varepsilon_{\#}\mathbf{B}\varepsilon_{\#}$, respectively. Define

div $(.\tau)$ ce $\sum \frac{\#}{\#} \mathbf{B}_{\#\mathbf{B}} = \sum \frac{\#}{\$} \mathbf{B}_{\$\mathbf{B}} = \sum \mathbf{B}_3.$

From 3.3, recall $\mathbf{H}_{\mathbf{I}}(\omega) \cong \nu_{\pi(\tau)}(\mathbf{0}) = \frac{5}{\#} \begin{pmatrix} \mathbf{u} & \frac{\pi}{2} \end{pmatrix}$ with $\tau - \mathbb{H}$ and ω is associated to $\mathbf{0}$. Then

$$\lfloor \operatorname{div}(\mathbf{0}) \rfloor$$
 œ div (ω) $\sum \lfloor \frac{5}{\#} \rfloor B_{\#\mathfrak{B}}$ $\sum \lfloor \frac{5}{\$} \rfloor B_{\$\mathfrak{B}}$ $\sum \frac{2}{\#} B_{3}$

So

$$\begin{split} & \deg(\lfloor \operatorname{div} \mathbf{0} \rfloor) \ \mathbf{ce} \ \mathbf{5}(\mathbf{1} \quad ") \quad \lfloor \frac{\mathbf{5}}{\mathbf{\%}} \rfloor \varepsilon_{\#} \quad \lfloor \frac{\mathbf{5}}{\mathbf{\$}} \rfloor \varepsilon_{\$} \quad \lfloor \frac{\mathbf{5}}{\mathbf{\$}} \rfloor \varepsilon_{\$} \\ & \quad \frac{\mathbf{5}}{\#} (\#\mathbf{1} \quad \#) \quad \frac{\mathbf{5} \quad \#}{\mathbf{\%}} \varepsilon_{\#} \quad \frac{\mathbf{5} \quad \#}{\mathbf{\$}} \varepsilon_{\$} \quad \frac{\mathbf{5}}{\#} \varepsilon_{\$} \quad \frac{\mathbf{5}}{\#} \varepsilon_{\$} \\ & \quad \mathbf{ce} \ \#\mathbf{1} \quad \# \quad \frac{(\mathbf{5} \quad \#)}{\#} (\#\mathbf{1} \quad \# \quad \varepsilon_{\#} \mathbf{\hat{I}} \# \ \# \varepsilon_{\$} \mathbf{\hat{I}} \$ \quad \varepsilon =) \quad \varepsilon \quad \#\mathbf{1} \quad \# \quad / \\ & \quad \#\mathbf{1} \quad \#. \end{split}$$

For $S_5(\Gamma)$, we have the same things, but we use $\lfloor \text{div } \mathbf{0} - \sum \mathbf{B}_3 \rfloor$. Then

$$\begin{array}{rll} \operatorname{div}(\mathbf{0}_1) & \operatorname{div}(\mathbf{0}) & \sum \mathbf{B}_3 & \mathbf{!} \\ \text{yields } \operatorname{deg}(\lfloor \operatorname{div}(\mathbf{0}) & \sum \mathbf{B}_3 \rfloor) & \mathbf{\mathfrak{e}} & \operatorname{deg}(\lfloor \operatorname{div} \mathbf{0} \rfloor) & \varepsilon & . & \text{So for 5} & \text{\%}, \\ & & \operatorname{dim}(\mathcal{S}_5(\Gamma)) & \mathbf{\mathfrak{e}} & \mathbf{j}(\lfloor \operatorname{div} \mathbf{0} \rfloor) & \varepsilon & . \end{array}$$

If **5** is nonpositive, we want $\mathcal{M}_{!}(\Gamma)$.

