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Lecture 1 (January 26, 2009) - Diamond Chapter 1.1-1.3

§1.1 in Diamond

Modular group

 Start with

WP œ − Q À +. 	 ,- œ "
+ ,
- .# #� � � �œ Œ ™ ™ .

Let  and . Then we define an action on  by# ™ 7 ‚ ‚ ‚− WP − œ ∪ ∞s s
#� � e f

# 7† œ + �,
- �.
7
7

.

If , then  and . If , then .  We then let- Á ! œ È ∞ > œ ∞ È - œ ! > œ ∞ È ∞7 	. +
- .

‡ ‚ 7œ > − l � !e f� �Im .

If  and , then , because7 ‡ # ™ #7 ‡− − WP −#� �
Im� �#7 œ Im� �

k k
7

7- �. #

(so that if Im  then Im ). Note here that  give the same action. It's� � � �#7 7 #� ! � ! „
simple to check that if , then , and if , thenM œ M † œ ß − WPˆ ‰ � �" !

! "
w

#7 7 # # ™

� � � �## 7 # # 7w wœ  (so this is indeed an action).

Definition.   Let . A meromorphic function  is weakly modular of weight5 − 0 À Ä™ ‡ ‚

5 0 œ - � . 0 a œ if  � � � � � �#7 7 7 #5 ˆ ‰ � �+ ,
- . #− WP ß −™ 7 ‡.

 From the first exercise in Diamond, we can check  is generated byWP#� �™
7 œ = œ

" " ! 	"
! " " !Œ  Œ  and .

Then it turns out  and .7 7 7È � " È 	 "
7

 To check that a meromorphic function is weakly modular of weight , one must only5
verify that  and .0 � " œ 0 0 	"Î œ 0� � � � � � � �7 7 7 7 75

 To proceed further, we first have to define the notion of a function being holo-
morphic at .  If  is weakly modular of weight  with , let∞ 0 5 0 � " œ 0� � � �7 7

H œ ; − À ; % "e fk k‚  be the open unit disc

and  the punctured open unit disc. Then the map  is define onH œ H Ï ! È /w # 3e f 7 1 7

‡ ™ ‚Ä H 1 À H Äw w and is holomorphic and -periodic. Define  by

1 ; œ 0 ; Î # 3� � � �� � � �log .1

Note that . If  is holomorphic on , then  is holomorphic on . So0 œ 1 / 0 1 H� � � �7 ‡# 3> w1

1 ; œ + ; ; − H� � �
8−

8
8 w

™

  (for ).
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Definition.   We say  is holomorphic at  if the corresponding function  can be0 ∞ 1

extended to a holomorphic function on , .H 0 œ + /� � �7
8−

8
# 38

™

1 7

Note that to show a weakly holomorphic function of weight , call it , is holomorphic at5 0
∞ is equivalent to showing that

lim
Im� �7 Ä∞

0� �7
is finite or bounded. Holly points out this is along  that goes up on the imaginaryany path
axis (so we just need to find an upper bound).

Definition.   Let . A function  is a modular form of weight  if5 − 0 À Ä 5™ ‡ ‚

  is holomorphic on ,(1)  0 ‡

  is weakly modular of weight ,(2)  0 5

  is holomorphic at .(3)  0 ∞

The set of modular forms of weight  is actually a -vector space, written .5 WP‚ ` ™5 #� �� �
Define

` ™ ` ™5 # 5 #� � � �� � � �9WP œ WP
5 − ™

which is a graded ring.

Examples.  (1) The zero function a modular form for all weights." Ÿ

(2) Constant functions are modular forms for weight .œ !

Definition.   Let  be even. The Eisenstein series5 � #

K œ5
w

-ß. −

"

- �.
� � �7

� � � �
™

7
#

5 ,

where the prime denotes summing over .� � � �e f-ß . − Ï !ß !™#

 Naturally,  is holomorphic on  (Exercise 1.1.4(c)). We can compute that it isK5� �7 7

indeed weakly modular of weight . If 5 −# ˆ ‰ � �+ ,
- . #− WP ™ , then

K œ œ - � . œ - � . K5 5
w 5 w 5

- ß. - ß.

" "

- �. - +�-. � - ,�..
� � � � � � � �� �#7 7 7 7

� � � �ˆ ‰ c dˆ ‰ � � � �
w w w w

w w+ �,
- �.

