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Lecture 16

Theorem. Let R be an affing -algebra (quotient of a polyndmizg). Then
dimR = trdeg R = trdegQ(R) )

Proof. Letr be the transcendence degree bverR of wilVprover > dimR . By the
Going-Up TheoremR = k[z1,...,z,|/# . IF =0 , then that impli&s s eldi so that
dim R =0. LetS = k[zy,...,z,] . Then it suffices to showHfC Q C S WwitR # Q
thenS/P — S/Q surjectively.

We claim that tr degS/Q < tr ded/P . By surjection, the gy < is
apparent. So assume we have equality. WStQ = k(B ..., 3] A =
kloa, ..., o], Where 3; anda; are the appropriate imagescof.., x,, .thet r t
deg.S/Q . Thens,, ..., 3,, form a transcendence basis éver Sf@p  thanimplies
aq, ..., form a transcendence basis over  fofP . Now piak ttultiplicative
systemT = k[z1,...,xz,] — {0} C S . We woul dlike to localize. Notiden P =  and
TNQ =10; otherwise, theas,...,qa, ands,...,Bn wouldn't be algebraically
independent. The 'S = k(z1,..,z)[z, ;... Ts] . Then

T1S/P(T7LS) = k(a1 .oy ) [ 1y vy Qi
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htp 4+ cohtp = dimR .
Proof. By Noether normalization,
k Ck|Z,...,Z,] CR,

with » =tr deg R = dimR . Let hp = h . By homework exercis®,C S C @ with
P=@QNR and RC S an itnegral extension, di = dit ,pht Cht , and
cohtP = cohtQ) . We can assume= k[Zi, ..., Z,]

Hint: The previous argument shows thag,...,y, such tRat intisgral over
klyi,...,y,] having the property Nk[y1,...,u.] = (v1,...,yn) (improved version of
Noether normalization). Then(bt, ...,y,) =h ,cOlt,...,y,) =r —h  sothe sumis

Lecture 17

Graded rings and modules
If AV is a graded ringS a collection of groups,),.,  Istlats = & Sy

d>0

homogeneous of degrde , atydS. C Sy.e .Inpgyt, is a Angans, -algebra.
Example. If S = R[zy,...,z,]is graded, de®® =0 anddeg=1 with
S =@ Rlz1, ..., Ty,

d>0

where each term is the ring of homogeneous polyalsnoif degre@ . There exist many
other gradings on polynomial rings, by assigningtle= e; € N.

Example. Look at S = k[z,...,z,]/Z = @ k[z1,...,x,],/Za Where I is a
homogeneous ideal (generated by homogengglj)s eE®ment

Fix S graded. Then a gradeti -modulé is a collectibibelian groups{M.}, .y
such that\/ :e@oMe . The operatidfiy M, C My, .In part, edch iS@an odute.
Example. M = k[xy,...,z,|/Z is a graded module ovkfzy, ..., z,]

We will now introduce the Hilbert polynomial andnttion.

Definition. The functionf: N — Q is callechbolynomial-like if there exists a
polynomial P € Q[z] such thaf(n) = P(n) fat > 0 . Furthermore, dég deg

Lemma. For f:N—Q a function, defineAf:N—-Q to belf(n)=
f(n+1)— f(n). Thenf is polynomial-like of degree if and orf\Af is polynomial-
like of degree- — 1 . (de@ = 1-)
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p—1
Proof.  First, for all p>g¢ e N, f(p) — f(q) =>_Af(k). Furthermore, for every
k=q

reN—{0}, A(%) = ;24 - We can use these two facts to obtain the leriina.

Note For a finitely-generated graded modie  decoraplasinto submodules, we can
always assume the generators\bf  are homogeneous.

Theorem. LetS =& S; be a graded ring such th&f = & a field, &hd isdipit

d>0

generated ovek (as an algebra)dy...,a, € Sy . Then for efreitgly generated
graded modulé/ = @ M, ove¥ |, the functiby,(n) = ding, is polynalrtike
n>0

of degree less than

Proof. We can use induction on .df=0 , thén=5, =% is a fidldke M to be a
finitely generated module, then sayhy...,z; , ded< ... < dp . Timglies M,, = 0
for alln > d; sohy(n) =0 (degreel- ).

Now assumer > (0 . Considep, : M — M  given by multiplication &y Then
a, € Sy (has degreé ), sp.(M,) C M, .Thenforall ,we have antesepience
0 — K, =ker(p,) = M, # M, 1 — C, = cokefy,) — 0 .
ThenK =@ K, and” .= C, are graded modules ofer .Then M — K>> so
n>0

n>0 >
that bothC' andK are finitely generated algebrag dve- hc(n), hx(n) are well-
defined, so that di;k,, — dip,, + dipV,.; — dipC, =0 . Hence,
AhM(n) = hM(n + 1) — hM(n) = hC(TZ) — hK(n)
Then by construction, - K =0 and-C =0 .Soinfast, &hd aaeled modules
overS' = klaq, ..., a,_1] g S . Then by inductiorh: arid;  are polynomial-lie

degree< r — 2 sothakh,, is as well and hehge is polyrdikeof degree less
thanr by our lemmad.l

Definition. The functionh,; given in the previous theorem esHiiibert function of M .
If hasr(n) = Py(n)for n>> 0, Py is theHilbert polynomial of M .

Example. If S =k[z,....,2,] =D S, thenS,, =k[z,...,x,],, = {space of
m >0
homogeneous polynomials of degree and
n—14+m n—14+m m+n—1)-...-(m+1 n— n—
hS(m) - ( 71: ) - ( nlji ) = {m (n)fl)!( ) = (nil)lm 1+ O(m 2) '
remainder

Remark: Notice dimS = deghs + 1 .
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Lecture 18
Artinian Rings

Definition. A ring R is Artinian if it satisfies the descendinhain condition (DCC) on

ideals, i.e., there exists a decreasing chainedled; © ... O I, O ... so that there exists
ann € Z* such that the chain stabilizes after , thak,iss 1,1 = ... holds. The same

definition holds for modules with respect to inetuss of submodules.

Examples. (1)Z is not Artinian.

(2) Z/dZ is Artinian.

(3) k1, ey Tn] /(w1 ooy )™ Withm > 1 is Artinian.