Lecture 7 (March 30, 2009) - Diamond Chapter 4

We define the Eisenstein space of weight 5

$$\Sigma_{\mathbf{5}}(\Gamma) \mathbf{\mathfrak{C}} \mathcal{M}_{\mathbf{5}}(\Gamma) \mathbf{\widehat{1}} \mathcal{S}_{\mathbf{5}}(\Gamma).$$

We will be computing the bases of these Eisenstein spaces, which are Eisenstein series. In this talk, we will only consider **5** \$. Recall

$$\mathsf{K}_{\mathsf{5}}(\tau) \mathop{\mathrm{ce}}_{(\mathsf{-B}.) - \mathbb{Z}^{\#} \mathsf{I}\{!\}}^{\mathsf{W}} \frac{\mathsf{"}}{(\mathsf{-}\tau_{-}.)^{\mathsf{5}}},$$

and the normalized Eisenstein series

$$\mathbf{I}_{\mathbf{5}}(\tau) \mathbf{\mathfrak{e}} \mathbf{K}_{\mathbf{5}}(\tau) \mathbf{\hat{I}} \mathbf{\#} \zeta(\mathbf{5}).$$

Now notice we can write

$$\begin{split} \textbf{K}_{\textbf{5}}(\tau) & \underset{(\textbf{-}\textbf{B}.\) - \mathbb{Z}^{\texttt{#}}\textbf{I}\{!\}}{\overset{\texttt{"}}{[-\tau \ .\)^5}} \overset{\texttt{"}}{\overset{\texttt{e}}{\text{oe}}} \sum_{\substack{\textbf{8} \textbf{c}^{\texttt{"}} \ (-\textbf{B}.\) \\ \text{gcd}(-\textbf{B}.\) \text{ oe} \ \textbf{8}}} \frac{\overset{\texttt{"}}{(-\tau \ .\)^5}}{\overset{\texttt{"}}{(-\tau \ .\)^5}} \overset{\texttt{"}}{\overset{\texttt{e}}{\text{oe}}} \sum_{\substack{\textbf{0} \\ \text{gcd}(-\textbf{B}.\) \text{ oe} \ \textbf{8}}} \frac{\overset{\texttt{"}}{(-\tau \ .\)^5}}{\overset{\texttt{gcd}(-\textbf{B}.\) \text{ oe} \ \textbf{8}}} \overset{\texttt{"}}{\overset{\texttt{gcd}(-\textbf{B}.\) \text{ oe} \ \textbf{8}}} \overset{\texttt{"}}{\overset{\texttt{gcd}(-\textbf{B}.\) \text{ oe} \ \textbf{7}}} \overset{\texttt{"}}{\overset{\texttt{gcd}(-\textbf{B}.\) \text{ oe} \ \textbf{7}}} \overset{\texttt{"}}{\overset{\texttt{gcd}(-\textbf{B}.\) \text{ oe} \ \textbf{8}}} \overset{\texttt{"}}{\overset{\texttt{gcd}(-\textbf{B}.\) \text{ oe} \ \textbf{7}}} \overset{\texttt{"}}{\overset{\texttt{gcd}(-\textbf{B}.\) \text{ oe} \ \textbf{7}}}$$

Hence,

$$\begin{array}{c} \mathbf{I}_{\mathbf{5}}(\tau) \, \operatorname{ce} \, \frac{"}{\#} \sum\limits_{\substack{(-\mathbf{f}. \,) \\ \gcd(-\mathbf{f}. \,) \, \operatorname{ce}}} \frac{"}{(-\tau \ . \,)^5}. \end{array}$$

Define

$$\mathsf{T} \quad \mathsf{ce} \left\{ \begin{pmatrix} \mathsf{"} & \mathsf{8} \\ \mathsf{!} & \mathsf{"} \end{pmatrix} \mathsf{A} \mathsf{8} - \mathbb{Z} \right\}.$$

We claim that we can rewrite the above as

$$\mathbf{I}_{5}(\tau)$$
 ce $\frac{"}{\#} \sum_{\gamma - \mathsf{T} \ \mathsf{IWP}_{\theta}(\mathbb{Z})} \mathbf{1}(\gamma \mathbf{B} \psi)^{-5}.$

Then

$$\begin{pmatrix} \mathbf{"} & \mathbf{8} \\ \mathbf{!} & \mathbf{"} \end{pmatrix} \begin{pmatrix} \mathbf{+} & \mathbf{,} \\ \mathbf{-} & \mathbf{.} \end{pmatrix} \mathbf{e} \begin{pmatrix} \mathbf{+} & \mathbf{8} \mathbf{-} & \mathbf{,} & \mathbf{8} \mathbf{.} \\ \mathbf{-} & \mathbf{.} \end{pmatrix}.$$

It is easy to show that **I** $_{\mathbf{5}}(\tau)$ is a weakly modular form of weight **5**.