5 5w w w w7
7

7
,

since

� � � �Œ - ß . œ - + � -. ß - , � ..
+ ,
- .

w w w w w w .

Finally,  is holomorphic at  since it is bounded as Im  (duh, because theK ∞ Ä ∞5� � � �7 7
terms are ). Then the Fourier series of  will be [page 5 of the book]"

- �. 5� �7
5 K � �7

K œ # 5 � 8 ;5 5	"
# # 3
5	" x

8œ"

∞
8� � � � � ��7 ' 5

� �� �1
5

,
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where . We then have the normalized Eisenstein series55	"
7 l 8ß 7�!

5	"� � �8 œ 7

K
# 5 5

5� �� �7' œ I >� �.
Then  has dimension , and . Further,` ™ 7 7 ` ™) # % ) 5 #

#� � � � � � � �� � � �WP " I ß I − WP

5 5 5 5( $ $ $
3œ"

8	"� � � � � � � ��8 œ 8 � "#> 3 8 	 3 .

Definition.   A cusp form of weight  is a modular form of weight  if in the Fourier5 5
expansion its leading coefficient is . The set of cusp forms are denoted+ œ !!

f ™ f ™ f ™5 # # 5 #5−� � � � � �� � � � � �9WP WP œ WP, and .™

 It's easy to see that  is a vector subspace of .f ™ ` ™5 # 5 #� � � �� � � �WP WP

Example.   Let , and  with1 œ '!K ß 1 œ "%!K œ 1 	 #(1# % $ ' #
$ #

$� � � � � � � � � � � � � �7 7 7 7 ? 7 7 7

? 7 f ™� � � �� �− WP"# # .

§1.2 Congruent Subgroups

Definition.   A principal congruence subgroup of level  is given byR − �

> ™� � � �œ Œ  Œ  Œ R œ − WP À ´
+ , + , " !
- . - . ! "#  ,mod R

where the reduction is coefficient-wise in the matrix.mod  R

 Note that  and  (with . It> ™ > ™ ™ ™ ™� � � � � � � � � � � �" œ WP R – WP WP Ä WP ÎR# # # #

turns out WP ÎR z WP Î# #� � � �™ ™ ™ >� �R . Furthermore,

c d� � � � # Š ‹WP À R œ R † " 	 % ∞#
$

: l R

"
:™ > # .

Definition.   .> ™© WP R#� � is a congruence subgroup of level  if > >� �R ©

Definition.    > ™! #� � � �œ Œ R œ − WP
+ ,
- .

with

Œ  Œ  � �+ , ‡ ‡
- . ! ‡

´ Rmod .

> ™" #� � � �œ Œ R œ − WP
+ ,
- .

 with

Œ  Œ  � �+ , " ‡
- . ! "

´ Rmod .

Further,

> > > ™� � � � � � � �R © R © R © WP" ! # .

> > > >� � � � � � � �R R R R– –" " !  and   .
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Lecture 2 (February 2, 2009) - Diamond Chapter 1.3-1.5

Definition.   For , define the factor of automorphy  for# ™ #œ − WP 4 ß >
+ ,
- .Œ  � � � �#

7 ‡ # 7 7− 4 ß œ - � . by .� �
Definition.   For , the weight-k operator  on  is5 − 0 À Ä™ # ‡ ‚c d5 4

0 œ 4 ß 0� �� � � � � �c d# 7 # 7 #75
	5 .

Definition.   Let  be a congruent subgroup. We say  is weakly modular of> ‡ ‚0 À Ä
weight  for  if5 >

 (a)   is meromorphic, and0

 (b)   0 œ 0 a −c d# # >5

Lemma.   ,a ß − WP ß −# # ™ 7 ‡w
#� �

 (a)  4 ß œ 4 ß † 4 ß� � � � � �## 7 # # 7 # 7w w w

 (b) � �� � � �## 7 # # 7w wœ

 (c) c d c d c d## # #w w
5 5 5œ

 (d) Im Im .� � � � k k� �#7 7 # 7œ Î 4 ß #

Definition.   If  is a congruence subgroup , then  is a modular form> ™ ‡ ‚ß 5 − ß 0 À Ä 0
for  if (1)  is holomorphic, (2)  is weight-  invariant under , and (3)  is> > #0 0 5 0 c d5
holomorphic at  for all .∞ − WP# ™#� �
 If  in all the Fourier expansions of (3), then we say is a cusp form for .+ œ ! 0! >
Recall we defined