(4) Product of field%; x ... x k. for >2 ank fields.
Lemma 1. If R is Artinian and a domain, theR s a field.

Proof. Picka € R. Then we have a chdim) O (a*>) D ... D (a™) D ... . By the DCC,
there exists am such th&") = (a"™!) which implies thereais € R so that
a™ = ba™"!, which means”(1 — ba) =0 , so that has an inverde .

Lemma 2. If R is Artinian, then every prime ideal IR is rimal, and there are only
finitely many.

Proof. If p C R is a prime, therR/p is Artinian and a domain, sothmy previous
lemma, it is a field, and henge is maximal. Tovgltbere are finitely many, notice the
family

{m1 N ...Nmy, | m; maximal inR}

has a minimal element with respect to inclusionwN@ay/! = m; N ... N my IS minimal.
Then taken C R to be maximal. ThemN/ =m Nmy N...Nm, € F .BunNI C

I is minimal so thatnN/ =1 .Butthem Cm;N...Nm; where and each are
prime. Henceji such that = m; O

Remark We can use this lemma to show that all Artiniargs are a finite product of
local Artinian rings. (i.e., Chinese Remainder Tiea).

Definition. If RisaringandV # 0 is ai® -module, thén simpleif it has no sub-
modules different fron® and itself. Thétw C M  fof  slepnpliesRz =~ M , and
henceRx =~ R/ Anir) . Henc&/ is simple if and only if Amf  isxinaal. Hence M
simple impliesM >~ R/m for some maximal ideal
Definition. A composition seriesf M is a finite filtration:

M=My>DM 2..OM,=0

such thatV; /M, is simple for all=0,...,n — 1




Robert Krzyzanowski Commutative Algebra Notes

Jordan-Holder Theory
If the composition series exists, then the lendthny two is the same:

length of any such series if a composition seriéstex

Cr(M) = length(M) = { 0 otherwise.

Furthermordr (M) < oo ifand only il is Artinian and Noetizer. Also,
0— M — N— P — 0implieslp(N) =Llr(M)+ Lr(P)
for an exact sequence Bf -modules\lf isa -vespaice, thet(M) = dimM

Example. For(R,m),

R/m® m/m* & m?/m?® ...
m2IDoml = R/IeI/IPe?’/Po..
m"/m**! has finite length (dim,, m"*/m**' < oo ). Them" = m"™  implies that
m" = 0 by Nakayama's Lemma. Then
U(R) =L(R/m)+ L(m/m?) + ... + £(m" ! /m™").
Then m = (z1,...,x,) (a system of parameters), and/m**! = { homogeneous

polynomials of degrek in variablgs . Then gimm*/m*+ = ("~ *")

Proposition. ForM a finitely-generated module aRd  a Noe#rering, the following
are equivalent:

(1) lr(M) < 0

(2) All primes in As§M ) are maximal.

(3) All primes in SuppM) are maximal.
Remark Notice this implies ASs\/) = Supp/)

Proof. [(1) = (2)] By our earlier lemma, there is arfiion M = My > ... O M, =0
such thatV/;_,/M; = R/p; for p; prime, with AssM) C {pi,...,p,} , and

00 > Lp(M) = Y Lr(M;_1/M;) = > Lr(R/p;).
But thenoo > ¢(r(R/p;) so thaiR/p; is an ArtinianR -module, and it must also be a
domain. Hence; is maximal by the earlier lemma.

[(2) = (3)] We know AssM) C Supp) , and they have the sant@nmal primes.
Pick a primeQ € Supp\/) . Whether or not it is minima&al? C @ hattis minimal, so
this means thaP € A§38/) meaning it is maximal, and &@éhés maximal.

[(3) = (1)] Exercise:Vp; they are contained in SUpPp  plfare all maximal, then
R/p; is all fields, solr(R/p;) =1 and hence we have a composition series, and
lr(M)=n<o0.0
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Lecture 19

Theorem A. LetR be a Noetherian ring. The following are egient:
(i) Ris Artinian.
(ii) Every prime is maximal.
(iif) Every associated prime is maximal.

Proof. We know (i) implies (ii) from lemma 2 last tipn@) implies (iii) is obvious; and
(i) implies (i) is true by (2) implies (1) in theroposition from last time_]

Theorem B. Aring R is Artinian if and only if(R) < oo .

Proof. Let/r(R) < oo. Then obviousy®z is Artinian and NoetheridNow we claim
there exist maximal ideat®, ..., m; such thatn; - ... -m; = 0 (since then;...m; D
my...mpmy; has to stop by the descending chain conditionagply Nakayama's
Lemma). We havé? O m; O myms 2O ... D my...my =0 . Then eadh = my...m; 1/
my...m; ~» R/m;-moduli (vector space). NoticeM = 0= M is d@/I -module.
Also, L/, (N;) < oo impliesz(N;) < oo (becaus® is Artinian), and then the fact
is additive in filtrations impliegz (R) < co O

Theorem C. Aring R is Artinian if and only ifR is Noethernaand every prime ideal is
maximal.

Proof. We proved the adverse in theorem A. By theoBriz(R) < oo so thatR is
Noetherian, and then by Theorem A we know eacherdaal is maximall

Hilbert function and dimension
We can now look at graded rings of the fofin= @ Sy vBith rtiddan. Then
d>0

there exists a Hilbert polynomial of positive degseich that is generated 8y/ S

Definition. If (R, m) is a local ring, then aideal of definitionfor R isI C R such that
there exists @ > 1 witm* C I Cm .

Lemma. Anideall is of definition if and only iR/I is Artian.

Proof. (Sketch)! is an ideal of definition if and onfyrad(/) = m (so there does not
exist non-maximal primes contaidg L.

Definition.  If I C (R,m)is an ideal of definition withA\/ a finitely-geratedR -
module, then thessociated graded ringgfR) = € I1"/I"" . Thassociated graded

n>0
modulegr; (M) =@ I"M /I M.

n>0

Remark. If ay, ..., a, are generators fdr , then, ...,a,  gener&te [

grr(R) overqro = R/I .
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* R/I is Artinian, as before.

