Lecture 16

Theorem. Let R be an affine k-algebra (quotient of a polynomial ring). Then

$$
\left.\operatorname{dim} R=\operatorname{tr} \operatorname{deg}_{k} R=\operatorname{tr} \operatorname{deg}_{k} Q(R)\right)
$$

Proof. Let r be the transcendence degree over k of R. We will prove $r \geq \operatorname{dim} R$. By the Going-Up Theorem, $R=k\left[x_{1}, \ldots, x_{n}\right] / p$. If $r=0$, then that implies R is a field, so that $\operatorname{dim} R=0$. Let $S=k\left[x_{1}, \ldots, x_{n}\right]$. Then it suffices to show if $P \subset Q \subset S$ with $P \neq Q$ then $S / P \rightarrow S / Q$ surjectively.

We claim that $\operatorname{tr} \operatorname{deg}_{k} S / Q<\operatorname{tr} \operatorname{deg}_{k} S / P$. By surjection, the inequality \leq is apparent. So assume we have equality. Write $S / Q=k\left[\beta_{1}, \ldots, \beta_{n}\right]$ and $S / P=$ $k\left[\alpha_{1}, \ldots, \alpha_{n}\right]$, where β_{i} and α_{i} are the appropriate images of x_{1}, \ldots, x_{n}. Let $m=\operatorname{tr}$ $\operatorname{deg}_{k} S / Q$. Then $\beta_{1}, \ldots, \beta_{m}$ form a transcendence basis over k for S / Q an that implies $\alpha_{1}, \ldots, \alpha_{m}$ form a transcendence basis over k for S / P. Now pick the multiplicative system $T=k\left[x_{1}, \ldots, x_{n}\right]-\{0\} \subset S$. We woul dlike to localize. Notice $T \cap P=\emptyset$ and $T \cap Q=\emptyset ;$ otherwise, the $\alpha_{1}, \ldots, \alpha_{m}$ and $\beta_{1}, \ldots, \beta_{m}$ wouldn't be algebraically independent. Then $T^{-1} S=k\left(x_{1}, . ., x_{m}\right)\left[x_{m+1}, \ldots, x_{n}\right]$. Then

$$
T^{-1} S / P\left(T^{-1} S\right)=k\left(\alpha_{1}, \ldots, \alpha_{m}\right)\left[\alpha_{m+1}, \ldots, \alpha_{n}\right]
$$

and it

$$
\text { ht } p+\operatorname{coht} p=\operatorname{dim} R .
$$

Proof. By Noether normalization,

$$
k \subseteq k\left[Z_{1}, \ldots, Z_{r}\right] \subseteq R
$$

with $r=\operatorname{tr} \operatorname{deg}_{k} R=\operatorname{dim} R$. Let ht $p=h$. By homework exercise, $R \subset S \subseteq Q$ with $P=Q \cap R$ and $R \subset S$ an itnegral extension, $\operatorname{dim} R=\operatorname{dim} S$, ht $p=\mathrm{ht} Q$, and coht $P=\operatorname{coht} Q$. We can assume $R=k\left[Z_{1}, \ldots, Z_{r}\right]$.

Hint: The previous argument shows that $\exists y_{1}, \ldots, y_{r}$ such that R is integral over $k\left[y_{1}, \ldots, y_{r}\right]$ having the property $p \cap k\left[y_{1}, \ldots, y_{r}\right]=\left(y_{1}, \ldots, y_{h}\right)$ (improved version of Noether normalization). Then $\operatorname{ht}\left(y_{1}, \ldots, y_{r}\right)=h, \operatorname{coht}\left(y_{1}, \ldots, y_{r}\right)=r-h$ so the sum is r.

Lecture 17

Graded rings and modules

If A^{N} is a graded ring, S a collection of groups, $\left(S_{d}\right)_{d \in \mathbb{N}}$ such that $S=\bigoplus_{d>0} S_{d}$ homogeneous of degree d, and $S_{d} S_{e} \subseteq S_{d+e}$. In part, S_{0} is a ring, S is an S_{0}-algebra.

Example. If $S=R\left[x_{1}, \ldots, x_{n}\right]$ is graded, $\operatorname{deg} R=0$ and $\operatorname{deg} x_{i}=1$ with

$$
S=\bigoplus_{d \geq 0} R\left[x_{1}, \ldots, x_{n}\right]_{d},
$$

where each term is the ring of homogeneous polynomials of degree d. There exist many other gradings on polynomial rings, by assigning $\operatorname{deg} x_{i}=e_{i} \in \mathbb{N}$.

Example. Look at $S=k\left[x_{1}, \ldots, x_{n}\right] / \mathcal{I}=\bigoplus_{d \geq 0} k\left[x_{1}, \ldots, x_{n}\right]_{d} / \mathcal{I}_{d}$ where \mathcal{I} is a homogeneous ideal (generated by homogeneous elements).

Fix S graded. Then a graded S-module M is a collection of Abelian groups $\left\{M_{e}\right\}_{e \in \mathbb{N}}$ such that $M=\bigoplus_{e \geq 0} M_{e}$. The operation $S_{d} M_{e} \subseteq M_{d+e}$. In part, each M_{e} is an S_{0}-module.

Example. $M=k\left[x_{1}, \ldots, x_{n}\right] / \mathcal{I}$ is a graded module over $k\left[x_{1}, \ldots, x_{n}\right]$.
We will now introduce the Hilbert polynomial and function.
Definition. The function $f: \mathbb{N} \rightarrow \mathbb{Q}$ is called polynomial-like if there exists a polynomial $P \in \mathbb{Q}[x]$ such that $f(n)=P(n)$ for $n \gg 0$. Furthermore, $\operatorname{deg} f=\operatorname{deg} P$.

Lemma. For $f: \mathbb{N} \rightarrow \mathbb{Q}$ a function, define $\Delta f: \mathbb{N} \rightarrow \mathbb{Q}$ to be $\Delta f(n)=$ $f(n+1)-f(n)$. Then f is polynomial-like of degree r if and only if Δf is polynomiallike of degree $r-1$. $(\operatorname{deg} 0=-1)$

Proof. First, for all $p \geq q \in \mathbb{N}, f(p)-f(q)=\sum_{k=q}^{p-1} \Delta f(k)$. Furthermore, for every $r \in \mathbb{N}-\{0\}, \Delta\left(\frac{n!}{r!}\right)=\frac{r!n!}{(r-1)!}$. We can use these two facts to obtain the lemma.

Note: For a finitely-generated graded module M decomposable into submodules, we can always assume the generators of M are homogeneous.

Theorem. Let $S=\bigoplus_{d \geq 0} S_{d}$ be a graded ring such that $S_{0}=k$ a field, and S is finitely generated over k (as an algebra) by $a_{1}, \ldots, a_{r} \in S_{1}$. Then for every finitely generated graded module $M=\bigoplus_{n \geq 0} M_{n}$ over S, the function $h_{M}(n):=\operatorname{dim}_{k} M_{n}$ is polynomial-like of degree less than r.

Proof. We can use induction on r. If $r=0$, then $S=S_{0}=k$ is a field. Take M to be a finitely generated module, then say by $x_{1}, \ldots, x_{k}, \operatorname{deg} d_{1} \leq \ldots \leq d_{k}$. That implies $M_{n}=0$ for all $n>d_{k}$ so $h_{M}(n)=0$ (degree -1).

Now assume $r>0$. Consider $\varphi_{r}: M \rightarrow M$ given by multiplication by a_{r}. Then $a_{r} \in S_{1}$ (has degree 1), so $\varphi_{r}\left(M_{n}\right) \subseteq M_{n+1}$. Then for all n, we have an exact sequence

$$
0 \rightarrow K_{n}=\operatorname{ker}\left(\varphi_{r}\right) \rightarrow M_{n} \xrightarrow{\varphi_{r}} M_{n+1} \rightarrow C_{n}=\operatorname{coker}\left(\varphi_{r}\right) \rightarrow 0 .
$$

Then $K:=\underset{n \geq 0}{\bigoplus} K_{n}$ and $C:=\bigoplus_{n \geq 0} C_{n}$ are graded modules over S. Then $C \subseteq M \rightarrow>K$ so that both C and K are finitely generated algebras over $R \rightsquigarrow h_{C}(n), h_{K}(n)$ are welldefined, so that $\operatorname{dim}_{k} K_{n}-\operatorname{dim}_{k} M_{n}+\operatorname{dim}_{k} M_{n+1}-\operatorname{dim}_{k} C_{n}=0$. Hence,

$$
\Delta h_{M}(n)=h_{M}(n+1)-h_{M}(n)=h_{C}(n)-h_{K}(n)
$$

Then by construction, $a_{r} \cdot K=0$ and $a_{r} \cdot C=0$. So in fact, K and C are graded modules over $S^{\prime}=k\left[a_{1}, \ldots, a_{r-1}\right] \subsetneq S$. Then by induction, h_{C} and h_{K} are polynomial-like of degree $\leq r-2$ so that Δh_{M} is as well and hence h_{M} is polynomial-like of degree less than r by our lemma.

Definition. The function h_{M} given in the previous theorem is the Hilbert function of M. If $h_{M}(n)=P_{M}(n)$ for $n \gg 0, P_{M}$ is the Hilbert polynomial of M.

Example. If $S=k\left[x_{1}, \ldots, x_{n}\right]=\underset{m \geq 0}{\bigoplus} S_{m}$, then $S_{m}=k\left[x_{1}, \ldots, x_{n}\right]_{m}=\{$ space of homogeneous polynomials of degree $m\}$ and

$$
h_{S}(m)=\binom{n-1+m}{m}=\binom{n-1+m}{n-1}=\frac{(m+n-1) \cdot \ldots \cdot(m+1)}{(n-1)!}=\frac{1}{(n-1)!} m^{n-1}+\underbrace{\mathcal{O}\left(m^{n-2}\right)}_{\text {remainder }} .
$$

Remark: Notice $\operatorname{dim} S=\operatorname{deg} h_{S}+1$.