` ™ ` ™ f ™ f ™5 # 5 # # 5 #5−� � � � � � � �� � � � � � � �9 9WP œ WP WP œ WP
5 − ™

  and  .™

We can write  (a finite union), and . Also, .WP œ 0 œ 0 0 œ 0# 4 4 44 5� � c d c d c d-™ >α #α α #

§1.3 Complex Tori

Definition.   A lattice is a subgroup of the form  such that A = ™ = ™ ‚ = =œ Š © ß" # " #e f
are linearly independent over , and we requires .‘ = = ‡" #Î −

Definition.   A complex torus is a quotient of  by a lattice, that is, .‚ ‚ AÎ

Proposition.   Let  be a holomorphic map. Then  with9 ‚ A ‚ A ‚À Î Ä Î b7ß , −w

7 § D � œ 7D � , � 7 œA A < A A A A, and . The map is invertible if and only if .� � w w

Corollary.   If  is a holomorphic map between complex tori with9 ‚ A ‚ AÀ Î Ä Î w

9 A A� �D � œ 7D � , � w,

and , then the following are equivalent7 §A A

  is a group homomorphism.(a)  9
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 , so .(b) , − A 9 A Aw w� �D � œ 7D �

 (c) .9� �! œ !

In particular, there exists a holomorphic group isomorphism between  and  if‚ A ‚ AÎ Î w

and only if there exists  such that .7 − 7 œ‚ A Aw

 Take . Then , where we let  be the lattice for7 œ œ Š œ" "
= = =

=
7 7

# # #

"A ™ ™ A A
=
= 7 7

"

#
w™ ™ A AŠ œ. Is it possible to get ? The answer will be yes: through an element of

WP#� �™ .

Definition.   A nonzero holomorphic homomorphism between complex tori is called an
isogeny.

Example.   We define a multiplication-by-  map to be the isogeny:c dR

c dR À Î Ä Î D � È RD �‚ A ‚ A A A   with   .

Note  so that it is indeed an isogeny. Then ker . [Ramin saysR § R z Î8A A ™ ™� � � �c d #

Alina Cojocaru, along with many other people, have made a career of researching this
kernel and the information it provides!]

Example.   Let  and let  be such that , so as lattices.R − G § I R G z ÎR G ¨� ™ ™ Ac d
Then we have a map
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  (remember this comes from the Eisenstein series, ), and .K 1 œ "%!% $
w

−

"� � �A
= A

='

 If we let , then recall for elliptic curves of characteristic , we? œ 1 	 #(1 Á ! ##
$ #

$

 have the Weierstrass normal form,  ( ).C œ %B 	 +B 	 , +B 	 #(, Á !# $ $ #

§1.5 - Modular curves and moduli spaces

 We will call two complex tori equivalent,  if  such that .‚ A ‚ A A AÎ µ Î b7 7 œw w

Furthermore, we will call  equivalent ( ) if there is a  such that7 7 7 7 ‡ # ™µ ß − − WPw w
#� �

7 #7 7œ µ µw. Our goal is to form an equivalence between the tori  and the .

Definition.   Let . An enhanced elliptic curve for  is an orded pair R − R Iß G� >!� � � �
where  is a complex torus and  is a cyclic subgroup of order .I G R

We say  (an equivalence relation) if there is an isomorphism such that� � � �Iß G µ I ß Gw w

I Ä I G Ä G W R œ R Î µµ µw w
! " and . Denote enhanced elliptic curves for .� � e f� �>

Definition.   Let . An enhanced elliptic curve for  is an orded pair R − R Iß T� >"� � � �
where  is a complex torus and  is a point of order .I T R

We say  if there exists an isomorphism  and . Denote� � � �Iß T µ I ß T I Ä I T Ä Tµ µw w w w

W R œ R Î µ" "� � e f� �enhanced elliptic curves for .>

Definition.   Let . An enhanced elliptic curve for  is an orded pairR − R� >� �
� � c d � �� �Iß T ß U I T ß U − I R / T ß U œ / where  is a complex torus and  where .R

# 3ÎR1

We say  if there exists an isomorphism � � � �� � � �Iß T ß U µ I ß T ß U I Ä I ß T Ä T ßµ µw w w w w

and . Denote enhanced elliptic curves for .U Ä U W R œ R Î µµ w � � e f� �>

These critters,  and  are called .W ß W ß W! " moduli spaces

Let  be a congruence subgroup:> ™© WP#� �
] ³ Î œ À −� � e f> > ‡ > 7 ‡7  orbits.