« If M/IM is finitely generated oveR/I then it is Artam, which implies for all
k>1, lp(R/I*) < 0o, br(M/IM) < 0o and so «r(I*'M/I*M) <o IF is
also an ideal of definition).

hgrany(n) = Lr(I"M/I"M). By the Hilbert polynomial theorem, this is
polynomial-like of degree< r — 1  (fof = (ay, ..., a,) ).
Definition. The_Hilbert-Samuel functioof M (with respecttd ) is
St (n)=Lr(M/I"M) < oo.

Proposition. The Hilbert-Samuel function is polynomial-likéaegree < r .
Proof. There exists an exact sequence
0— I"M/I""'M — M/I""M — M/I"M — 0.

So that for all. AS},(n) = Si;(n+ 1) — S3,(n) = hg, ) (n) and so by the earlier
bullet point statemenf?, is polynomial-like of degr< r . (whereAS}, is as defined
in the lemma in Lecture 1T)

Proposition. The degree o}, (n) does not dependion (call i) ).

Proof. Start with the fact is an ideal of definitiong.i there is a such that
m* C I Cm. Then we can look &ff, arf§Z , and if we can proey tire equal we're
done since the latter is ideal invariant. For each 1, we getm*” C I? C m? . Then

S%(kp) > Si,(p) > S=(p) for every p, so de§i, = degpz O

Lecture 20

Proposition. Setting as above [last time], for any exact sege of finitely generated
R-modules, 0 — M’ — M — M" — 0, we havesi,(n) + S, (n) = S, (n)+r(n)
where r(n) is polynomial like of degree< d(M) , with non-nidga leading
coefficients.

Proof. We have an exact sequence
O_)Ml/(MlmI.nM)_)M/]TLM_)MII/ITLMII>O.

Let's sayM, .= M'NI"M . From the above sequence, we get bpdtgivity of the
Hilbert function that/z(M’/M]) (impliegr(M'/M]) is polynomial-lixeNow notice
for all m, 1" M' C """ M N M' =M, (sinceM’ C M ). The Artin-Reese lemma
states there exists anm such that for eaeh>m IM) = M), with
(I*(M' N I"M)) = M' 0 "% M. Hence, we gef"*" M’ C M!, = I"Mm' [Artin-

Reese Lemmal I"M' . Thereforég(M' /I M') > (r(M'/M] ) > Lr(M'/I"M').
Notice the first term in this inequality equadg, (n+m) dathe latterSi,(n) Then make
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n — oo and we get tha§!,(n) antk(M’/M!) have the same degree aredlsading
coefficient. Then define(n) := ¢p(M'/M]) — Si,(n) . This is a polynomialdikerm
of degree< d(M’) < d(M) with a non-negative leading coefficiémnt.

Let M be a finitely generated module over . Then

: _ Jdim(R/Ann(M)) if M #0
dmR= { 1 M0
Lemma. The following are equivalent:

Q) dmM =0 (2)lr(M) < 8) All primep € Supg M) are maximal.
(4) All associated primesc  A&%/) are too.

Definition.  If (R, m) is a Noetherian local ring with/  finitely gerated oveR? , the
Chevalley dimensioof M is

6(M) :==min{r € N|3ay,...,a, € m stlr(M/(ay,...,a,)M) < oo} .
This definition makes sense becadgéM /mM) < oo

Theorem. (Dimension Theorein If M is finitely generated oveiR, m) a Noetherian
local ring, then dimV = d(M) = 6(M) .

Corollary 1. The dimM < oo for anyM a finitely generated modulesio® . In
particular, dimR < oo .

Corollary 2. Eachp C R prime has finite height, so the set of primesRisatisfy the
descending chain condition.

Proof. dimR, = htp .0
Corollary 3. dimR < dim, m/m? wherek = R/m (embedding dim @t ).

Proof. If aj,...,@, is a basis ofn/m? , theny,...,a, generate  so by darpll,
dmR<r.0O

Corollary 4. The dimk[[z1, ...,x,]] =n fork afield. Thefx, ..., z,) = m implies by
corollary 1 that dimR < m . Furthermordp) C (z1,x2) C ... C (21,...,x,) implies
dmR > n.

Lecture 22

Theorem. (Generalized Krull principal ideal theorenf R is a Noetherian local ring
andp C R is a prime, the following are equivalent:

(1) htp < n (# of generators).
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(2) didealsl ¢ R generated by elements suchghat insmal over/ .

Proof. [(1) => (2)] We have dinR, = ht <n . Then there exists€ Rk, n&ated by
(4,...,%),q; € R such that is an ideal of definition i, . Bhen

(pRp)k CJCpR, & JispRy-primary,

so that! = (ay,...,a,) C p a minimal prime. So theni), IR, pB, -primetyich
means/ R, is an ideal of definition so that ditp < n

Theorem. (Krull principal ideal theorem If R is Noetherian with: ¢ Z(R) and
x ¢ R*, then for every minimal primg ovér) ,ht1

Proof. Sincer ¢ R* , by the previous theorempht 1 . Assume-ht0. But we know
that Rp # 0. Notice iff =0 < R, therds ¢ p such that =0 , but this is oagible
since z ¢ Z(R) . SinceZ(R) =, casqni2 » We have e pC Z(R) , our desired
contradiction ]

Definition. Let (R,m) be a Noetherian local ring withf ~ a finitgJgneratedR? -
module and dimM/ = n . Then gystem of parametefer M is a sef{ay,...,a,} Cm
such thatlz (M /(ay, ...,a,) M) < oo . (exists because dith= 6(M) )

Examples. (1) Letl = (ay,...,a,) be an ideal of definition. Thea,...,a,} is a
system of parameters.

(2 {x1,...,z,} C k[[x1, ..., x,]] is a system of parameters.

Theorem. TakeM to be a finitely generated module ovematNerian local ring. Take
ai,...,a; € m. Then dimM /(ay, ...,a;,)M > dimM — ¢ . In addition, we have equality if
and only if{ay, ..., a;} is part of a system of parameters.

Proof. Let a € M and defineN .= M/aM . Letr= dimV =6(N) . Thes
by,...,b0 € R such that ¢r(N/(b,....b;)) <oo . But N/(by,...,b0,)N =
M/(a,b,....,b,). Sotherd(M) <r+1=6(M/aM)+1 .