Lecture 18

Artinian Rings

Definition. A ring R is Artinian if it satisfies the descending chain condition (DCC) on ideals, i.e., there exists a decreasing chain of ideals $I_{1} \supseteq \ldots \supseteq I_{m} \supseteq \ldots$ so that there exists an $n \in \mathbb{Z}^{+}$such that the chain stabilizes after n, that is, $I_{n}=I_{n+1}=\ldots$ holds. The same definition holds for modules with respect to inclusions of submodules.

Examples. (1) \mathbb{Z} is not Artinian.
(2) $\mathbb{Z} / d \mathbb{Z}$ is Artinian.
(3) $k\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}, \ldots, x_{n}\right)^{m}$ with $m \geq 1$ is Artinian.
(4) Product of fields $k_{1} \times \ldots \times k_{r}$ for $r \geq 2$ and k_{i} fields.

Lemma 1. If R is Artinian and a domain, then R is a field.
Proof. Pick $a \in R$. Then we have a chain $(a) \supseteq\left(a^{2}\right) \supseteq \ldots \supseteq\left(a^{m}\right) \supseteq \ldots$ By the DCC, there exists an n such that $\left(a^{n}\right)=\left(a^{n+1}\right)$ which implies there is a $b \in R$ so that $a^{n}=b a^{n+1}$, which means $a^{n}(1-b a)=0$, so that a has an inverse b.

Lemma 2. If R is Artinian, then every prime ideal in R is maximal, and there are only finitely many.

Proof. If $p \subseteq R$ is a prime, then R / \underline{p} is Artinian and a domain, so by the previous lemma, it is a field, and hence p is maximal. To show there are finitely many, notice the family

$$
\left\{\underline{m}_{1} \cap \ldots \cap \underline{m}_{k} \mid \underline{m}_{i} \text { maximal in } R\right\}
$$

has a minimal element with respect to inclusion. Now say $I=\underline{m}_{1} \cap \ldots \cap \underline{m}_{k}$ is minimal. Then take $\underline{m} \subseteq R$ to be maximal. Then $m \cap I=\underline{m} \cap \underline{m}_{1} \cap \ldots \cap \underline{m}_{k} \in \mathcal{F}$. But $m \cap I \subseteq$ I is minimal so that $m \cap I=I$. But then $\underline{m} \subseteq \underline{m}_{1} \cap \ldots \cap \underline{m}_{k}$ where \underline{m} and each \underline{m}_{i} are prime. Hence, $\exists i$ such that $\underline{m}=\underline{m}_{i}$.
Remark: We can use this lemma to show that all Artinian rings are a finite product of local Artinian rings. (i.e., Chinese Remainder Theorem).

Definition. If R is a ring and $M \neq 0$ is an R-module, then M is simple if it has no submodules different from 0 and itself. Then $R x \subseteq M$ for M simple implies $R x \cong M$, and hence $R x \cong R / \operatorname{Ann}(x)$. Hence M is simple if and only if $\operatorname{Ann}(x)$ is maximal. Hence, M simple implies $M \cong R / m$ for some maximal ideal m.

Definition. A composition series of M is a finite filtration:

$$
M=M_{0} \supseteq M_{1} \supseteq \ldots \supseteq M_{n}=0
$$

such that M_{i} / M_{i+1} is simple for all $i=0, \ldots, n-1$.

Jordan-Hölder Theory

If the composition series exists, then the length of any two is the same:

$$
\ell_{R}(M)=\text { length }(M)= \begin{cases}\text { length of any such series } & \text { if a composition series exists } \\ \infty & \text { otherwise }\end{cases}
$$

Furthermore $\ell_{R}(M)<\infty$ if and only if M is Artinian and Noetherian. Also,

$$
0 \rightarrow M \rightarrow N \rightarrow P \rightarrow 0 \text { implies } \ell_{R}(N)=\ell_{R}(M)+\ell_{R}(P)
$$

for an exact sequence of R-modules. If M is a k-vector space, then $\ell(M)=\operatorname{dim}_{k} M$.
Example. For (R, \underline{m}),

$$
\begin{gathered}
R \supseteq \underline{m} \supseteq \underline{m}^{2} \supseteq \ldots \\
R / \underline{m} \oplus \underline{m} / \underline{m}^{2} \oplus \underline{m}^{2} / \underline{m}^{3} \oplus \ldots \\
\underline{m} \supseteq I \supseteq \underline{m}^{k} \Rightarrow R / I \oplus I / I^{2} \oplus I^{2} / I^{3} \oplus \ldots
\end{gathered}
$$

$\underline{m}^{k} / \underline{m}^{k+1}$ has finite length $\left(\operatorname{dim}_{R / \underline{m}} \underline{m}^{k} / \underline{m}^{k+1}<\infty\right)$. Then $\underline{m}^{n}=\underline{m}^{n+1}$ implies that $\underline{m}^{n}=0$ by Nakayama's Lemma. Then

$$
\ell(R)=\ell(R / \underline{m})+\ell\left(\underline{m} / \underline{m}^{2}\right)+\ldots+\ell\left(\underline{m}^{n-1} / \underline{m}^{n}\right) .
$$

Then $\underline{m}=\left(x_{1}, \ldots, x_{n}\right)$ (a system of parameters), and $\underline{m}^{k} / \underline{m}^{k+1}=\{$ homogeneous polynomials of degree k in n variables $\}$. Then $\operatorname{dim}_{R / \underline{m}} \underline{m}^{k} / \underline{m}^{k+1}=\binom{n-1+k}{k}$.

Proposition. For M a finitely-generated module and R a Noetherian ring, the following are equivalent:
(1) $\ell_{R}(M)<\infty$
(2) All primes in $\operatorname{Ass}(M)$ are maximal.
(3) All primes in $\operatorname{Supp}(M)$ are maximal.

Remark: Notice this implies $\operatorname{Ass}(M)=\operatorname{Supp}(M)$
Proof. [(1) $\Rightarrow(2)$] By our earlier lemma, there is a filtration $M=M_{0} \supseteq \ldots \supseteq M_{n}=0$ such that $M_{i-1} / M_{i} \cong R / \underline{p}_{i}$ for \underline{p}_{i} prime, with $\operatorname{Ass}(M) \subseteq\left\{p_{1}, \ldots, p_{n}\right\}$, and

$$
\infty>\ell_{R}(M)=\sum \ell_{R}\left(M_{i-1} / M_{i}\right)=\sum \ell_{R}\left(R / \underline{p}_{i}\right)
$$

But then $\infty>\ell_{R}\left(R / p_{i}\right)$ so that R / \underline{p}_{i} is an Artinian R-module, and it must also be a domain. Hence p_{i} is maximal by the earlier lemma.
$[(2) \Rightarrow(3)]$ We know $\operatorname{Ass}(M) \subseteq \operatorname{Supp}(M)$, and they have the same minimal primes. Pick a prime $Q \in \operatorname{Supp}(M)$. Whether or not it is minimal, $\exists P \subseteq Q$ that is minimal, so this means that $P \in \operatorname{Ass}(M)$ meaning it is maximal, and hence Q is maximal.
$[(3) \Rightarrow(1)]$ Exercise: $\forall p_{i}$ they are contained in $\operatorname{Supp}(M)$. If p_{i} are all maximal, then R / \underline{p}_{i} is all fields, so $\ell_{R}\left(R / \underline{p}_{i}\right)=1$ and hence we have a composition series, and $\ell_{R}(M)=n<\infty$.

Lecture 19

Theorem A. Let R be a Noetherian ring. The following are equivalent:
(i) R is Artinian.
(ii) Every prime is maximal.
(iii) Every associated prime is maximal.

Proof. We know (i) implies (ii) from lemma 2 last time; (ii) implies (iii) is obvious; and (iii) implies (i) is true by (2) implies (1) in the proposition from last time.

Theorem B. A ring R is Artinian if and only if $\ell_{R}(R)<\infty$.
Proof. Let $\ell_{R}(R)<\infty$. Then obviously R is Artinian and Noetherian. Now we claim there exist maximal ideals $\underline{m}_{1}, \ldots, \underline{m}_{k}$ such that $\underline{m}_{1} \cdot \ldots \cdot \underline{m}_{k}=0$ (since then $\underline{m}_{1} \ldots \underline{m}_{k} \supseteq$ $\underline{m}_{1} \ldots \underline{m}_{k} \underline{m}_{k+1}$ has to stop by the descending chain condition, so apply Nakayama's Lemma). We have $R \supseteq \underline{m}_{1} \supseteq \underline{m}_{1} \underline{m}_{2} \supseteq \ldots \supseteq \underline{m}_{1} \ldots \underline{m}_{k}=0$. Then each $N_{i}=\underline{m}_{1} \ldots \underline{m}_{i-1} /$ $\underline{m}_{1} \cdots \underline{m}_{i} \rightsquigarrow R / \underline{m}_{i}$-moduli (vector space). Notice $I M=0 \Longrightarrow M$ is an R / I-module. Also, $\ell_{R / m_{i}}\left(N_{i}\right)<\infty$ implies $\ell_{R}\left(N_{i}\right)<\infty$ (because R is Artinian), and then the fact ℓ_{r} is additive in filtrations implies $\ell_{R}(R)<\infty$.

Theorem C. A ring R is Artinian if and only if R is Noetherian and every prime ideal is maximal.

Proof. We proved the adverse in theorem A. By theorem $\mathrm{B}, \ell_{R}(R)<\infty$ so that R is Noetherian, and then by Theorem A we know each prime ideal is maximal.

Hilbert function and dimension

We can now look at graded rings of the form $S=\bigoplus_{d \geq 0} S_{d}$ with S_{0} Artinian. Then there exists a Hilbert polynomial of positive degree such that S is generated by S_{1} / S_{0}.