] R ³ R Î ß ] R ³ R Î ] R œ R Î! ! " "� � � � � � � � � � � �> ‡ > ‡ > ‡    ,    and .

Notation.   We use brackets instead of parentheses in  and  toc d c d c d� �Iß G ß Iß T ß Iß T ß U
represent the equivalence classes under the appropriate relation.

Theorem.  (a) Let . ThenW R œ I ß Ø � Ù À −!
"
R� � ˜ ™ ‘7 7A 7 ‡
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Lecture 5 (March 2, 2009) - Diamond Chapter 3.2

Let . Recall  meromorphic on  means it has a Laurent expansionZ § 0 À Z Ä Zs‚ ‚

0 D œ + > 	� � � ��
8œ7

∞

8
87

for  in some disk about , where .. l > + − ß 7 −7 ‚ ™8

Definition.   The order of  at  is0 7

/7 � �0 œ 7

and when , we say .0 ´ ! @ 0 œ ∞7 � �
Definition.   A function  is an automorphic form of weight with respect to  if0 À Ä‡ ‚ >

(1) 0  is meromorphic on .‡

(2) 0 œ 0 −c d# # >5   for all .

(3) 0 ∞ 0 ∞ is meromorphic at the cusps of  (i.e.,  is meromorphic at  for allc dα 5

α ™− WP#� �).
Let  be a cusp of , with . Let  with  (with= = − ∪ ∞ − WP ∞ œ => � α ‘ αe f � � � �#

α α > α	" 	"
=� � Œ = œ ∞ ∞ „

" 2
! "

). Then  gixes  and so it is generated by  for some

positive integer .2

We claim  for any . Indeed,0 œ 0 −c d c d c dα 5 α 5 α > α5 5 5
	"

=
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0 œ 0 œ 0 œ 4 ß 0c d c d c d � � c d � � � � � �� �α 5 α5 7 #α 7 #α 7 #α 75 5 5 5
	5

   .œ 4 ß 4 ß 0 œ 0 4 ß œ 0� � � � � � c d � � � � c d � �� � � � � �# α 7 α 7 #α 7 # α 7 α 7 α 7	5 	5 	5
P 5

Hence, it is invariant under any element in that subgroup. For we get5 œ „ ßˆ ‰" 2
! "

0 � 2 œ 0 „ œ 0c d � � c d � � c d � �� �α 7 α 5 7 α 75 5 5 ,

where  has period  when  is even.0 2 5c dα 5

Define  for .: & α� � � �� � c d1 œ 1 ‰ ; 1 œ 0	"
5

Theorem.   :� �1  is meromorphic if and only if  is meromorphic.1 D� �
Proof.   We know there exists a Laurent expansion for  in the punctured disk,;

:� � �; œ + ;
8œ	∞

∞

8
8.

Now,  meromorphic at  means  is meromorphic at . If  is odd, and 0 ∞ ; ! 5 	M −c d � �α : >5

then . If , then  has period  and . [etc look at pg0 D œ 	0 D 	M Â 0 #2 ; œ /� � � � c d> α "
3DÎ21

74]. �

Recall . Now,  is not well-defined on  if for E œ E 0 − E \ ß
5 −
9 � � � � � �
™

> > > #7 # 75 5
w

in , .  If , then  is -invariant>7 #7 # 7 7 # 7 7 # 7 #0 œ 4 ß 0 Á 4 ß 0 œ 0 5 œ ! 0� � � � � � � � � � � �5 5w w

and so is well-defined on ).\Ð>

E \ \!� � � � � �� �> > ‚ > is the field of meromorphic functions on , denoted by .

Example.   Let  where the numerator is in  (a modular form)4 œ "(#) WP
1

"# #
#
$

?
` ‘� �� �

and  is in  (a cusp form). Then if  and  has a pole at ,? f ‘ ‘"# # ! #� � � �� � � �WP 4 − E WP 4 ∞

it makes sense to think of .4 À \ " Ä s� � ‚

Fact.   .‚ ™� � � �� �4 œ E WP! #

Fact.   If , then if , then .0 − E 0 Á ! E œ E5 5 !� � � � � �> > >

Consider

Y Ä Y Ä Z
1
1

:� �
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where  and . Let  be not a cusp. RecallingY § ß Y § \ ß Z § − \‡ 1 > ‚ 1 7 >‡ � � � � � � � �
that , we can think of local coordinates as0 > œ + > 	� � � ��

8œ7
∞ 8

8 7

> 	 È > 	 œ ;7 7
3 � �2 2

so we can write . Then0 > œ + ;� � �
8œ7
∞

8
8Î2

/1 7
/� � � �� �0 œ œ7

2 2
07 .