Now use induction ont . Start withP = M /(as,...,a;)M . By induction,
dim P > dimM + (¢t — 1) . For equality, [...see proof in book]

Examples. (1){a} isanM -sequence if and only:i# J(M)
(2) Ink[zy,...,x,) OFk[[z1, ..., xn]] {21,.., }

Lecture 23

Theorem. If M is a finitely generated module ove®, m)  a Neeihn local ring, and
if a, ..., a;is anM -regular sequence, thém, ..., a;} is part of tesyf parameters.
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Proof. By induction ort , fot =1 we have diM/a;M = ditdd —1 . Sodne of
the theorem from earliefg;} is part of a system ofapaters. Ift > 1 , then assume
{ai,...,a;—1} is an M -regular sequence which is part of a sysiéparameters. Then
dm M/(ay,...,a;))M =dim M —(t—1). Hence, dim M/(a,...,a;)M =
dm M /(ay,...,a4—1)M —1=dimM —t+1—-1= dimM —t. Again by the theorem
from last time, this means:,, ...,a;}  is part of a systerpasbmeterd]

Depth. LetM be a finitely generated module oy&;,m) . depthof M in R (orm)
is the supremum over the length of &l  -regulauseges, i.e., suft|{ay,...,a;} an
M-regular sequenge .

Note Later, we will see the depth equals the lengthany maximal M -regular
sequence.

Proposition. depthV < dim\V/ .

Proof. EveryM -regular sequence extends to a systgraraineters.

Definition. A moduleM as above Gohen-Macaulay (CM) if depith =  divh
A Noetherian local ringR, m) is CM ifitis CM over @k.

Proposition. If M is a finitely generated module over NoetharR , then if{a;, ..., a; }
is such that* id/ -regular, then the sequence carddm3y(R) = |J,, .pm , and then
any permutation is again aWl  -regular sequenceatty [ (R,m) is local, then any
permutation of any/ -regular sequence is\an  -regd@quence.

Proof. It is enough to prove thdts,as,...,a;} is & -regular sege. We need to
prove thatu, ¢ Z(M) , and, ¢ Z (M /as M) . Then say there exists anM sath t
a;x =0 if and only if a;xz € asM meaningdy € M  such that;x = asy . Then
y € ;M so 3z such thay = a;z . But themy = ajasz  so tha{x —az) =0 , but
a; ¢ Z(M) so thatt = ayz € aeM s@ =0 O

Definition. A Noetherian local ringR,m) isegular if the maximal idea can be
generated by, ...,a, , where= diR

Examples. (1) IfdimR = 0, thenR is regular if and only/ s a field.
(2) IfdimR =1, thenR isregularifandonly is sctete valuation ring.

(3) If R = k[[x1, ..., x,]] is regular local them,...,z, must be a regudgstem of
parameters.

(4) ForX an algebraic variety,e X is smooth if amdydf Ox , is a regular local
ring.

(5) FR=K[X,Y](Y? - X3)isacusp, thendil = did{X,Y]—1=1

10
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Lecture 24
Theorem 1 If R is aregular local ring theR is a domain.

Theorem 2 If (R, m) is a regular local ring of dim  witty, ...,a; e m far<t<r
then the following are equivalent:

(1) aq,...,a; can be extended to a regular system of paeame
(2) ag,...,a; are linearly independent ovier rity m?

3) R/(ay,...,a;) is aregular local ring.

Proof. [(1)< (2)] By Nakayam's Lemmay, ..., a;, by41,...,b,  is a regulartegs of
parameters if and only i, ..., a;, b1 1, ..., b, is a basis foym?

[(1) = (3)] Say{ai, ..., at,bi41,..., b} is & regular system of parametersenrfor any
system of parameters, by an older theorem, dif(ai,...,a;) =7 —1 . 8
{bis1,...,b,} generate a maximal ideal B/ (a1, ...,a;) SO tht(ay, ..., ar) is regular.

[(3) = (1)] We haveR/(ai,...,a;) regular so th@b..1,....,b,} is a regulasteyn of

parameters. So then pick anyem , so that . c;b; for sampeso ,that
j=t+1

x — Y cibj € (a1,...,a,). Hencex =Y cib; + > cia; s& € (ai,...,at,b41,...,b,) =
m. O

Proof. (of Theorem 1) We will prove by induction ea= dim R. If » = 0, thenR is a
field and ifr = 1 then Ris a discrete value ringrIf- 1 31 € m/m?. Let the minimal
primes of R bep,...,p (want alp; =0 ). Then we can also assungep; Vi. If
m Cm?Up U...Up, thenm C m? orm; C p; for someé . Now look &/(x) . Then
0#7T¢em/m? By Theorem 2,R/(x) is regular, but dink/(z)=r—-1 , so
inductively, this is a domain. Then sin¢e) is primés.t. p; C (z) so we claim
p; = xp; for x € m, and by Nakayama's Lemma,= 0. Then we claim p; lieap
Jz such thay = zz withe ¢ p; sothate p; O

Theorem. Let(R,m) be a Noetherian local ring. Th&n s regifland only ifm can
be generated by a regular sequence. In additierletigth of any such regular sequence is
equal to dimR .

Proof. If R is regular, takday,...,a,} to be regular for anyteys of parameters. Then
for all ¢, by Theorem 2 we have/(a,...,a;) is regular, so bgdrem 1R/(ay,...,a)

is a domain. So heneg., ¢ Z(R/(a1,...,a;)) . On the other handplet (a4, ..., as)
Then by the previous theordm, ..., as} is part of a systenpavhmeters. So then
0=dimR/m = dimR —s=r—s. Thers =r implieRR isregular.

The reason for this theorem is that it gives tHiewang important corollary:

Corollary. A regular local ring is Cohen-Macaulay.

11
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Proof. We always know deptlR < dinR . On the other hand,thy theorem
depthR > dimR L[]

Homological algebra

Now we start over, and learn some homological alyedh order to prove some more
important theorems later on.

Fix aringA. Then a chain compléx is a sequendg-afodulesC;,, withn € Z so that
= Upy1 — Cn - Cn—l — ...
with d; : C; — C;_ for R-modules hom s.tl, od,.; =0 Vn

We call Z,(C,) := kerd, n-cycles, andB,(C,) := Imd,,; am -boundary. Then
d,d,1 = 0impliesB, C Z, .