Definition. If (R, \underline{m}) is a local ring, then an ideal of definition for R is $I \subseteq R$ such that there exists a $k \geq 1$ with $\underline{m}^{k} \subseteq I \subseteq \underline{m}$.

Lemma. An ideal I is of definition if and only if R / I is Artinian.
Proof. (Sketch) I is an ideal of definition if and only if $\operatorname{rad}(I)=\underline{m}$ (so there does not exist non-maximal primes containg I).

Definition. If $I \subseteq(R, \underline{m})$ is an ideal of definition with M a finitely-generated R module, then the associated graded ring $\operatorname{gr}_{I}(R)=\bigoplus_{n \geq 0} I^{n} / I^{n+1}$. The associated graded module $\operatorname{gr}_{I}(M)=\bigoplus_{n \geq 0} I^{n} M / I^{n+1} M$.

Remark. If a_{1}, \ldots, a_{r} are generators for I, then $\bar{a}_{1}, \ldots, \bar{a}_{r}$ generate I^{m} / I^{2}.

$$
\operatorname{gr}_{I}(R) \text { over } q r_{0}=R / I
$$

- R / I is Artinian, as before.
- If $M / I M$ is finitely generated over R / I then it is Artinian, which implies for all $k \geq 1, \ell_{R}\left(R / I^{k}\right)<\infty, \ell_{R}(M / I M)<\infty$ and so $\cdot \ell_{R}\left(I^{k-1} M / I^{k} M\right)<\infty\left(I^{k}\right.$ is also an ideal of definition).
- $h_{g r_{I}(M)}(n)=\ell_{R}\left(I^{n} M / I^{n+1} M\right)$. By the Hilbert polynomial theorem, this is polynomial-like of degree $\leq r-1$ (for $I=\left(a_{1}, \ldots, a_{r}\right)$).

Definition. The Hilbert-Samuel function of M (with respect to I) is

$$
S_{M}^{I}(n)=\ell_{R}\left(M / I^{n} M\right)<\infty
$$

Proposition. The Hilbert-Samuel function is polynomial-like of degree $\leq r$.
Proof. There exists an exact sequence

$$
0 \rightarrow I^{n} M / I^{n+1} M \rightarrow M / I^{n+1} M \rightarrow M / I^{n} M \rightarrow 0
$$

So that for all $n, \Delta S_{M}^{I}(n)=S_{M}^{I}(n+1)-S_{M}^{I}(n)=h_{\operatorname{gr}_{I}(M)}(n)$ and so by the earlier bullet point statement, S_{M}^{I} is polynomial-like of degree $\leq r$. (where ΔS_{M}^{I} is as defined in the lemma in Lecture 17)

Proposition. The degree of $S_{M}^{I}(n)$ does not depend on I (call it $d(M)$).
Proof. Start with the fact I is an ideal of definition, i.e., there is a k such that $\underline{m}^{k} \subseteq I \subseteq \underline{m}$. Then we can look at S_{M}^{I} and $S \frac{m}{M}$, and if we can prove they are equal we're done since the latter is ideal invariant. For each $p \geq 1$, we get $\underline{m}^{k p} \subseteq I^{p} \subseteq \underline{m}^{p}$. Then $S_{M}^{m}(k p) \geq S_{M}^{I}(p) \geq S_{m}^{m}(p)$ for every p , so $\operatorname{deg} S_{M}^{I}=\operatorname{deg} S_{M}^{m}$.

Lecture 20

Proposition. Setting as above [last time], for any exact sequence of finitely generated R-modules, $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$, we have $S_{M^{\prime}}^{I}(n)+S_{M}^{I}(n)=S_{M}^{I}(n)+r(n)$ where $r(n)$ is polynomial like of degree $<d(M)$, with non-negative leading coefficients.

Proof. We have an exact sequence

$$
0 \rightarrow M^{\prime} /\left(M^{\prime} \cap I^{n} M\right) \rightarrow M / I^{n} M \rightarrow M^{\prime \prime} / I^{n} M^{\prime \prime}>0 .
$$

Let's say $M_{n}^{\prime}:=M^{\prime} \cap I^{n} M$. From the above sequence, we get by the additivity of the Hilbert function that $\ell_{R}\left(M^{\prime} / M_{n}^{\prime}\right)$ (implies $\ell_{R}\left(M^{\prime} / M_{n}^{\prime}\right)$ is polynomial-like). Now notice for all $m, I^{n+m} M^{\prime} \subseteq I^{n+m} M \cap M^{\prime}=M_{n+m}^{\prime}$ (since $M^{\prime} \subset M$). The Artin-Reese lemma states there exists an m such that for each $n \geq m, I M_{n}^{\prime}=M_{n+1}^{\prime}$ with $\left(I^{k}\left(M^{\prime} \cap I^{n} M\right)\right)=M^{\prime} \cap I^{n+k} M$. Hence, we get $I^{n+m} M^{\prime} \subseteq M_{n+m}^{\prime}=I^{n} M m^{\prime}$ [ArtinReese Lemma] $\subseteq I^{n} M^{\prime}$. Therefore, $\ell_{R}\left(M^{\prime} / I^{n+m} M^{\prime}\right) \geq \ell_{R}\left(M^{\prime} / M_{n+m}^{\prime}\right) \geq \ell_{R}\left(M^{\prime} / I^{n} M^{\prime}\right)$. Notice the first term in this inequality equals $S_{M^{\prime}}^{I}(n+m)$ and the latter $S_{M^{\prime}}^{I}(n)$. Then make
$n \rightarrow \infty$ and we get that $S_{M^{\prime}}^{I}(n)$ and $\ell_{R}\left(M^{\prime} / M_{n}^{\prime}\right)$ have the same degree and same leading coefficient. Then define $r(n):=\ell_{R}\left(M^{\prime} / M_{n}^{\prime}\right)-S_{M^{\prime}}^{I}(n)$. This is a polynomial-like term of degree $<d\left(M^{\prime}\right) \leq d(M)$ with a non-negative leading coefficient.

Let M be a finitely generated module over R. Then

$$
\operatorname{dim} \mathrm{R}= \begin{cases}\operatorname{dim}(R / \operatorname{Ann}(M)) & \text { if } M \neq 0 \\ -1 & M=0\end{cases}
$$

Lemma. The following are equivalent:
(1) $\operatorname{dim} M=0$
(2) $\ell_{R}(M)<\infty$
(3) All primes $\underline{p} \in \operatorname{Supp}(M)$ are maximal.
(4) All associated primes $p \in \operatorname{Ass}(M)$ are too.

Definition. If (R, \underline{m}) is a Noetherian local ring with M finitely generated over R, the Chevalley dimension of M is

$$
\delta(M):=\min \left\{r \in \mathbb{N} \mid \exists a_{1}, \ldots, a_{r} \in \underline{m} \text { s.t. } \ell_{R}\left(M /\left(a_{1}, \ldots, a_{r}\right) M\right)<\infty\right\} .
$$

This definition makes sense because $\ell_{R}(M / \underline{m} M)<\infty$.
Theorem. (Dimension Theorem) If M is finitely generated over (R, \underline{m}) a Noetherian local ring, then $\operatorname{dim} M=d(M)=\delta(M)$.

Corollary 1. The $\operatorname{dim} M<\infty$ for any M a finitely generated module over R. In particular, $\operatorname{dim} R<\infty$.

Corollary 2. Each $p \subseteq R$ prime has finite height, so the set of primes in R satisfy the descending chain condition.

Proof. $\operatorname{dim} R_{\underline{p}}=$ ht \underline{p}.
Corollary 3. $\operatorname{dim} R \leq \operatorname{dim}_{k} \underline{m} / \underline{m}^{2}$ where $k=R / \underline{m}$ (embedding dim of R).
Proof. If $\overline{a_{1}}, \ldots, \overline{a_{r}}$ is a basis of $\underline{m} / \underline{m}^{2}$, then a_{1}, \ldots, a_{r} generate \underline{m} so by corollary 1 , $\operatorname{dim} R \leq r$.

Corollary 4. The $\operatorname{dim} k\left[\left[x_{1}, \ldots, x_{n}\right]\right]=n$ for k a field. Then $\left(x_{1}, \ldots, x_{n}\right)=\underline{m}$ implies by corollary 1 that $\operatorname{dim} R \leq m$. Furthermore, $(0) \subseteq\left(x_{1}, x_{2}\right) \subseteq \ldots \subseteq\left(x_{1}, \ldots, x_{n}\right)$ implies $\operatorname{dim} R \geq n$.

Lecture 22

Theorem. (Generalized Krull principal ideal theorem) If R is a Noetherian local ring and $p \subseteq R$ is a prime, the following are equivalent:
(1) ht $p \leq n$ (\# of generators).
(2) \exists ideals $I \subset R$ generated by n elements such that p is minimal over I.

Proof. [(1) $\Rightarrow>(2)]$ We have $\operatorname{dim} R_{\underline{p}}=$ ht $\underline{p} \leq n$. Then there exists $J \subseteq R_{\underline{p}}$ generated by $\left(\frac{a_{1}}{s}, \ldots, \frac{a_{n}}{s}\right), a_{i} \in R$ such that J is an ideal of definition for R_{p}. But then

$$
\left(\underline{p} R_{\underline{p}}\right)^{k} \subseteq J \subseteq p R_{p} \Leftrightarrow J \text { is } p R_{p} \text {-primary }
$$

so that $I=\left(a_{1}, \ldots, a_{n}\right) \subseteq \underline{p}$ a minimal prime. So then in $R_{\underline{p}}, I R_{\underline{p}}$ is $\underline{p} R_{\underline{p}}$-primary which means $I R_{p}$ is an ideal of definition so that $\operatorname{dim} R_{p} \leq n$.

Theorem. (Krull principal ideal theorem) If R is Noetherian with $x \notin Z(R)$ and $x \notin R^{*}$, then for every minimal prime \underline{p} over (x), ht $p=1$.