If  is a cusp, consider the cases  even/odd. If , then1 >� �= 5 	M −

α > α α	"
= œ Ø „ Ùß ∞ œ =

" 2
! "Œ  � � , and

/
α > α

/
1

/

� �
� �

=
7
#

0
#

	"
=

=

� �
Ú
ÛÜ

Œ 
� �

0 œ œ
œ Ø	 Ù 5

" 2
! "

0

= if  and  is odd.

otherwise.

Also, define

( 7� � � �#œ ; " 	 ;#%
8œ"

∞
8

where .; œ /#%
# 3DÎ#%1

Proposition.   Let  such that . Define .5ß R − 5 R � " œ #% œ R™ : 7 ( 7 ( 7�
5

5 5� � � � � � � �
If  for  then . If  and , thenW R Á ! 3 œ !ß " W R œ 5 œ "# R œ "5 3 5 3 5� � � �� � � �> > ‚:

W WP œ œ #"# #
"# #%� � � � � � � �� �™ ‚? ? 7 1 ( 7, where .

Differentials

Let  with  open. We define the meromorphic differentials of degree  on  to beZ § Z 8 Z‚

HŒ8 8� � e f� � � �Z œ 0 ; .; l 0 Z is meromorphic on ,

where  is the local variable on . Let; Z

H H
�

� � � �9Z œ Z
8 −

Œ8

Let . Let  be such that is holomorphic� � � � � �.; .; œ .; À Z Ä Z8 7 8�7
" #: :

: H H‡ Œ8 Œ8
# "À Z Ä Z� � � �

defined by

0 ;D .;D È 0 ; . ; œ 0 ; ; .;� �� � � �� � � �� � � �� � � � � � � �8 8 8 8
" " " " "

w: : : : .

Let  be a Riemann surface, and let  be neighborhoods of , and \ Y \ Ze f e f4 44−N 4−7

neighborhoods of . Let the  be the coordinate charts. Define a differential  on  to‚ : =4 \
be a tuple  that is compatible with respect to the transition= = Hœ − Z� � � �#4 44−N

Œ8

maps.

Now, we want  to pullback to a differential on = H > ‡− \ ßŒ8� �� �
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‡ > ‚
1 :

‡ Ä \ Ä� � .

Let  and . Recall . DefineY œ Y ∩ Z œ ‰ Y l Z − Z4 4 4 4
w w w Œ8 w

4 4‡ : 1 = H� �ˆ ‰ ˆ ‰w

1 = : 1 = 7‡
Y Z

‡ 8� � � � � �� �Š ‹l ³ ‰ l œ 0 .>
4 4
w w

on . We claim these local patches glue together because of compatibility.Y4
w

We define a global differential on  to be . We then  that  is an‡ 7 70 . 0� �� �8 claim
automorphic form of weight .#8

0 . œ 0 > . œ 0 .� �� � � �� � � �� � � �� � � � � � � �7 7 # #7 # 7 # 7 78 8 8 8w .

We saw last time that . Hence, the above equals# 7 # 7w 	#� � � �œ 4 ß

0 4 ß . œ 0 .� � � � � � � �� �� � ˆ ‰# 7 # 7 7 7 7	#8 8 8

so it is weakly modular of weight . Next, we need to show that  is meromorphic#8 0 c dα #8

at  for all . As before, let . Let . Since∞ − WP = œ ∞ D œ / œ ;α ™ α 3#
# 3DÎ2� � � � � � 1

= H > >− \ \ ZŒ8� � � �� �  is meromorphic on , when we restrict to , we can
=l œ 1 ; .;Z

8� �� � , where . Then1 ! is meromorphic (particularly, at )