We claim that

$$\dim(\mathbf{I}_{5}(\Gamma)) \ \mathbf{ce} \begin{cases} \Sigma & \mathbf{5} & \text{\% and even} \\ \Sigma^{\text{reg}} & \mathbf{5} & \mathbf{\$} \text{ is odd and} & \mathbf{M} \ \mathbf{\hat{A}} \ \Gamma \\ \Sigma & ^{\text{reg}} \mathbf{\widehat{I}} \ \mathbf{\#} & \mathbf{5} \ \mathbf{ce} \ \mathbf{\#} \\ \Sigma^{\text{reg}} \mathbf{\widehat{I}} \ \mathbf{\#} & \mathbf{5} \ \mathbf{ce} \ \mathbf{\#} \\ \mathbf{M} \ \mathbf{\hat{A}} \ \Gamma \\ \mathbf{H} & \mathbf{5} \ \mathbf{ce} \ \mathbf{H} \\ \mathbf{H} & \mathbf{I} \ \mathbf{I} \ \mathbf{I} \\ \mathbf{I} & \mathbf{I} \ \mathbf{I}$$

Now let us look at the Eisenstein series for $\Gamma(\mathbf{R})$ (5 \$). First, take $\mathbf{R} - \mathbb{Z}$ and let $\overline{\mathbf{e}} - (\mathbb{Z} \mathbf{\hat{I}} \mathbf{R} \mathbb{Z})^{\#}$ a row vector of order \mathbf{R} . Let

$$\delta \mathbf{ce} \begin{pmatrix} \mathbf{+} & \mathbf{,} \\ \mathbf{-e} & \mathbf{.e} \end{pmatrix},$$

where $(-{}_{\mathscr{B}}{}_{\mathscr{B}})$ is a lift of \mathfrak{P} to $\mathbb{Z}^{\#}$. We define ε_{R} to be $\frac{"}{\#}$ if R \mathfrak{C} " ${}^{\sharp}{}_{\#}$ and " otherwise. Then define

$$\begin{array}{c} \mathbf{I} \overset{@}{_{\mathbf{5}}}(\tau) \ \mathbf{0} \ \varepsilon_{\mathbf{R}} & \sum_{\substack{(-\mathbf{f}.\) \ \mathbf{0} \ \mathbf{0} \ (\mathrm{mod} \ \mathbf{R}) \\ \mathrm{gcd}(-\mathbf{f}.\) \ \mathbf{0} \ \mathbf{0}}} (-\tau \ \mathbf{.} \) \end{array} \right)^{\mathbf{5}} .$$

We claim that $I \overset{\overline{e}}{}_{5}(\tau) \overset{\varepsilon}{}_{\mathsf{R}} \sum_{\gamma - (\mathsf{T} \quad \Gamma(\mathsf{R})) \overset{\circ}{I} \Gamma(\mathsf{R}) \delta} 4(\gamma \mathfrak{b} \tau)^{-5}.$

Proof. Let's write
$$\gamma - \Gamma(\mathbf{R})$$
 as $\begin{pmatrix} \mathbf{R} < & \mathbf{R} = \\ \mathbf{R} > & \mathbf{R} ? & \mathbf{R} \end{pmatrix}$. Then
 $\gamma \delta \mathbf{e} \left(\underbrace{\mathbf{R} > + & (\mathbf{R} ? & \mathbf{R}) - \mathbf{e}}_{-} & \underbrace{\mathbf{R} > , & (\mathbf{R} > & \mathbf{R}) \cdot \mathbf{e}}_{-} \right)$

Notice indeed $gcd(-\beta.)$ ce ".