Proof. Since $x \notin R^{*}$, by the previous theorem ht $p \leq 1$. Assume ht $p=0$. But we know that $R \underline{p} \neq 0$. Notice if $\frac{x}{1}=0 \in R_{p}$ then $\exists s \notin p$ such that $s x=0$, but this is impossible since $x \notin Z(R)$. Since $Z(R)=\bigcup_{p \in \operatorname{Ass}(R)} p$, we have $x \in p \subseteq Z(R)$, our desired contradiction.

Definition. Let (R, \underline{m}) be a Noetherian local ring with M a finitely-generated R module and $\operatorname{dim} M=n$. Then a system of parameters for M is a set $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq \underline{m}$ such that $\ell_{R}\left(M /\left(a_{1}, \ldots, a_{n}\right) M\right)<\infty$. (exists because $\operatorname{dim} M=\delta(M)$)

Examples. (1) Let $I=\left(a_{1}, \ldots, a_{n}\right)$ be an ideal of definition. Then $\left\{a_{1}, \ldots, a_{n}\right\}$ is a system of parameters.
(2) $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is a system of parameters.

Theorem. Take M to be a finitely generated module over a Noetherian local ring. Take $a_{1}, \ldots, a_{t} \in \underline{m}$. Then $\operatorname{dim} M /\left(a_{1}, \ldots, a_{t}\right) M \geq \operatorname{dim} M-t$. In addition, we have equality if and only if $\left\{a_{1}, \ldots, a_{t}\right\}$ is part of a system of parameters.

Proof. Let $a \in M$ and define $N:=M / a M$. Let $r=\operatorname{dim} N=\delta(N)$. Then \exists $b_{1}, \ldots, b_{r} \in R \quad$ such that $\quad \ell_{R}\left(N /\left(b_{1}, \ldots, b_{r}\right)\right)<\infty$. But $N /\left(b_{1}, \ldots, b_{r}\right) N \cong$ $M /\left(a, b_{1}, \ldots, b_{r}\right)$. So then $\delta(M) \leq r+1=\delta(M / a M)+1$.

Now use induction on t. Start with $P=M /\left(a_{2}, \ldots, a_{t}\right) M$. By induction, $\operatorname{dim} P \geq \operatorname{dim} M+(t-1)$. For equality, [...see proof in book]

Examples. (1) $\{a\}$ is an M-sequence if and only if $a \notin \mathfrak{J}(M)$.
(2) In $k\left[x_{1}, \ldots, x_{n}\right]$ or $k\left[\left[x_{1}, \ldots, x_{n}\right]\right],\left\{x_{1}, . .,\right\}$

Lecture 23

Theorem. If M is a finitely generated module over (R, \underline{m}) a Noetherian local ring, and if a_{1}, \ldots, a_{t} is an M-regular sequence, then $\left\{a_{1}, \ldots, a_{t}\right\}$ is part of a system of parameters.

Proof. By induction on t, for $t=1$ we have $\operatorname{dim} M / a_{1} M=\operatorname{dim} M-1$. So by one of the theorem from earlier, $\left\{a_{i}\right\}$ is part of a system of parameters. If $t>1$, then assume $\left\{a_{1}, \ldots, a_{t-1}\right\}$ is an M-regular sequence which is part of a system of parameters. Then $\operatorname{dim} \quad M /\left(a_{1}, \ldots, a_{t}\right) M=\operatorname{dim} \quad M-(t-1)$. Hence, $\operatorname{dim} \quad M /\left(a_{1}, \ldots, a_{t}\right) M=$ $\operatorname{dim} M /\left(a_{1}, \ldots, a_{t-1}\right) M-1=\operatorname{dim} M-t+1-1=\operatorname{dim} M-t$. Again by the theorem from last time, this means $\left\{a_{1}, \ldots, a_{t}\right\}$ is part of a system of parameters.

Depth. Let M be a finitely generated module over (R, \underline{m}). The depth of M in R (or $\underline{m})$ is the supremum over the length of all M-regular sequences, i.e., $\sup \left\{t \mid\left\{a_{1}, \ldots, a_{t}\right\}\right.$ an M-regular sequence $\}$.

Note: Later, we will see the depth equals the length of any maximal M-regular sequence.

Proposition. depth $M \leq \operatorname{dim} M$.
Proof. Every M-regular sequence extends to a system of parameters.
Definition. A module M as above is Cohen-Macaulay (CM) if depth $M=\operatorname{dim} M$.
A Noetherian local ring (R, \underline{m}) is CM if it is CM over itself.
Proposition. If M is a finitely generated module over Noetherian R, then if $\left\{a_{1}, \ldots, a_{t}\right\}$ is such that a^{k} is M-regular, then the sequence contained in $\mathfrak{J}(R)=\bigcup_{\underline{m} \subset R} \underline{\underline{m}}$, and then any permutation is again an M-regular sequence. In part, if (R, \underline{m}) is local, then any permutation of any M-regular sequence is an M-regular sequence.

Proof. It is enough to prove that $\left\{a_{2}, a_{1}, \ldots, a_{t}\right\}$ is an M-regular sequence. We need to prove that $a_{2} \notin Z(M)$, and $a_{1} \notin Z\left(M / a_{2} M\right)$. Then say there exists an $x \in M$ such that $a_{1} \bar{x}=0$ if and only if $a_{1} x \in a_{2} M$ meaning $\exists y \in M$ such that $a_{1} x=a_{2} y$. Then $y \in a_{1} M$ so $\exists z$ such that $y=a_{1} z$. But then $a_{1}=a_{1} a_{2} z$ so that $a_{1}\left(x-a_{2} z\right)=0$, but $a_{1} \notin Z(M)$ so that $x=a_{2} z \in a_{2} M$ so $\bar{x}=0$.

Definition. A Noetherian local ring (R, \underline{m}) is regular if the maximal ideal \underline{m} can be generated by a_{1}, \ldots, a_{r}, where $r=\operatorname{dim} R$.

Examples. (1) If $\operatorname{dim} R=0$, then R is regular if and only if R is a field.
(2) If $\operatorname{dim} R=1$, then R is regular if and only R is a discrete valuation ring.
(3) If $R=k\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is regular local then x_{1}, \ldots, x_{n} must be a regular system of parameters.
(4) For X an algebraic variety, $x \in X$ is smooth if and only if $\mathcal{O}_{X, x}$ is a regular local ring.
(5) If $R=k[X, Y]\left(Y^{2}-X^{3}\right)$ is a cusp, then $\operatorname{dim} R=\operatorname{dim} k[X, Y]-1=1$.

Lecture 24

Theorem 1. If R is a regular local ring then R is a domain.
Theorem 2. If (R, \underline{m}) is a regular local ring of $\operatorname{dim} r$ with $a_{1}, \ldots, a_{t} \in \underline{m}$ for $1 \leq t \leq r$, then the following are equivalent:
(1) a_{1}, \ldots, a_{t} can be extended to a regular system of parameters.
(2) $\overline{a_{1}}, \ldots, \overline{a_{t}}$ are linearly independent over k in $\underline{m} / \underline{m}^{2}$.
(3) $R /\left(a_{1}, \ldots, a_{t}\right)$ is a regular local ring.

Proof. $\quad[(1) \Longleftrightarrow(2)]$ By Nakayam's Lemma, $a_{1}, \ldots, a_{t}, b_{t+1}, \ldots, b_{r}$ is a regular system of parameters if and only if $\overline{a_{1}}, \ldots, \overline{a_{t}}, \overline{b_{t+1}}, \ldots, \overline{b_{r}}$ is a basis for $\underline{m} / \underline{m}^{2}$.
$[(1) \Longrightarrow(3)]$ Say $\left\{a_{1}, \ldots, a_{t}, b_{t+1}, \ldots, b_{r}\right\}$ is a regular system of parameters. Then for any system of parameters, by an older theorem, $\operatorname{dim} R /\left(a_{1}, \ldots, a_{t}\right)=r-t$. So then $\left\{\overline{b_{t+1}}, \ldots, \overline{b_{r}}\right\}$ generate a maximal ideal in $R /\left(a_{1}, \ldots, a_{t}\right)$ so that $R /\left(a_{1}, \ldots, a_{t}\right)$ is regular.
$[(3) \Longrightarrow(1)]$ We have $R /\left(a_{1}, \ldots, a_{t}\right)$ regular so that $\left\{\overline{b_{t+1}}, \ldots, \overline{b_{r}}\right\}$ is a regular system of parameters. So then pick any $x \in \underline{m}$, so that $\bar{x}=\sum_{j=t+1}^{r} c_{j} \overline{b_{j}}$ for some c_{j}, so that $x-\sum c_{j} b_{j} \in\left(a_{1}, \ldots, a_{r}\right)$. Hence, $x=\sum c_{j} b_{j}+\sum c_{i} a_{i}$ so $x \in\left(a_{1}, \ldots, a_{t}, b_{t+1}, \ldots, b_{r}\right)=$ \underline{m}.

Proof. (of Theorem 1) We will prove by induction on $r=\operatorname{dim} R$. If $r=0$, then R is a field and if $r=1$ then R is a discrete value ring. If $r>1, \exists x \in \underline{m} / \underline{m}^{2}$. Let the minimal primes of R be $p_{1}, \ldots, \underline{p}_{t}$ (want all $p_{i}=0$). Then we can also assume $x \notin p_{i} \forall i$. If $\underline{m} \subseteq \underline{m}^{2} \cup \underline{p}_{1} \cup \ldots \cup \underline{p}_{t}$, then $\underline{m} \subseteq \underline{m}^{2}$ or $\underline{m}_{i} \subseteq \underline{p}_{i}$ for some i. Now look at $R /(x)$. Then $0 \neq \bar{x} \in \underline{m} / \underline{m}^{2}$. By Theorem 2, $R /(x)$ is regular, but $\operatorname{dim} R /(x)=r-1$, so inductively, this is a domain. Then since (x) is prime, $\exists i$ s.t. $p_{i} \subseteq(x)$ so we claim $\underline{p}_{i}=x p_{i}$ for $x \in \underline{m}$, and by Nakayama's Lemma, $\underline{p}_{i}=0$. Then we claim $y \in \underline{p}_{i}$ implies $\exists z$ such that $y=z x$ with $x \notin p_{i}$ so that $z \in p_{i}$. \square

Theorem. Let (R, \underline{m}) be a Noetherian local ring. Then R is regular if and only if \underline{m} can be generated by a regular sequence. In addition, the length of any such regular sequence is equal to $\operatorname{dim} R$.