 1 = 3 $ 3 $ 7 : $ 7 7‡
Y Z

‡ 8 w 88� � � � � � � � � � � � � �� �� � � � ˆ ‰l œ ‰ 1 ; .; l œ 1 ‰ ‰ .sw

   œ 1 / / .sˆ ‰ˆ ‰ ˆ ‰ � � � �� �# 3 Î2 # 3 > Î2 w8 # 3
2

8 8 81 $ 7 1 $ 1� � � � $ 7 7

   œ 1 / / 4 .sˆ ‰ˆ ‰ ˆ ‰ � � � �# 3 Î2 # 3 > Î2 8 # 3
2

8 	#8 81 $ 7 1 $ 1� � � � $ 7ß 7

   œ 0 .� � � �7 7 8

where we defined  in the last equality. Now we just need to show  is mero-0 0� � � �7 7
morphic at :∞

0 œ 1 ; ; ; œ /� � c d � �ˆ ‰7 $ #8
# 3
2

8 8 # 3 Î21 1 7, where .

Then , which is mero-morphic0 œ 1 ; † ; œ 1 ; ;c d � � c d c d � � � �ˆ ‰ ˆ ‰α 7 α α#8 #8 #8
	" 8 8# 3 # 3

2 2

8 81 1

at  because of .; œ ! this statement

Hence, given , the function  defining the pullback is an auto-= H >− \ 0Œ8� �� �
morphic form of weight . The converse is also true: given an automorphic form of#8
weight , we can construct a meromorphic differential on  of degree .#8 \ 8� �>
Theorem 3.3.1.   Let  be even and let be a congruence subgroup of . The5 − WP� > ™#� �
map

= T > H > =À Ä \ 0 È5 4
Œ5Î#

4−N� � � � � �� �   with  

where  pulls back to  is an isomorphism of complex vector� � � �� � � �= 7 7 H ‡4
5Î# Œ5Î#0 . −

spaces.

Lecture 6 (March 9, 2009) - Diamond Chapter 3.4-3.6
Riemann-Roch Theorem
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Let  be a compact Riemann surface.\

Definition.  A divisor on  is a finite sum  with  where all but finitely\ 8 B 8 −�
B−\

B B ™

many are .!

We have a homomorphism deg Div  with deg . This gives aÀ \ Ä 8 B œ 8� � � �� �™ B B

partial order:  if . Denote  the meromorphic functions� � � �8 B � 8 B 8 � 8 aB \B BB B
w w ‚

on . Then , so define div . Denote div  by\ 0 − \ 0 œ 0 0 l 0 − \‚ / ; ‚� � � � � � e f� � � � �‡ ‡
B

Div . Noticej

 (1) div div div      and (2) deg div .� � � � � � � �� �0 0 œ 0 � 0 0 œ !" # " #

(2) follows because deg  mult , so deg  mult , and� � � � � � � �� �0 œ 0 0 œ 0B−0 C B−0 !B B	" 	"� � � �
deg mult . So� � � ��0 œ 0B−0 ∞ B	"� �

div mult mult .� � � � � �� �0 œ 0 	 0 œ !
B−0 ! B−0 ∞

B B
	" 	"� � � �

Define Div  to be the divisors ( Div ) of degree .  Because of what we just! H − \ H œ !� �
showed, Div Div , so then want to look at Div Div .j ! ! j© Î

Definition.   The linear space of a divisor is

P H œ ! ∪ 0 − \ l� � e f� �‚ ‡ div� �0 � H � ! .

The dimension of this space is denoted . It is a fact that dim .j H j H % ∞� � � �
Given  a non-zero differential -form on , then for all , we have= H− \ 8 \ B − \Œ8� �

a local representation , where  is the local coordinate about . We will=B Bœ 0 ; \� �� �; .; 8

define div (with ).� � � � � ��= / / =³ 0 B! B B

Exercise.   Why is  cofinite of nonzeros?/!

Notice div div div .� � � � � �= = = =" # " #œ �

Definition.   divIf , then  is a canonical divisor.- H− \"� � � �-
Theorem.   div  Let  be a compact Riemann surface of genus . Let be a canonical\ 1 � �-
divisor on . Then for any divisor \ H − Div ,!� �\

j H œ H 	 1 � " � j 	 H� � � � � �� �deg div .-

Corollary 3.4.2 [in Diamond].

Note if  is nonzero, then the associated  will have canonical0 − 0 − \? > = > >#
"� � � � � �� �

divisor div , so has degree . For  even,  will have a divisor of degree� �= =#1 	 # 5 5Î#

5 1 	 " \ 0 0 5� � � � � �. Since  is  for any nonzero  of weight . The same holds forT > ‚5

H > = H >Œ5Î# Œ5Î#� � � � � �� � � �\ − \ 5 1 	 ". So all  has degree .