 $\text{Proposition.} \ \ \textit{For all} \ \gamma - \mathbb{WP}_{\#}(\mathbb{Z}) \ \ , \ (\mathbf{I} \ \underline{{}}_{\mathbf{5}}^{\underline{w}}[\gamma])(\tau) \ \mathbf{ce} \ \mathbf{I} \ \underline{{}}_{\mathbf{5}}^{\underline{w}\gamma}(\gamma(\tau)).$

Proof. We have

$$\begin{aligned} 4(\gamma \boldsymbol{\beta} \tau) & {}^{5} \dagger \mathbf{I} \mathbf{I} \, {}^{\underline{\boldsymbol{\varpi}}}_{5}(\gamma(\tau)) \, \mathbf{ce} \, 4(\gamma \boldsymbol{\beta} \tau) \, {}^{5} \dagger \varepsilon_{\mathbf{R}} & \sum_{\gamma^{\underline{\boldsymbol{u}}} - (\mathbf{T} - \Gamma(\mathbf{R})) \mathbf{I} \Gamma(\mathbf{R}) \delta} 4(\gamma^{\underline{\boldsymbol{u}}} \boldsymbol{\beta} \gamma(\tau)) \, {}^{5} \\ & \mathbf{ce} \, \varepsilon_{\mathbf{R}} & \sum_{\gamma^{\underline{\boldsymbol{u}}} - (\mathbf{T} - \Gamma(\mathbf{R})) \mathbf{I} \Gamma(\mathbf{R}) \delta} 4(\gamma^{\underline{\boldsymbol{u}}} \gamma \boldsymbol{\beta} \tau) \, {}^{5} \\ & \mathbf{ce} \, \varepsilon_{\mathbf{R}} & \sum_{\gamma^{\underline{\boldsymbol{u}}} - (\mathbf{T} - \Gamma(\mathbf{R})) \mathbf{I} \Gamma(\mathbf{R}) \delta} 4(\gamma^{\underline{\boldsymbol{u}}} \boldsymbol{\beta} \tau) \, {}^{5} \\ & \mathbf{ce} \, \varepsilon_{\mathbf{R}} & \sum_{\gamma^{\underline{\boldsymbol{u}}} - (\mathbf{T} - \Gamma(\mathbf{R})) \mathbf{I} \Gamma(\mathbf{R}) \delta \gamma} 4(\gamma^{\underline{\boldsymbol{u}}} \boldsymbol{\beta} \tau) \, {}^{5} \\ & \mathbf{ce} \, \varepsilon_{\mathbf{R}} \, \mathbf{I} \, {}^{\underline{\boldsymbol{\varpi}} \gamma}_{5}(\tau). \end{aligned}$$

(where we write

$$\mathbf{4}(\gamma^{\mathbf{v}}\!\mathbf{\beta}\gamma(\tau)) \, \mathbf{ce} \, \mathbf{4}(\gamma^{\mathbf{v}}\!\gamma\mathbf{\beta}) \mathbf{\widehat{1}4}(\gamma\mathbf{\beta}\tau).)$$

Corollary. I ${}^{\textcircled{e}}_{5}(\tau) - \mathcal{M}_{5}(\Gamma(\mathbf{R})).$

Proof. It is holomorphic on \mathbb{H} , and for all $\gamma - \Gamma(\mathbf{R})$, each γ reduces to $\mathbb{M} \mod \mathbf{R}$. So by our proposition above, $\overline{\mathbf{e}\gamma} \propto \overline{\mathbf{e}}$. Hence, $\mathbf{I}_{5}^{\mathbb{E}}$ is weight-5 invariant with respect to $\Gamma(\mathbf{R})$. Fourier coefficients satisfy $|\mathbf{+}_8| \ \mathbf{\ddot{Y}} - \mathbf{\check{s}}$ where $-\mathbf{i}\mathbf{s}$ are positive constants. \Box

Now we can create modular forms for any congruence subgroup of level \mathbf{R} , namely

$$\mathbf{I} \underset{\mathbf{5}\mathbf{6}\mathbf{\Gamma}}{\overset{@}{=}}(\tau) \underset{\boldsymbol{\gamma}_{\mathbf{4}}-\boldsymbol{\Gamma}(\mathbf{R}) \mathbf{\dot{I}}\mathbf{\Gamma}}{\overset{@}{=}} \mathbf{I} \underset{\mathbf{5}}{\overset{@}{=}} [\boldsymbol{\gamma}_{\mathbf{4}}]_{\mathbf{5}}(\tau).$$