Proof. If R is regular, take $\left\{a_{1}, \ldots, a_{r}\right\}$ to be regular for any system of parameters. Then for all t, by Theorem 2 we have $R /\left(a_{1}, \ldots, a_{t}\right)$ is regular, so by Theorem $1, R /\left(a_{1}, \ldots, a\right)$ is a domain. So hence $a_{t+1} \notin \mathcal{Z}\left(R /\left(a_{1}, \ldots, a_{t}\right)\right)$. On the other hand, let $\underline{m}=\left(a_{1}, \ldots, a_{s}\right)$. Then by the previous theorem $\left\{a_{1}, \ldots, a_{s}\right\}$ is part of a system of parameters. So then $0=\operatorname{dim} R / \underline{m}=\operatorname{dim} R-s=r-s$. Then $s=r$ implies R is regular.

The reason for this theorem is that it gives the following important corollary:
Corollary. A regular local ring is Cohen-Macaulay.

Proof. We always know depth $R \leq \operatorname{dim} R$. On the other hand, by the theorem depth $R \geq \operatorname{dim} R$.

Homological algebra

Now we start over, and learn some homological algebra in order to prove some more important theorems later on.

Fix a ring A. Then a chain complex C is a sequence of R-modules C_{n} with $n \in \mathbb{Z}$ so that

$$
\ldots \rightarrow C_{n+1} \rightarrow C_{n} \rightarrow C_{n-1} \rightarrow \ldots
$$

with $d_{i}: C_{i} \rightarrow C_{i-1}$ for R-modules hom s.t. $d_{n} \circ d_{n+1}=0 \forall n$.
We call $\mathcal{Z}_{n}\left(C_{\bullet}\right):=\operatorname{ker} d_{n} n$-cycles, and $B_{n}\left(C_{\bullet}\right):=\operatorname{Im} d_{n+1}$ an n-boundary. Then $d_{n} d_{n+1}=0$ implies $B_{n} \subseteq Z_{n}$.

We can define the n-th homology R-module of C_{\bullet} by $H_{n}\left(C_{\bullet}\right):=\mathcal{Z}_{n}\left(C_{\bullet}\right) / B_{n}\left(C_{\bullet}\right)$. Furthermore, a homology of complexes is a collection of R-module homomorphisms,

$$
\begin{gathered}
f: C_{\bullet} \rightarrow D_{\bullet}, f_{n}: C_{n} \rightarrow D_{n} \\
\ldots \rightarrow C_{n+1} \rightarrow C_{n} \rightarrow C_{n-1} \rightarrow \ldots \\
\downarrow \quad \downarrow f_{n} \quad \downarrow \\
D_{n+1} \rightarrow D_{n} \rightarrow D_{n-1}
\end{gathered}
$$

Then we can easily check $f_{n}\left(Z_{n}\right) \subseteq Z_{n}$ and $f_{n}\left(B_{n}\right) \subseteq B_{n}$. So then f induces homomorphisms $H_{n}\left(f_{\bullet}\right): H_{n}\left(C_{\bullet}\right) \rightarrow H_{n}\left(D_{\bullet}\right)$ (on homologies).

Lecture 25

Definition. Let $f, g: C$. $\rightarrow D$. be modules of complex. A homotopy between f and g is a collection of $h_{n}: C_{n} \rightarrow D_{n+1}$ s.t. $f_{n}-g_{n}=h_{n-1} \circ d_{n}+d_{n+1} \circ h_{n}$.

$$
\begin{gathered}
C_{n} \rightarrow C_{n-1} \\
\swarrow \quad \searrow f_{n}-g_{n} \searrow h_{n-1} \\
D_{n+1} \xrightarrow{d_{n+1}} D_{n} \longleftarrow /
\end{gathered}
$$

Lemma. If f and g are homotopic, then $H_{n}(f)=H_{n}(g)$.
Proof. (Homework)
Theorem. (Snake lemma) Assume we have two exact sequences with commutative diagrams.

OKAY forget trying to type up this diagram just look up the lemma.
Theorem. A short exact sequence of complexes

$$
0 \rightarrow C . \stackrel{f}{\rightarrow} D . \xrightarrow{g} E . \rightarrow 0
$$

means there exists a long exact sequence of homology modules

$$
\ldots \rightarrow H_{n+1}\left(E_{\bullet}\right) \xrightarrow{\partial} H_{n}(C \cdot) \xrightarrow{H_{n}(f)} H_{n}(D .) \xrightarrow{H_{n}(g)} H_{n}\left(E_{\bullet}\right) \xrightarrow{\gamma} H_{n-1}(C \cdot) \rightarrow \ldots
$$

Proof. Steal from someone else's lecture notes.
Lemma. Every commutative diagram of short exact sequences

induces a commutative diagram of long exact sequences of homology groups

$$
\begin{gathered}
\ldots \rightarrow H_{n+1}\left(E_{\bullet}\right) \rightarrow H_{n}\left(C_{\bullet}\right) \longrightarrow H_{n}(D .) \longrightarrow H_{n}\left(E_{\bullet}\right) \rightarrow H_{n-1}\left(C_{\bullet}\right) \rightarrow \ldots \\
\quad \downarrow \\
\ldots+H_{n}\left(C_{\bullet}^{\prime}\right) \rightarrow \ldots
\end{gathered}
$$

Definition. An R-module P is projective if for all surjective homomorphisms of R modules, for all homomorphisms $f: P \rightarrow N^{\prime}$, there exists a homomorphism $h: P \rightarrow M$ making the ofllowing diagram commutative:

$$
\begin{gathered}
P \\
h \swarrow \quad \downarrow f \\
M \rightarrow N \rightarrow 0
\end{gathered}
$$

where the h is called a lift.
Proposition. Every free module is projective.
Proof. He proved it in class, but see Dummit and Foote.
See also the Dummit and Foote theorem about equivalent conditions for projective modules!

Lecture 27

Theorem. (Baer's Criterion) $\quad E$ is an injective R-module if and only if $\forall I \subseteq R$ ideal and $\forall f: I \rightarrow E, \exists h: R \rightarrow E$ extending f.
Proof. (\Longrightarrow) By definition, $M \subseteq M_{0} \subseteq N$.
($\Longleftarrow)$ If $0 \rightarrow M \stackrel{f^{\prime}}{\rightarrow} N$ with $M \xrightarrow{g^{\prime}} E$ and $N \stackrel{h^{\prime}}{\rightsquigarrow} E$ (lifts to). Then \exists a maximal extension $h_{0}: M_{0} \rightarrow E$ with $h_{0}: M_{0} \rightarrow E$ and $\left.h_{0}\right|_{M}=g^{\prime}$ (by Zorn's Lemma).

If $M_{0}=N$, we are done. Assume it's not, then $\exists x \subseteq N \backslash M_{0}$. If $I:=\left\{r \in R \mid r x \in M_{0}\right\}$, then define $f: I \rightarrow E$ by $f(r)=h_{0}(r x)$. This can be extended to $h: R \rightarrow E$. Define $h_{0}^{\prime}: M_{0}+R x \rightarrow E$ (with the former a proper subset of M_{0}) with $h_{0}^{\prime}\left(x_{0}+r x\right)=$ $h_{0}\left(x_{0}\right)+r h(1)$ (with $x \in M_{0}$). This is well-defined and extens h_{0} so we have a contradiction.

Theorem. Every R-module can be embedded in an injective R-module.
Proposition 1. Every abelian group can be embedded in a divisible group (iff injective).
Proof. If $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$ with $\mathbb{Z} \subseteq \mathbb{Q}$ and $\mathbb{Z}^{I} \subseteq \mathbb{Q}^{I}$. Then $M \cong F / K \subseteq$ $\mathbb{Q}^{I} / \mathbb{K}$ divisible.
Proposition 2. If D is a divisible abelian group and R is a commutative ring, then $E:=\operatorname{Hom}_{\mathbb{Z}}(R, D)$ is an injective R-module.

Proof. Note that $\operatorname{Hom}_{\mathbb{Z}}(R, D)$ is an R-module (we can always do $r f(s)=f(r s)$). We want $0 \rightarrow M \rightarrow N$ with $M \rightarrow E$ and N lifting to E. Then $\operatorname{Hom}(N, E) \rightarrow$ $\operatorname{Hom}(M, E) \rightarrow 0$. We want $\operatorname{Hom}_{R}\left(N, \operatorname{Hom}_{\mathbb{Z}}(R, D)\right) \rightarrow \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{\mathbb{Z}}(R, D)\right)$. The former is isomorphic to $\operatorname{Hom}_{\mathbb{Z}}\left(N \otimes_{R} R, D\right)$ and the latter to $\operatorname{Hom}_{\mathbb{Z}}\left(M \otimes_{R} R, D\right)$ and again $N \otimes{ }_{R} R \cong N$ and $M \otimes_{R} R \cong M$ for D divisible implying we have injective over \mathbb{Z} for $\operatorname{Hom}_{\mathbb{Z}}(N, D) \rightarrow \operatorname{Hom}_{\mathbb{Z}}(M, D) \rightarrow 0$.