Dimension formulas

If  is even, and  is nonzero, we have5 0 − T >5� �
/ /1 7 7� �� � � �
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for  a noncusp of period . Further,  for  a cusp.7 / /2 0 ³ 0 =1� �= =� � � �
Define (formally)

div .� � � ��0 œ 0 B/B

What does it mean to be holomorphic? This exactly means div . Then� �1 � !

` > T > T5 5 ! 5 !� � e f e f� � � � � �œ 1 − l 1 � ! œ 0 0 − l 0 0 � ! zdiv dive f� � � � � �� �0 − \ l 0 � 0 � !! !‚ > div div .

Definition.   div .g h g h� � �0 œ 0 B/B

We know

div div div div .� � � � � � g h� �0 � 0 � ! Í 0 � 0 � !! !

So

` >5� � � �g hz P 0div .

Hence, dim div .� � � �� � g h` >5 œ j 0

Claim.   Let  whose pullback is . Write = H > 7 7− \ 0 . B ß B ß BŒ5Î# 5Î#
#ß3 $ß3 3� � � �� � e f e f e f� �

of period , and cusps, respectively, with sizes , respectively. Define#ß $ ß ß& & &# $ ∞

div .� � � � �. œ B � B � B7 " #
# $#ß3 $ß3 3

From 3.3, recall  with  and  is associated to .H œ 0 	 " 	 − 0!
5 "
# 2� � � � ˆ ‰= / 7 ‡ =1 7� �

Then

 div div .g h � �� � � � �¨ © ¨ ©0 œ � B � B � B= 5 5 2
# $ ##ß3 $ß3 3

So

 deg div� � � �g h ¨ © ¨ © ¨ ©0 œ 5 1 	 " � � �5 5 5
% $ ## $ ∞& & &

   � #1 	 # � � �5 5	# 5	# 5
# % $ ## $ ∞� � & & &

   œ #1 	 # � #1 	 # � Î# � # Î$ � � � #1 	 # � /� �5	#
# # $ ∞ ∞ ∞� �& & & &

   .� #1 	 #

For , we have the same things, but we use div . Thenf >5 3� � g h�0 	 B

div div� � � � �0 � 0 	 B � !! 3

yields deg div deg div . So for ,� � � �g h g h� � �0 	 B œ 0 	 5 � %3 ∞&

dim div .� � � �� � g hf > &5 ∞œ j 0 	

If   is nonpositive, we want .5 ` >!� �
Lecture 7 (March 30, 2009) - Diamond Chapter 4

We define the Eisenstein space of weight 5

D > ` > f >5 5 5� � � � � �œ Î .
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We will be computing the bases of these Eisenstein spaces, which are Eisenstein series. In
this talk, we will only consider . Recall5 � $

K œ5
w

-ß. − Ï !

"� � �7
� � e f � �

™#
5- �.7
,

and the normalized Eisenstein series

I œ K Î# 55 5� � � � � �7 7 ' .

Now notice we can write

 K œ œ œ5
w

-ß. − Ï ! -ß. -ß.

" " " "

8œ" 8œ"

∞ ∞

- �. - �.8� � � � � � �7
� � e f � � � �� � � � � �

™
7 7

#
5 5 5 5- �.7

gcd gcd� � � �-ß . œ 8 -ß . œ "

  .œ 5'� ��
� � � �
-ß.

"

- �.

gcd� �-ß . œ "

7
5

Hence,

I œ5
" "
#

-ß.
- �.

� � �7
� � � �

gcd� �-ß . œ "

7
5 .

Define

T œ À 8 −
" 8
! "� œ Œ  ™ .

We claim that we can rewrite the above as

I œ 1 ß5
"
#

	5� � � ��7 # <    .
# ™−T ÏWP� #� �

Then

Œ Œ  Œ " 8 + , + � 8- , � 8.
! " - . - .

œ .

It is easy to show that  is a weakly modular form of weight .I 55� �7
We claim that

dim

 and even
 is odd and 

 and 

 or  is odd and .