We can define then-th homology? -module of C, byi,(C,) = Z,(C,)/B,(Cs)
Furthermore, &domology of complexess a collection & -module homorhesms,

f:Co— D, f,:C, — D,
= Upy1 — Cn - Cn—l — ...
l L |
Dn+1 - Dn - anl

Then we can easily check,(Z,) C Z, anfl,(B,) C B, . So thgén induces
homomorphismdi,,(f,) : H,(C,) — H,(D,) (on homologies).

Lecture 25

Definition. Letf,g: C. — D. be modules of complex.#omotopy betwegn gnd is
a collection oth, : C,, — D, 1 Stf, —gn =hp_10d, +dpi10h, .

C,— C,1
SN o g N
Dn+1dltl Dy — /
Lemma. If f andg are homotopic, théd,(f) = H,(g)
Proof. (Homework)

Theorem. (Snake lemma) Assume we have two exact sequenitesceammutative
diagrams.

A—-B—-C—0

! ! !
0—D—F—F

12
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OKAY forget trying to type up this diagram just loap the lemma.

Theorem. A short exact sequence of complexes

o ln B o
means there exists a long exact sequence of hognolodules

tnm) 2wt Yy oDy 5y L )

Proof. Steal from someone else's lecture notes.
Lemma. Every commutative diagram of short exact segegnc
0—-C—-D—e—0
| | |
0—-C"—-D —FE —0
induces a commutative diagram of long exact seqgeothomology groups
.. — Hya(E.) — Hy(C.) — Hy(D.) — Hy(EL) — Hpa(CL) —
|
e+ Hy(C) — ...

Definition.  An R-moduleP igprojective if for all surjective homomoipims of R -
modules, for all homomorphisnys: P — N’ , there exists admorphismh : P — M
making the ofllowing diagram commutative:

P
hyLf

M— N —0
where theh is called a lift.
Proposition. Every free module is projective.
Proof. He proved it in class, but see Dummit and Foote

See also the Dummit and Foote theorem about e@mizadlonditions for projective
modules!

Lecture 27

Theorem. (Baer's Criterior) FE is an injectiveR -module if and only ¥ C R ideal
andV f: I — F Jh: R — E extending .

Proof. ( =) By definition, M C My C N .

!/ / /
(=) IF0—-M i N with ML E andN L E (lifts to). Therd a maximal
extensiomy : My — E withhy : My — E andy |y, =¢ (by Zorn's Lemma).

13
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If My = N, we are done. Assume it's not, thenC N\M, I[HW={re R|rz e My} ,
then definef : I — E byf(r) = ho(rz) . This can be extendedhtoR — E . Define
h{: My + Rz — E (with the former a proper subset &f, ) witly (zo+ rz) =
ho(xo) + rh(1) (with z € My). This is well-defined and extens SO wevénaa
contradiction

Theorem. EveryR -module can be embedded in an injediive odute.
Proposition 1. Every abelian group can be embedded in a dieigjioup (iff injective).

Proof f0—K—F—M—0 with ZCQ andZ! C Q! . ThenM =~ F/K C
Q! /K divisible.O

Proposition 2. If D is a divisible abelian group an@d is a couatative ring, then
E :=Homy(R, D) is an injectiveR -module.

Proof.  Note that Hom(R, D) isaR -module (we can always fla) = f(rs)). We
want 0 - M — N with M — FE and N lifting to £ . Then HofW,FE) —
Hom(M, E) — 0. We want Hom(N, Hom(R,D)) — Hom(M, HomR,D)) . The
former is isomorphic to Hop{/N ® p R, D) and the latter to H@W ® R, D) nda
againN ® R R~ N and/ ® pR =~ M foD divisible implying we have injeetiover
Z for Homy, (N, D) — Hom, (M, D) — 0.0

Proof (of theorem). We havé/ — injective module, 86 RAn -uo@dmpliesM an
abelean group implies (by Proposition 1) thdt/ — D asthle group. LetE =
Homy (R, D) injective overR as by Propositidh . We theninslahat there is an

injective R -module homomorphism ¢: M — E with m — f, for
fm(r) =rm € M C D. Then if ¢ is injective,f,,, = f,, implies,, (1) = fn,(1) so
that m;y=ms. If ¢ is an R -module homomorphism,s € R means
fsm(r) =rsm = (rs)m = f,(sr) = (sfm)(r). O

Resolutions

Definition.  Theleft resolution of a modul@/ is an exact sequence
.- P—-PF—M-—Q0.

It is aprojective( freg resolution if all thé, 's are projeetiffree). A deleted resolution
is one of the fornr, — P, — Py — 0 (i.eF, is not exact anymore).

Similar definition for a right resolution.
Lemma. Every module\/ admits projective (in fact freaylanjective resolutions.

Proof. Wehav® - K, — Fy, - M and— K; — F; — Ky, — 0 , and continue like
this.

Definition. An R-moduleM idlat if the functad/ ® p __ is exace.jfor all short
exact sequencds— A — B—C — 0 @& -modules, thenr M ® R A — M ® rB
— M ® rC — 0 is exact.

Examples. (1) R is flat ovetR becaused®Ry A Afor ady

14
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(2) (Exercise) @ M; s flate VM; s flat.
(3) Every projectiveR -module is flat.

Lecture 28
Flat modules

M ® r __isright exact M R -modules.

Proof. Start with a short exact sequefce: A i B 9, C—0 . We washtov

1 1
Mo A" T e B 2o 0 —o0

is everywhere exact.

First, notice 1®g is surectiveil®@g(d - m; ®@b;)=> m; ®g(b) => m; R ¢;.
Second, (2) Ml ® f) C kéil ®g) (1Rg)o(1®f)=10gof=0 .

Furthermore, kil ® g) C ifli® f):=D . Then by (2) we have C (keb g)
implies3 inducedmap: M ® p B —> M ®p .Then

gom(m®b) =g(m®b) =m®x g(b) and kengo ) = kel ® g) .
We claim that it is enough to shgw is an isomaphiConstruct the inverse
hiM®RC— Mo D /D with M x Cliftto M ® nC andM x C 5 M D /D,
Then
h:MxC— M®RB/DWithh((m,c)) —m®b foranyb s.tg(b) =c .

This is well-defined andk -bilineall
Examples(of flatness)

(1) R flat overR

(2) V projective module is flat ovet

(3) Z-module (abelian group) is flat if and onlytifs torsion-free.
(remember for these every torsion-free abeliangiedree so it is projective and flat).