Proof (of theorem). We have $M \hookrightarrow$ injective module, so M an R-module implies M an abelean group implies (by Proposition 1) that $\exists M \hookrightarrow D$ a divisible group. Let $E=$ $\operatorname{Hom}_{\mathbb{Z}}(R, D)$ injective over R as by Proposition 2. We then claim that there is an injective $\quad R$-module homomorphism $\quad \varphi: M \rightarrow E \quad$ with $\quad m \mapsto f_{m} \quad$ for $f_{m}(r)=r m \in M \subseteq D$. Then if φ is injective, $f_{m_{1}}=f_{m_{2}}$ implies $f_{m_{1}}(1)=f_{m_{2}}(1)$ so that $\quad m_{1}=m_{2}$. If φ is an R-module homomorphism, $s \in R$ means $f_{s m}(r)=r s m=(r s) m=f_{m}(s r)=\left(s f_{m}\right)(r)$.

Resolutions

Definition. The left resolution of a module M is an exact sequence

$$
\ldots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

It is a projective (free) resolution if all the P_{i} 's are projective (free). A deleted resolution is one of the form $P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow 0$ (i.e., P_{0} is not exact anymore).

Similar definition for a right resolution.
Lemma. Every module M admits projective (in fact free) and injective resolutions.
Proof. We have $0 \rightarrow K_{0} \rightarrow F_{0} \rightarrow M$ and $0 \rightarrow K_{1} \rightarrow F_{1} \rightarrow K_{0} \rightarrow 0$, and continue like this.

Definition. An R-module M is flat if the functor $M \otimes_{R} \ldots$ is exact, i.e., for all short exact sequences $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of R-modules, then $0 \rightarrow M \otimes_{R} A \rightarrow M \otimes_{R} B$ $\rightarrow M \otimes{ }_{R} C \rightarrow 0$ is exact.

Examples. (1) R is flat over R because $\mathrm{R} \otimes_{R} \mathrm{~A} \cong \mathrm{~A}$ for any A.
(2) (Exercise) $\bigoplus M_{i}$ is flat $\Leftrightarrow \forall M_{i}$ is flat.
(3) Every projective R-module is flat.

Lecture 28

Flat modules

$M \otimes_{R} \ldots$ is right exact $\forall M R$-modules.
Proof. Start with a short exact sequence $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$. We want to show

$$
M \otimes_{R} A \xrightarrow{1 \otimes f} M \otimes_{R} B \xrightarrow{1 \otimes g} M \otimes_{R} C \rightarrow 0
$$

is everywhere exact.
First, notice $1 \otimes g$ is surjective: $1 \otimes g\left(\sum m_{i} \otimes b_{i}\right)=\sum m_{i} \otimes g\left(b_{i}\right)=\sum m_{i} \otimes c_{i}$. Second, (2) $\operatorname{Im}(1 \otimes f) \subseteq \operatorname{ker}(1 \otimes g):(1 \otimes g) \circ(1 \otimes f)=1 \otimes g \circ f=0$.
Furthermore, $\operatorname{ker}(1 \otimes g) \subseteq \operatorname{im}(1 \otimes f):=D$. Then by (2) we have $D \subseteq \operatorname{ker}(1 \otimes g)$ implies \exists induced map $\bar{g}: M \otimes_{R} B-\gg M \otimes_{R}$. Then

$$
\bar{g} \circ \pi(m \otimes b)=\bar{g}(m \otimes b)=m \otimes g(b) \text { and } \operatorname{ker}(\bar{g} \circ \pi)=\operatorname{ker}(1 \otimes g)
$$

We claim that it is enough to show \bar{g} is an isomorphism. Construct the inverse

$$
\bar{h}: M \otimes_{R} C \rightarrow M \otimes_{R} D / D \text { with } M \times C \text { lift to } M \otimes_{R} C \text { and } M \times C \xrightarrow{h} M \otimes_{R} D / D .
$$

Then

$$
h: M \times C \rightarrow M \otimes_{R} B / D \text { with } h((m, c))=m \otimes b \text { for any } b \text { s.t. } g(b)=c .
$$

This is well-defined and R-bilinear.
Examples (of flatness)
(1) R flat over R
(2) \forall projective module is flat over R
(3) \mathbb{Z}-module (abelian group) is flat if and only if it is torsion-free.
(remember for these every torsion-free abelian group is free so it is projective and flat).
We say it is not torsion free if $\exists n \in \mathbb{Z}$ such that $n x=0$..
(4) \mathbb{Q} is flat, but not projective over \mathbb{Z}. It is torsion free so it is flat. But it is not free so it is not projective.
(5) (Homework) (a) For $R \subset S$, if S is flat over R and M is flat over an S-module, then M is flat over S. (b) If $R \subset S, M$ is a flat R-module implies $S \otimes_{R} M$ is flat over S. (c) If M is flat over R, then $S \subseteq R$ is a multiplication system then $S^{-1} M$ is flat over $\mathrm{S}^{-1} R$.

Derived functions

(1) Right exact functors: If F is right exact on R modules, then if we take A to be an R module, we can construct a projective resolution

$$
\begin{aligned}
\ldots & \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow A \rightarrow 0 \\
& \ldots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow 0
\end{aligned}
$$

Apply F to P_{0} and we get $F\left(P_{0}\right) \rightarrow$ commplex. Then if $F: A \rightarrow B \rightarrow C$ with $0 \rightarrow A_{1} \rightarrow B \quad$ and $\quad A \rightarrow A_{1} \quad$ and $\quad B \rightarrow B_{1} \rightarrow 0$ and $\quad 0 \rightarrow B \rightarrow C$, then $F\left(A_{1}\right) \rightarrow F\left(B_{1}\right) \rightarrow F\left(C_{1}\right)$ is an exact sequence. We know $F(f)=F\left(B_{1}\right)$. Then $F(g)=F(v) \circ F(u)$ and $\operatorname{Ker}(F(u)) \cong K(\subset \operatorname{ker}(F(g))$ because $F(v)$ is not injective.

Definition. The left derived functors of F are the functors $\left(L_{n} F\right)(A)=H_{n}\left(F\left(P_{0}\right)\right)$.
This doesn't depend on the resolution.
We also get an induced long exact sequence:

$$
\ldots \rightarrow\left(L_{m+1} F\right)(C) \rightarrow\left(L_{n} F\right)(A) \rightarrow\left(L_{n} F\right)(B) \rightarrow\left(L_{n} F\right)(C) \rightarrow\left(L_{n-1} F\right)(A) \rightarrow \ldots
$$

Our "favorite gadget" will be:
Definition. $\operatorname{Tor}_{i}^{R}(M, \ldots):=L_{i} M \otimes_{R}$
Lemma. If P is projective, then $\operatorname{Tor}_{i}^{R}(M, P)=0 \forall i>0$ and $\operatorname{Tor}_{0}^{R}(M, P) \cong M \otimes_{R} P$.
Proposition. The following are equivalent:
(1) M is flat over R (2) $\operatorname{Tor}_{n}^{R}(M, N)=0 \forall n \geq 1, \forall N$ (3) $\operatorname{Tor}_{i}^{R}(M, N)=0 \forall N$

Proof. (1) \Longrightarrow (2) $\mathrm{P}_{0} \rightarrow N$ is a projective resolution with $1 \otimes_{R} M$ flat. Then

$$
P_{0} \otimes_{R} M \rightarrow N \otimes_{R} M \rightarrow 0 \text { is exact. }
$$

So then $\operatorname{Tor}_{n}^{R}(M, N)=0 \forall n \geq 1$.
$(2) \Longrightarrow$ (3) Obvious.
(3) \Longrightarrow (1) $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ gives

$$
\ldots \rightarrow \operatorname{Tor}_{1}^{R}(M, B) \rightarrow \operatorname{Tor}_{1}^{R}(M, C) \rightarrow M \otimes_{R} A \rightarrow M \otimes_{R} B \rightarrow M \otimes_{R} C \rightarrow 0
$$

Lecture 30

Left exact functors

Start with $\left(\operatorname{Hom}_{R}(M, \ldots)\right)$ and $\left(\operatorname{Hom}_{R}(\ldots, M)\right)$. Then for F left exact on an R-module, let A be an R-module and take injection resoultion:

$$
0 \rightarrow A \rightarrow E_{0} \rightarrow E_{1} \rightarrow \ldots
$$

with E_{0} a deleted resolution.Then $F\left(E_{0}\right)$ is a complex (like in the last lecture). Then

$$
\left.\left(R^{n} F\right)(A)=H^{n}\left(F\left(E_{0}\right)\right) \text { (independent of } E_{0}\right) .
$$

For an exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$, we get a long exact sequence

$$
\ldots \rightarrow\left(R^{n-1} F\right)(C) \rightarrow\left(R^{n} F\right)(A) \rightarrow R^{n} F(B) \rightarrow\left(R^{n} F\right)(C) \rightarrow\left(R^{n+1} F\right)(A) \rightarrow \ldots
$$

Definition. $\operatorname{Ext}_{R}^{n}(M, \ldots):=R^{n} \operatorname{Hom}_{R}(M, \ldots)$
Lemma. $\forall F$ left or right exact and $\forall A R$-modules,

$$
\left(L_{0} F\right)(A) \cong F(A) \cong\left(R^{0} F\right)(A)
$$

Proof. We have a right exact sequence $P_{0} \rightarrow A \rightarrow 0$ with $F\left(P_{1}\right) \rightarrow F\left(P_{0}\right) \rightarrow 0$ and $F\left(P_{0}\right) \rightarrow F(A)$. By definition, $L_{0} F(A)$ is a homology at $F\left(P_{0}\right)$, specifically, $F\left(P_{0}\right) / \operatorname{Im}\left(F\left(P_{1}\right) \rightarrow F\left(P_{0}\right)\right)$. Since $P_{1} \rightarrow P_{0} \rightarrow A \rightarrow 0$, applying F to a right exact sequence, $F\left(P_{1}\right) \rightarrow F\left(P_{0}\right) \rightarrow F(A) \rightarrow 0$ is exact.