� �� �

ÚÝÝÝÝÝÝ
ÛÝÝÝÝÝÝÜ � �

I œ

5 � %

5 � $ 	M Â
	 " 5 œ #

Î# 5 œ " 	M Â
" 5 œ !
! 5 % ! 5 � ! 	M −

5

∞

∞

∞

∞
>

D

D >

D

D >

>

reg

reg

Now let us look at the Eisenstein series for  ( ). First, take  and let> ™� �R 5 � $ R − �

@ − ÎR R� �™ ™ # a row vector of order . Let
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$ œ
+ ,
- .Œ 

@ @
,

where  is a lift of  to . We define  to be  if  and  otherwise. Then� �- ß . @ R œ "ß # "@ @ R
# "

#™ &

define

I œ - � .5
@

R
-ß. ´@ R

	5� � � ��7 & 7
� � � �mod 

gcd� �-ß . œ "

.

We claim that               .I œ 4 ß5
@

R
− T ∩ R Ï R

	5� � � ��7 & # 7
# > > $� � � �� ��

Proof.   Let's write  as . Then# >− R
R< � " R=

R> R? � "
� � Œ 

#$ œ

‡ ‡
R>+ � R? � " - R>, � R> � " .

- .

Î Ñ
Ï Òðóóóóóóóñóóóóóóóò ðóóóóóóóñóóóóóóóò� � � �@ @ .

Notice indeed gcd .� �-ß . œ "

Proposition.   For all , .# ™ # 7 # 7− WP I œ I#
� @

5 5
@� � � �� � � �c d � �#

Proof.  We have

 4 ß † I œ 4 ß †� � � � � �� �# 7 # 7 # 7	5 	5
5
@ & # # 7R

− T ∩ R Ï R

w 	5              � � �� �
# > > $w

�� � � �� �
4 ß

                   œ 4 ß& # # 7R
− T ∩ R Ï R

w 	5� � �
# > > $w

�� � � �� �
                   œ 4 ß& # 7R

− T ∩ R Ï R

ww 	5� � �
# > > $#ww

�� � � �� �
     .œ I& 7R 5

@#� �
(where we write

4 ß œ 4 ß Î4 ß� � � � � �� �# # 7 # # # 7w w .)

Corollary.   I − R5
@

5� � � �� �7 ` > .

Proof.    It is holomorphic on , and for all , each  reduces to mod . So by‡ # > #− R M R� �
our proposition above, . Hence,  is weight-  invariant with respect to .@ œ @ I 5 R# >5

@ � �
Fourier coefficients satisfy  where  are positive constants. k k+ Ÿ - -ß <8 8

< �

Now we can create modular forms for any congruence subgroup of level , namelyR

I œ I@ @
5ß 5

− R Ï
4 5>

# > >

� � c d � ��7 # 7
4 � �

.

We can show that
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lim
Im� �7 Ä∞

@
5

5

I œ
„ " @ œ „ !ß " 5 R " #

!
� � œ � � � �
7

if , unless  is odd and  is  or .
otherwise.

In this exceptional case, , so that dim . Hence,  has aM − R R œ ! R> D > D >� � � � � �� � � �� �5 5

trivial basis. Now,  is nonvanishing at  if , and vanishes at I ∞ @ œ „ !ß " ∞5
@ � �

otherwise.

What about for any ? Take any  of order  with its@ œ -ß . @ œ -ß . − ÎR R� � � � � �™ ™ #

corresponding

$ œ
+ ,
- .Œ .

Take any cusp  such that some matrix= œ + Î- − ∪ ∞w w � e f
α œ

+ ,
- .Œ w w

w w

takes  to . The Fourier series  describes the behavior at . By our earlier∞ = I I5 5 5
@ @c dα

proposition,  sinceI œ I œ I5 5 5
@ @

5
!ß"c dα α $α� �

� � � �Œ !ß " œ -ß . œ @
+ ,
- .

.

So  is non-vanishing at  only when  if and only if I ∞ !ß " œ „ !ß " !ß " œ5 5
@c d � � � � � �α $α $

„ !ß "� �α	" if and only if

Œ  Œ  � �+ .
- -

´ „ R
w

w mod 

if and only if . So  is nonvanishing at  and> > >� � � �� � � �� �R = œ R 	.Î- I R 	.Î-5
@

vanishes at all other cusps. If  is even and , pick a set of vectors5 R � #

e f � � � �˜ ™@ œ -ß . 	.Î- R s.t. the quotients  represent all cusps at .>

By the above, the  are linearly independent. This set has  elements (which is thee fI5
@

∞D

dimension of ), so it is a basis.D >5� �� �R