We say it is not torsion free#fn € Z  such that = 0

(4) Qis flat, but not projective ovet . It is torsidree so it is flat. But it is not free so it
is not projective.

(5) Homeworl (a) ForR C S , ifS is flat oveR andll is flat avenS -module, then
M isflatoverS . (b) IfR ¢ S M is aflak -module impligs® r M is flat overS . (c)
If M is flat overR , thenS C R is a multiplication systehenS—'M is flat over SR .

Derived functions

15
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(1) Right exact functors If F' is right exact orR  modules, then if veké A to be a? -
module, we can construct a projective resolution

=P P —-F—A—0
..HPQHP1HPO—>O

Apply F to By and we getF(P)) — commplex. Then F: A— B —C with
0—-A —B and A— A and B— By —0 and 0—-B—C , then
F(A)) — F(By) — F(Cy) is an exact sequence. We kndW(f) = F(B;) . Then
F(g9) = F(v)o F(u) and KefF(u)) 2 K (C kefF(g)) becaudé(v) is notinjective.

Definition. Theleft derived functorsof ' are the functofd., F)(A) = H,(F(F))
This doesn't depend on the resolution.
We also get an induced long exact sequence:
= (L1 F)(C) = (LaF)(A) = (LoF)(B) — (LyF)(C) = (L1 F)(A) — ..
Our "favorite gadget" will be:
Definition. To*(M, _)=LM®p __
Lemma. If P is projective, then Toi{(M,P) =0Vi >0 and THtM,P) = M ® pP
Proposition. The following are equivalent:
(1) M is flatoverR ~ (2) T(M,N)=0¥n>1, YN  (3) TB(M,N)=0VN
Proof. (1) = (2) B — N s a projective resolution wittv M atflThen
Ph®prM — N®rM — 0is exact.
Sothen Tof (M, N) =0¥n > 1 .
(2) = (3) Obvious.
B)= 10— A—B—C —0 gives
. — Tor(M,B) — Tor{(M,C) >  M®rA—- M®rB—M®rC — 0.0

Lecture 30
Left exact functors

Start with( Homx (M, _)) and Hop{ .M)) . ThenfBr Ileft exactaor? -module,
let A be ank -module and take injection resoultion:

0—-A—FEy— FE — ...
with E, a deleted resolution.Then(Ey) is a complex (likéhe last lecture). Then
(R"F)(A) = H"(F(E)y)) (independent of, ).

For an exact sequenBe— A — B — C — 0 , we get a long exact seguenc
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... = (R"'F)(C) — (R"F)(A) — R"F(B) — (R"F)(C) — (R""F)(A) — ...
Definition. Ext,(M, _ ) := R" Homp(M, _)
Lemma. V F' left or right exact andA R -modules,
(LoF)(A) = F(A) =~ (R'F)(A).

Proof. We have a right exact sequerfée— A — 0 WithP) — F(Py) — 0 and
F(P) — F(A). By definition, LyF'(A) is a homology atF'(F) , specifically,
F(Py)/Im(F(P,) — F(P)). SinceP, — Py — A— 0, applyingFF to a right exact
sequencel’ (P,) — F(P) — F(A) — 0 is exadi

Lemma. F is left exactand is injective impliéR"F')(E) =0VYn >0 . Inrpeular
Exty(M,E) =0%n >0, VM.

Remark: Can also look at EX( _.NN)=R" Homi .,JN) . Can do it by picking
projective resolutions.

Proposition. The following are equivalent:
(1) M is projective. (2) ER(M,N)=0Vn>1 VYN
(3) Exty(M,N) =0 VN .
Proof. (1)= (2) We have a projective resolutior- M — M — 0 senth
Exti, (M, M) = R* Homg(M,N) =0.
(2) = (3) Clear.

(3)= (1) Take the exact sequende— G — F — M — 0 x (). Then apply
Homg(__, N):

0 — Homg (M, N) — Hong(F,N) — Homk(G,N) — Ext(M,N) — Ext(F,N)— __
TakeN = G . Then
0 — Homg(M,G) — Homg(F,G) — Homk(G,G) — 0.
Then ) splits, sd/ is a direct summandtof )$o pragective.ld
Proposition. The following are equivalent:
(1) N isinjective. (2) Exf{M,N)=0Vn>1VM . (3) ExtM,N)=0VM
Proof. Homework exercise.

Examples. (1) Ext,(R, M) =0V: > 0VM (from proposition). Then by definition
Ext)(R, M) = Homz(R, M) = M.

(2) z € R is neither a unit nor a zero-divisor. We wamtompute EX{(R/zR, M) for
any M . We have

0—R—R— R/zR — 0.

We get the long exact sequence
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0 — Homg(R/xR, M) — Honmp(R, M) — Homx(R,M) — Ext(R/zR,M) — EXt(R, M)
and
.. — Ext~Y(R,M) — Ext(R/xR, M) — Ext(R,M) — ...

for i>2. Then Ext(R/zR,M)=x~ M/xM , and Hom(R/z,M)={m e M|
xm = 0} = socle ofr .

(3) To*(M,R)=0 Vi>0,and Tgf(M,R) >~ M ® p R~ M . As in (2), compute
Tor'(R/xR, M) Vi.

(4) Foranyl C R ,whatis TefR/I, M) ?

Lecture 31
(4) We want to compute TB(R/xR, M) where is not a unizeno divisor.
0—-R%LR— R/zR — 0
Sowe need ® M . So we get
Tor(R,M) — Ton(R/zR,M) - R® gM — R® pM — R/xR ® rpM — 0.
But by isomorphisms,
0—{mlz-m=0}—->M-—>M— M/zM — 0.
So{m|z-m =0} =~ Toi(R/zR,M),and/zM = TeR/xzR,M) .So
Tor, (R, M) — Tor;(R/zR, M) — Tor(R, M)
fori > 2.
(5) Takel C R anyideal. Then TOR/I, M) = Y2 .Then
0—-I—-R—R/IT—0
and we tensor witd/
0—Ton(R/I,M)—1®zrM — M — M/IM — 0.
Tor,(R,M) — Tor,(R/I,M) — Tor_y(I,M) — Tor_1(R, M) .
Then fori > 2, Toy(R/I, M) =~ Tor(I, M) .Notice we know
Tor(R/I,M) =ke(I @ g M — IM) @®m — am).