Lemma. $\quad F$ is left exact and E is injective implies $\left(R^{n} F\right)(E)=0 \forall n>0$. In particular

$$
\operatorname{Ext}_{R}^{n}(M, E)=0 \forall n>0, \forall M
$$

Remark: Can also look at $\operatorname{Ext}_{R}^{n}(\ldots, N)=R^{n} \operatorname{Hom}_{R}(\ldots, N)$. Can do it by picking projective resolutions.

Proposition. The following are equivalent:
(1) M is projective.
(2) $\operatorname{Ext}_{R}^{n}(M, N)=0 \forall n \geq 1, \forall N$.
(3) $\operatorname{Ext}_{R}^{n}(M, N)=0 \quad \forall N$.

Proof. (1) \Longrightarrow (2) We have a projective resolution $0 \rightarrow M \rightarrow M \rightarrow 0$ so then

$$
\operatorname{Ext}_{R}^{n}(M, M)=R^{n} \operatorname{Hom}_{R}(M, N)=0
$$

$(2) \Longrightarrow$ (3) Clear.
(3) \Longrightarrow (1) Take the exact sequence $0 \rightarrow G \rightarrow F \rightarrow M \rightarrow 0 \quad(*)$. Then apply $\operatorname{Hom}_{R}(\ldots, N):$
$0 \rightarrow \operatorname{Hom}_{R}(M, N) \rightarrow \operatorname{Hom}_{R}(F, N) \rightarrow \operatorname{Hom}_{R}(G, N) \rightarrow \operatorname{Ext}_{R}^{n}(M, N) \rightarrow \operatorname{Ext}_{R}^{1}(F, N) \rightarrow \ldots$.
Take $N=G$. Then

$$
0 \rightarrow \operatorname{Hom}_{R}(M, G) \rightarrow \operatorname{Hom}_{R}(F, G) \rightarrow \operatorname{Hom}_{R}(G, G) \rightarrow 0
$$

Then (*) splits, so M is a direct summand of F, so M is projective.
Proposition. The following are equivalent:
(1) N is injective.
(2) $\operatorname{Ext}_{R}^{n}(M, N)=0 \forall n \geq 1 \forall M$.
(3) $\operatorname{Ext}_{R}^{1}(M, N)=0 \forall M$.

Proof. Homework exercise.
Examples. (1) $\operatorname{Ext}_{R}^{i}(R, M)=0 \forall i>0 \forall M$ (from proposition). Then by definition $\operatorname{Ext}_{R}^{0}(R, M)=\operatorname{Hom}_{R}(R, M) \cong M$.
(2) $x \in R$ is neither a unit nor a zero-divisor. We want to compute $\operatorname{Ext}_{R}^{i}(R / x R, M)$ for any M. We have

$$
0 \rightarrow R \rightarrow R \rightarrow R / x R \rightarrow 0
$$

We get the long exact sequence
$0 \rightarrow \operatorname{Hom}_{R}(R / x R, M) \rightarrow \operatorname{Hom}_{R}(R, M) \rightarrow \operatorname{Hom}_{R}(R, M) \rightarrow \operatorname{Ext}^{1}(R / x R, M) \rightarrow \operatorname{Ext}^{1}(R, M)$ and

$$
\ldots \rightarrow \operatorname{Ext}^{i-1}(R, M) \rightarrow \operatorname{Ext}^{i}(R / x R, M) \rightarrow \operatorname{Ext}^{i}(R, M) \rightarrow \ldots
$$

for $\quad i \geq 2$. Then $\operatorname{Ext}^{1}(R / x R, M) \cong M / x M, \quad$ and $\quad \operatorname{Hom}_{R}(R / x, M)=\{m \in M \mid$ $x m=0\}=$ socle of x.
(3) $\operatorname{Tor}_{i}^{R}(M, R)=0 \quad \forall i>0$, and $\operatorname{Tor}_{0}^{R}(M, R) \cong M \otimes_{R} R \cong M$. As in (2), compute $\operatorname{Tor}_{i}^{R}(R / x R, M) \forall i$.
(4) For any $I \subseteq R$, what is $\operatorname{Tor}_{i}(R / I, M)$?

Lecture 31

(4) We want to compute $\operatorname{Tor}_{i}^{R}(R / x R, M)$ where x is not a unit or zero divisor.

$$
0 \rightarrow R \xrightarrow{x} R \rightarrow R / x R \rightarrow 0
$$

So we need $1 \otimes M$. So we get

$$
\operatorname{Tor}_{1}(R, M) \rightarrow \operatorname{Tor}_{1}(R / x R, M) \rightarrow R \otimes_{R} M \rightarrow R \otimes_{R} M \rightarrow R / x R \otimes_{R} M \rightarrow 0
$$

But by isomorphisms,

$$
0 \rightarrow\{m \mid x \cdot m=0\} \rightarrow M \rightarrow M \rightarrow M / x M \rightarrow 0
$$

So $\{m \mid x \cdot m=0\} \cong \operatorname{Tor}_{1}(R / x R, M)$, and $M / x M=\operatorname{Tor}_{0}(R / x R, M)$. So

$$
\operatorname{Tor}_{i}(R, M) \rightarrow \operatorname{Tor}_{i}(R / x R, M) \rightarrow \operatorname{Tor}_{i}(R, M)
$$

for $i \geq 2$.
(5) Take $I \subseteq R$ any ideal. Then $\operatorname{Tor}_{i}(R / I, M)=$? $\forall i$. Then

$$
0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0
$$

and we tensor with M.

$$
\begin{gathered}
0 \rightarrow \operatorname{Tor}_{1}(R / I, M) \rightarrow I \otimes_{R} M \rightarrow M \rightarrow M / I M \rightarrow 0 \\
\operatorname{Tor}_{i}(R, M) \rightarrow \operatorname{Tor}_{i}(R / I, M) \rightarrow \operatorname{Tor}_{i-1}(I, M) \rightarrow \operatorname{Tor}_{i-1}(R, M)
\end{gathered}
$$

Then for $i \geq 2, \operatorname{Tor}_{i}(R / I, M) \cong \operatorname{Tor}_{i-1}(I, M)$. Notice we know

$$
\operatorname{Tor}_{1}(R / I, M)=\operatorname{ker}\left(I \otimes_{R} M \rightarrow I M\right)(a \otimes m \mapsto a m)
$$

Homological Dimension

Definition. If M is an R-module, take a projective resolution

$$
P .:=0 \rightarrow P_{n} \rightarrow \ldots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

of length n. The projective (homological) dimension of M, denoted $\operatorname{pd}_{R}(M)$ is the infimum (minimum) over the length of all such resolutions (could be ∞).
Notice $\operatorname{pd}_{R}(M)=0 \Leftrightarrow M$ is projective.

Lemma. Let R be a principal ideal domain, and M an R-module. Then $\operatorname{pd}_{R}(M) \leq 1$. Equality holds if and only if the torsion part of M is non-trivial.
Proof. Notice there is an exact sequence $0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ where F_{0} is free and F_{1} is the kernel. Since F_{0} is free, F_{1} must be torsion-free as it is on a principal ideal domain. Hence it must be free. Thus, we have found a resolution of length 1 , so that $\operatorname{pd}_{R}(M) \leq 1$. Indeed $\operatorname{pd}_{R}(M)=0$ if and only if M is projective if and only if M is free if and only if (since we're on a PID) the torsion part is trivial.

Definition. The global homological dimension of R is $\operatorname{gd}(R)=\sup _{M} \operatorname{pd}_{R}(M)$ (it could be infinite).

Examples. (1) If R is a field, then $\operatorname{gd}(R)=0$.
(2) If R is a PID, then $\operatorname{gd}(R)=1$.

Theorem. The following are equivalent for a given R-module M :
(1) $\operatorname{pd}_{R}(M) \leq n$. (2) $\operatorname{Ext}_{R}^{i}(M, N)=0 \forall i>n \forall N R$-modules.
(3) $\operatorname{Ext}^{n+1}(M, N)=0 \forall N R$-modules.
(4) If there is an exact sequence $0 \rightarrow Q_{n} \rightarrow P_{n-1} \rightarrow \ldots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$ where P_{i} are all projective, then Q_{n} is also projective.

Proof. (4) $\Longrightarrow(1)$ and $(2) \Longrightarrow(3)$ are true by definition and inspection.
(1) $\Longrightarrow(2)$ Take a proj. resolution of $M: 0 \rightarrow P_{0} \rightarrow M \rightarrow 0$ such that length $\left(P_{\cdot}\right) \leq n$. Then $\operatorname{Ext}_{R}^{i}(M, N)=R^{i} \operatorname{Hom}(P \cdot, N)=0$ for $i>n$ by basic notion of homology.
(3) \Longrightarrow (4) $0 \rightarrow Q_{n} \rightarrow P_{n-1} \rightarrow P_{n-2} \rightarrow \ldots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow M$ where we have $P_{n-1} \rightarrow K_{n-1} \rightarrow 0$ and $0 \rightarrow K_{n-1} \rightarrow P_{n-2}, \quad \ldots, \quad$ and $P_{2} \rightarrow K_{1} \rightarrow 0,0 \rightarrow K_{1} \rightarrow P_{1}$, $0 \rightarrow K_{1} \rightarrow P_{0}$, and $P_{1} \rightarrow K_{0} \rightarrow 0$, where K_{i} is the so-called i th syzygy module. This gives

$$
\begin{aligned}
& 0 \rightarrow K_{0} \rightarrow P_{0} \rightarrow M \rightarrow 0 \\
& 0 \rightarrow K_{1} \rightarrow P_{1} \rightarrow K_{0} \rightarrow 0
\end{aligned}
$$

We know that $\operatorname{Ext}_{R}^{n+1}(M, N)=0 \forall N$. From last time, Q_{n} is projective if and only if $\operatorname{Ext}_{R}^{1}\left(Q_{n}, N\right)=0 \forall N$. Then

$$
\operatorname{Ext}^{n}(M, N) \rightarrow \operatorname{Ext}^{n}\left(P_{0}, N\right) \rightarrow \operatorname{Ext}^{n}\left(K_{0}, N\right) \rightarrow \operatorname{Ext}^{n+1}(M, N)=0
$$

Since P_{0} is projective, and Ext of anything projective is 0, we have $\operatorname{Ext}^{n}\left(P_{0}, N\right)$. So we've shifted the index, so that $\operatorname{Ext}^{n}\left(K_{0}, N\right)=0 \forall N$. Then

$$
0=\operatorname{Ext}^{n}\left(P_{1}, N\right) \rightarrow \operatorname{Ext}^{n-1}\left(K_{1}, N\right) \rightarrow \operatorname{Ext}^{n}\left(K_{0}, N\right)=0
$$

so this implies $\operatorname{Ext}^{n-1}\left(K_{1}, N\right)=0 \forall N$. Continue this way. Then eventually $Q_{m} \cong K_{n-1}$. Then $\operatorname{Ext}^{1}\left(Q_{n}, N\right)=0 \forall N$.