We can show that

$$\lim_{\mathrm{Im}(\tau)\ddot{\mathbf{A}}} \mathbf{I}_{\mathbf{5}}^{\underline{\mathbf{0}}}(\tau) \mathbf{ce} \begin{cases} (\ \ \mathbf{m} \ \ \mathbf{n})^{\mathbf{5}} & \text{if } \overline{\mathbf{0}} \mathbf{ce} \ \mathbf{m} \ \overline{(\mathbf{1}\mathbf{\beta}^{\mathbf{n}})}, \text{ unless } \mathbf{5} \text{ is odd and } \mathbf{R} \text{ is } \mathbf{n} \text{ or } \mathbf{\#} \\ \mathbf{1} & \text{otherwise.} \end{cases}$$

In this exceptional case, $\mathbb{N} - \Gamma(\mathbb{R})$, so that dim $(\Sigma_5(\Gamma(\mathbb{R}))) \cong \mathbb{I}$. Hence, $\Sigma_5(\Gamma(\mathbb{R}))$ has a trivial basis. Now, \mathbb{I}_5° is nonvanishing at if $\mathbb{O} \oplus \mathbb{I}$. $\overline{(\mathbb{I}\mathbb{S}^n)}$, and vanishes at otherwise.

What about for any $@ \mathbf{e} \ \overline{(-\beta.)}$? Take any $@ \mathbf{e} \ \overline{(-\beta.)} - (\mathbb{Z} \mathbf{\hat{I}} \mathbf{R} \mathbb{Z})^{\#}$ of order \mathbf{R} with its corresponding

$$\delta \mathbf{ce} \begin{pmatrix} \mathbf{+} & \mathbf{\prime} \\ \mathbf{-} & \mathbf{\cdot} \end{pmatrix}.$$

Take any cusp = $\mathbf{e} + \mathbf{v} \mathbf{\hat{l}} - \mathbf{v} - \mathbf{Q} \{ \}$ such that some matrix

$$\alpha \ \mathbf{Ce} \left(\begin{array}{cc} \mathbf{+}^{\mathtt{W}} & \mathbf{,}^{\mathtt{W}} \\ \mathbf{-}^{\mathtt{W}} & \mathbf{,}^{\mathtt{W}} \end{array} \right)$$

$$(!\beta")\begin{pmatrix} + & \prime \\ - & \cdot \end{pmatrix}$$
 ce $(-\beta \cdot)$ ce @.

So $\begin{bmatrix} \overline{\mathfrak{G}} & \alpha \end{bmatrix}_{5}$ is non-vanishing at only when $\overline{(\mathfrak{I}\mathfrak{G}'')\delta\alpha} \, \mathfrak{C}_{m} \, \overline{(\mathfrak{I}\mathfrak{G}'')}$ if and only if $\overline{(\mathfrak{I}\mathfrak{G}'')\delta} \, \mathfrak{C}_{m}$

$$\begin{pmatrix} \mathbf{+}^{\mathsf{W}} \\ \mathbf{-}^{\mathsf{W}} \end{pmatrix} \stackrel{\boldsymbol{\leftarrow}}{} \mathscr{'} \begin{pmatrix} \mathbf{\cdot} \\ \mathbf{-} \end{pmatrix} \pmod{\mathsf{R}}$$

if and only if $\Gamma(\mathbf{R}) = \mathbf{e} \Gamma(\mathbf{R})(.\mathbf{\hat{l}})$. So $\mathbf{I}_{5}^{\mathbb{e}}$ is nonvanishing at $\Gamma(\mathbf{R})(.\mathbf{\hat{l}})$ and vanishes at all other cusps. If **5** is even and **R** #, pick a set of vectors

$$\{\overline{\boldsymbol{\varpi}}\} \in \{\overline{(-\boldsymbol{\beta}.)} \text{ s.t. the quotients } . \widehat{\boldsymbol{l}} - \text{ represent all cusps at } \Gamma(\boldsymbol{R})\}.$$

By the above, the $\{\mathbf{I}_{5}^{\mathbb{C}}\}\$ are linearly independent. This set has Σ elements (which is the dimension of $\Sigma_{5}(\Gamma(\mathbf{R}))$), so it is a basis.