Homological Dimension
Definition. If M is anR -module, take a projective resolution

P=0—-P,—... o PL—>F—>M-—0

of length n. The projective (homological) dimensioof M , denoted pdM) is the
infimum (minimum) over the length of all such ragdns (could bex ).

Notice pd(M) =0 < M is projective.

18
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Lemma. LetR be a principal ideal domain, ard  &n -medihen pg(M) <1 .
Equality holds if and only if the torsion part bf is non-trivial.

Proof. Notice there is an exact sequeficer F| — Fy — M — 0 wiigre  ésdngl
F is the kernel. Sincéy is freé) must be torsi@efas it is on a principal ideal
domain. Hence it must be free. Thus, we have foardsolution of lengti , so that
pdg(M) < 1. Indeed pd(M) =0 ifandonly#/ is projective if aodly if M is free

if and only if (since we're on a PID) the torsiaartgs trivial.[]

Definition. Theglobal homological dimension @ is gdR) = sup pg(M) (it could
be infinite).

Examples. (1) IfR is afield, then gd?) = 0
(2) fRisaPID, thengd?) =1
Theorem. The following are equivalent for a givéh -modile
1) pk(M)<n. (2) Ef(M,N)=0Vi>nVN R -modules.
(3) Ext™(M,N) = 0VN R -modules.
(4) If there is an exact sequeficer ), — P, 1 — ... —» P, — Py — M — 0 where
P, are all projective, then,Q is also pctjee.
Proof. (4) = (1) and (2= (3) are true by definition andpection.

(1) = (2) Take a proj. resolution 8f 0 — Py — M — 0  such thaig(P.) < n.
Then Ex, (M, N) = R' HongP., N) =0 foli > n by basic notion of homology.

B =4 0—-Q,—P,1—P,9—..—P,— P — P — M where we have
P,41—K,1,—0 andd - K,y —- P, 2, .., andP,—- K, —-0 0—-K, — P ,
0— Ky — Py, and P, — Ky — 0, wherekK; is the so-calléed th syzygy modulds T
gives

0—-Ky—>F—-M—0
0—- K —-P—-Ky—0

We know that E)Q;“(M,N) =0 VN . From last tim€), is projectifeand only if
Exth(Q., N) =0VN. Then

Ext(M, N) — Ext(Py, N) — Ext'(Ky, N) — Ext+1(M,N) =0.

SinceP, is projective, and Ext of anything projeetis( , we have EX{F,, N) . So
we've shifted the index, so that EK,, N) =0VN . Then

0 = Ext'(P;, N) — Ext (K, N) — Ext'(Ky, N) =0

so this implies Ext ' (K;, N) = 0 VN . Continue this way. Then euvallyQ,, ~ K,, ;.
Then Ext(Q,, N) =0VN O

Corollary. gl(R) = inf{n|Ext,(M,N)=0VMVN}.

Definition.  Similar definition forinjective resolution and injective dimensiorfig ).
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Theorem. ForR -moduleN n > 0 , the following are equivalent:
(1) idg(N) <n. (2) EX(M,N)=0 Vi>nVM (3) Eft'(M,N)=0VM

(4)V exact sequencés— N — Ey — ... — E, 1 — @, — 0 with E; injective,Q,,
is also injective.

Proof Homework.

Corollary. gdR) = sup { i(N)} = inf {n| EXt''(M,N)=0VM} =
inf {n|Ext""(M,N)=0VYM}.

Lecture 32
This lecture we will apply homological methods tiiain some results.

Proposition. Start with(R,m) a Noetherian local ring, with= R/m  thesidue field.
Let M be a finitely generatel  -module. Theh s ffead only if Tof (M, k) =0 .

Proof. (=) If M is free, then it is projective, so thairf{ M, N) =0Vi > 0, VIV.

( <) Take a minimal set of generators far , say..., x, . Tmkee modulg” of
rankn , with basig,...,e, . We have

0—-K—F— M — 0withe; — x;.
We then tensor withk = R/m , so we get
Ton(M,k) - K®prk—>F®rk—M®pk— 0.

Notice Toi (M, k) =0, F ® pk = F/mF =~ M/mM [Nakayamad M ® p k . But
thenK = mK so by Nakayama's Lemmia,= 0  which impiés F

Corollary. If (R, m) is a Noetherian local ring, with/  a finitef)ygnerated? -module,
thenM is free if and onlyy/ is projective if and wifl M is flat.

Proof. SinceM s free, it is projective, and so flat, aodTor (M, k) = 0 (since all
Tor (M, N) =0 forn > 0). By the proposition this in turn impliég is free.d

Theorem. If (R, m) is a Noetherian local ring, add  is a fihjtgenerated? -module,
then the following are equivalent:

Q) pk(M)<n. (2) Td(M,N)=0Vi>nVN R -modules.
(3) Tof!,,(M,N) =0VN R -modules.
(4) Tor1 (M, R)=0.
Proof. [(1) = (2)] Take a projective resolution— P. — M — 0  of lengthn
Torf(M,N) = H;(P.® N) = 0Vi > n.
[(2) = (3) = (4)] Obvious.
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[(4) = (1)] It's enough to show (as was seen in tlewipus lecture) that if we have an
exact sequence

OHCQW,H TL—lH"'HP1_>PO_>M_>O

with P; projective, ther@),, is projective. So this ikat we need to show. By the earlier
proposition, we only need to show that @y, k) =0 (whishmiuch more manage-
able).

Tor (Qn, k) = Ton(K, o, k) = Tog(K,_3,k) = ... To (Ko, k) = Top1(M,k) =0
by (4).01

Corollary. If (R,m) is a Noetherian local ringg = R/m , and> 0 , then the
following are equivalent:

(1)gdR)<n. (2) Tgt,(M,N)=0VM,N finitely generated moeil
(3) Toh1(k, k) =0

Proof. [(1) < (2)] Notice p&(M) <n is true if and only if Tor (M, N) =0VN
which is true if and only if Tor (M, k) =0 .

(2) is true if and only if Tor (M, k)~ Tor(k,M)=0VM , so by the preus
theorem, this is true if Tory(k, k) =0 O

First application of homological methods
We will discuss the lenght dff -regular sequences.

Definition. If R is a Noetherian local rind,C R M is a finitejgnerated? -module,
IM # M, then the gradéM) = maXzy,...,z, M-regular sequenced I Vi}

Example. If (R, m) is a Noetherian local ring, then degth= gradel ).

Theorem. If R is a Noetherian local rind, C R M is a finitedgnerated? -module,
then any two maximalM -regular sequenced in  hheesame length. This length is
equal to mifn | EXX(R/I, M) # 0} .

We will prove this shortly.

Proposition. Let M andN beR -modules;,...,z, aW -regular sequence. Assume
that(z1,..,2,) - N = 0. Then EX(N, M) =~ Hom\N, M /(x1, ...,z,) M) .

Proof. Consided — M 7 M C M/x;M — 0 . Then this implies there is

.. — ExtY(N, M) — E"Y(N, M/, M) — Ext'(N, M) 2 Ext'(N, M) — ...
which means;; EX{N,M)=0Vn (exercise). Thenfo=1

0 — Hom(N, M) 22 Hom(N, M) — Hon{N, M /z, M) — Ext(N, M) — 0 .
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But notice HoniN, M) =0 . This says BXtV, M)~ HqN,M/z;M) . We then
claim thaty € HonN, M /(z1,...,xx—1)M) =0 . Themyp(n) = p(zxn) = ¢(0) = 0
with z; N = 0 withz, ¢ Z(M /(z1, ..., xx-1)M). This impliesp(n) = 0 . So then

0 — Hom(N, M /(z1,...,2p-1)) — HOMR (N, M/ (21, ..., 2,) M)
which induces

. — Ext1(N, M) — Ext"Y(N, M /2, M) — Ext(N, M) 2 Ext(N,M).O

Lecture 34

Theorem. If (R, m) is a Noetherian local ring, then a compléxof free modules over
R is minimal if and only ifd, ® 1z : F,, ® pk — F,,_1 ® g k if and only if the mateés
representing/,, have all entries in the maximal ideal

Minimal free resolutions of a given modulé  arequ up to isomorphism.

Theorem. (Auslander-Biuchsbaum If (R, m) is Noetherian local andt/  is a finitely
generated? -module such that§d/) < oo, thep(@d) + dépth= depth

Example of application

We want to detect when a ring is Cohen-Macaulay.dafe do this with the following
corollary.

Corollary. (a) If there is a finitely generated moddle ithwpdg (M) = dim(R) , then
the ringR is Cohen-Macaulay.

(b) If R is Cohen-Macaulay ant s a finitely geated R -module with pg(M) =
dim(R), thenm € Ass8M) .

Proof. In general, depfi®) < dilR with equality if and ortyis Cohen-Macaulay.
But then dmR < pg@(M)+ depthM = depti® < dil®  holds if and onfly i
depthR = dimR (gives Cohen-Macaulayness) and d@pth= 0 f an@ only ifm €
Ass(M)).0Od

Proof. (of theorem) We will use induction on thejpative dimensiop = pgl(M) . If
p =0, this is equivalent to saying/ is projective, libhe ring is local so this is
equivalent tal/ being free. This implies dgpith) =  défth nn(A/)) = depthiR) .

Now considep = 1 . We pick a minimal free resolution,

O_>R7TLLRTL_>M_>O

wheref has entries im . Recall degth) =  {inffR/m =  BxtM) # 0} (theorem
from last time). This gives

.. — Exti(k, R™) — Ext(k, R") — Ext(k, M) — Ext*l(k, R™) — ...
But notice Ext(k, R%) = @ jnes EXU(k, R) fo€ € {m,n} . But then the map
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@, Ext'(k, R) i @D, Ext(k, R)

is the same matrix g6 . So then from eartier ‘([ExtM) = 0 so the map

EBmExt"'(k, R) L EBnExti(k, R) — Exttl(k, R™) — ...
is in fact0 . Furthermore,
0 — @, Ext(k, R) — Ext(k,M) — ,, Ext''(k,R) — 0.

Then depthM) = mifi| Extk, M) # 0} ,and degth) = njif BXt R) # 0}
Notice Ext(k, M) = 0 implies EXt'(k, R) = 0 . On the other hand, &kt M) # 0
implies Ext(k, R) # 0 or Ext™'(k,R) # 0 sothatdeptRh = depth+ 1= id/)

Finally, considerp > 1 . Take the presentation—~ K — R" — M — 0 . Then
pdg (M) = p implies pe(k) =p—1 . By inductionp — 1+ depthi = depth . Now
we only need to show deptti = depth+1 . We have

.. — Ext~Y(k, M) — Ext(k,K) — Ext(k,R)" — Ext(k,M) — ...
So then deptl? > depth . Then if wedet defith
Ext~1(k, R) = Ext'(k,K) =0,

so that Ext(K, k) = Ext'(k, M) . Then the earlier long sequencedas minimal, so
depthM = depthk — 1 1

Proposition. Let (R,m) be a Noetherian local ring, aid a finitggneratedr -
module. Take

O—-F,—-F 1—-..oF—>F—-M-—0
to be a minimal free resolution. Then
(1) rankF;) = dim TofM, k) . (where the rank is siwecalled Betti # of\/ )
(2) p&k(M)=mn= supi| TotM,k)#0} .
(3) gdR) = pg(k) .
Furthermore,

1) VS reklE ok — ..

where the homology here is Ia1,k) . Then(d,k) =~ F, ® p k.
(2) We know from the previous theorem that(@d) = sup{i| Tof(M,k) #0} = n .
(3) We can compute T6k, M) by taking the minimiuee resolution fok . So

pdr (M) < pdz(k) .

Lecture 35
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Koszul complex

This is the most important example of a complex.Rée a ring withF A R with basis
e1,..,eand\ : E — R alinear form (i&* ). ConstrukL()\) sas follows:

Ki=N\ E=R()

with d; : K; — K;_, given by\'E d N 'E . Then
di(Ul VANRA UL') = Z(—l)jil)\@}j) v1 N ... /\@j VAN V;
j=0
wherev; means we are excluding from the 's.
Exercise (1) If you have two differential forms withe A’E, ndn € A\’FE, then
dwAn) =dwAn+(-1)’wA dy.
(2) Use (1) to show;od;.1 =0V:

We get a complex

0— ARE — N 'E— .- NE 4, pga=x _, R — R/Im(\) — 0.
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