Corollary. $\mathrm{gl}(R)=\inf \left\{n \mid \operatorname{Ext}_{R}^{n}(M, N)=0 \forall M \forall N\right\}$.
Definition. Similar definition for injective resolution and injective dimension $\left(\mathrm{id}_{R}\right)$.

Theorem. For R-module $N, n \geq 0$, the following are equivalent:
(1) $\operatorname{id}_{R}(N) \leq n$. (2) $\operatorname{Ext}_{R}^{i}(M, N)=0 \forall i>n \forall M$ (3) $\operatorname{Ext}_{R}^{n+1}(M, N)=0 \forall M$
(4) \forall exact sequences $0 \rightarrow N \rightarrow E_{0} \rightarrow \ldots \rightarrow E_{n-1} \rightarrow Q_{n} \rightarrow 0$ with E_{i} injective, Q_{n} is also injective.

Proof. Homework.
Corollary. $\operatorname{gd}(R)=\sup _{N}\left\{\operatorname{id}_{R}(N)\right\}=\inf _{N}\left\{n \mid \operatorname{Ext}_{R}^{n+1}(M, N)=0 \forall M\right\}=$ $\inf \left\{n \mid \operatorname{Ext}^{n+1}(M, N)=0 \forall M\right\}$.

Lecture 32

This lecture we will apply homological methods to obtain some results.
Proposition. Start with (R, \underline{m}) a Noetherian local ring, with $k=R / \underline{m}$ the residue field. Let M be a finitely generated R-module. Then M is free if and only if $\operatorname{Tor}_{1}^{R}(M, k)=0$.
Proof. (\Longrightarrow) If M is free, then it is projective, so that $\operatorname{Tor}_{i}(M, N)=0 \forall i>0, \forall N$. (\Longleftarrow) Take a minimal set of generators for M, say x_{1}, \ldots, x_{n}. Take a free module F of rank n, with basis e_{1}, \ldots, e_{n}. We have

$$
0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0 \text { with } e_{i} \mapsto x_{i} .
$$

We then tensor with $k=R / \underline{m}$, so we get

$$
\operatorname{Tor}_{1}(M, k) \rightarrow K \otimes_{R} k \rightarrow F \otimes_{R} k \rightarrow M \otimes_{R} k \rightarrow 0
$$

Notice $\operatorname{Tor}_{1}(M, k)=0, F \otimes_{R} k \cong F / \underline{m} F \cong M / \underline{m} M$ [Nakayama] $\cong M \otimes_{R} k$. But then $K=\underline{m} K$ so by Nakayama's Lemma, $K=0$ which implies $M \cong F$.

Corollary. If (R, \underline{m}) is a Noetherian local ring, with M a finitely generated R-module, then M is free if and only M is projective if and only if M is flat.

Proof. Since M is free, it is projective, and so flat, and so $\operatorname{Tor}_{1}(M, k)=0$ (since all $\operatorname{Tor}_{1}(M, N)=0$ for $n>0$). By the proposition this in turn implies M is free.

Theorem. If (R, \underline{m}) is a Noetherian local ring, and M is a finitely generated R-module, then the following are equivalent:
(1) $\operatorname{pd}_{R}(M) \leq n . \quad$ (2) $\operatorname{Tor}_{i}^{R}(M, N)=0 \forall i>n \forall N R$-modules.
(3) $\operatorname{Tor}_{n+1}^{R}(M, N)=0 \forall N R$-modules.
(4) $\operatorname{Tor}_{n+1}(M, R)=0$.

Proof. $\quad[(1) \Longrightarrow(2)]$ Take a projective resolution $0 \rightarrow P . \rightarrow M \rightarrow 0$ of length $\leq n$.

$$
\operatorname{Tor}_{i}^{R}(M, N)=H_{i}(P \cdot \otimes N)=0 \forall i>n .
$$

$[(2) \Longrightarrow(3) \Longrightarrow(4)]$ Obvious.
$[(4) \Longrightarrow(1)]$ It's enough to show (as was seen in the previous lecture) that if we have an exact sequence

$$
0 \rightarrow Q_{n} \rightarrow P_{n-1} \rightarrow \ldots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

with P_{i} projective, then Q_{n} is projective. So this is what we need to show. By the earlier proposition, we only need to show that $\operatorname{Tor}_{1}\left(Q_{n}, k\right)=0$ (which is much more manageable).

$$
\operatorname{Tor}_{1}\left(Q_{n}, k\right) \cong \operatorname{Tor}_{2}\left(K_{n-2}, k\right) \cong \operatorname{Tor}_{3}\left(K_{n-3}, k\right) \cong \ldots \cong \operatorname{Tor}_{n}\left(K_{0}, k\right) \cong \operatorname{Tor}_{n+1}(M, k)=0
$$

by (4).
Corollary. If (R, \underline{m}) is a Noetherian local ring, $k=R / \underline{m}$, and $n>0$, then the following are equivalent:
(1) $\operatorname{gd}(R) \leq n$.
(2) $\operatorname{Tor}_{n+1}^{R}(M, N)=0 \forall M, N$ finitely generated modules.
(3) $\operatorname{Tor}_{n+1}(k, k)=0$

Proof. $\quad[(1) \Leftrightarrow(2)]$ Notice $\operatorname{pd}_{R}(M) \leq n$ is true if and only if $\operatorname{Tor}_{n+1}(M, N)=0 \forall N$ which is true if and only if $\operatorname{Tor}_{n+1}(M, k)=0$.
(2) is true if and only if $\operatorname{Tor}_{n+1}(M, k) \cong \operatorname{Tor}_{n+1}(k, M)=0 \forall M$, so by the previous theorem, this is true if $\operatorname{Tor}_{n+1}(k, k)=0$.

First application of homological methods

We will discuss the lenght of M-regular sequences.
Definition. If R is a Noetherian local ring, $I \subseteq R, M$ is a finitely generated R-module, $I M \neq M$, then the $\operatorname{grade}_{I}(M)=\max _{n}\left\{x_{1}, \ldots, x_{n}\right.$ M-regular sequence $\left.\mid x_{i} \in I \forall i\right\}$.

Example. If (R, \underline{m}) is a Noetherian local ring, then depth $M=\operatorname{grade}_{\underline{m}}(M)$.
Theorem. If R is a Noetherian local ring, $I \subseteq R, M$ is a finitely generated R-module, then any two maximal M-regular sequences in I have the same length. This length is equal to $\min \left\{n \mid \operatorname{Ext}^{n}(R / I, M) \neq 0\right\}$.

We will prove this shortly.
Proposition. Let M and N be R-modules, x_{1}, \ldots, x_{n} an M-regular sequence. Assume that $\left(x_{1}, . ., x_{n}\right) \cdot N=0$. Then $\operatorname{Ext}^{n}(N, M) \cong \operatorname{Hom}\left(N, M /\left(x_{1}, \ldots, x_{n}\right) M\right)$.

Proof. Consider $0 \rightarrow M \xrightarrow{x_{1}} M \subseteq M / x_{1} M \rightarrow 0$. Then this implies there is

$$
\ldots \rightarrow \operatorname{Ext}^{n-1}(N, M) \rightarrow E^{n-1}\left(N, M / x_{1} M\right) \rightarrow \operatorname{Ext}^{n}(N, M) \xrightarrow{x_{1}} \operatorname{Ext}^{n}(N, M) \rightarrow \ldots
$$

which means $x_{1} \operatorname{Ext}^{n}(N, M)=0 \forall n$ (exercise). Then for $n=1$,

$$
0 \rightarrow \operatorname{Hom}(N, M) \xrightarrow{x_{1}} \operatorname{Hom}(N, M) \rightarrow \operatorname{Hom}\left(N, M / x_{1} M\right) \rightarrow \operatorname{Ext}^{1}(N, M) \rightarrow 0 .
$$

But notice $\operatorname{Hom}(N, M)=0$. This says $\operatorname{Ext}^{1}(N, M) \cong \operatorname{Hom}\left(N, M / x_{1} M\right)$. We then claim that $\varphi \in \operatorname{Hom}\left(N, M /\left(x_{1}, \ldots, x_{k-1}\right) M\right)=0$. Then $x_{k} \varphi(n)=\varphi\left(x_{k} n\right)=\varphi(0)=0$ with $x_{i} N=0$ with $x_{k} \notin Z\left(M /\left(x_{1}, \ldots, x_{k-1}\right) M\right)$. This implies $\varphi(n)=0$. So then

$$
0 \rightarrow \operatorname{Hom}\left(N, M /\left(x_{1}, \ldots, x_{n-1}\right)\right) \rightarrow \operatorname{Hom}_{R}\left(N, M /\left(x_{1}, \ldots, x_{n}\right) M\right)
$$

which induces

$$
\ldots \rightarrow \operatorname{Ext}^{n-1}(N, M) \rightarrow \operatorname{Ext}^{n-1}\left(N, M / x_{1} M\right) \rightarrow \operatorname{Ext}^{n}(N, M) \xrightarrow{x_{1}} \operatorname{Ext}^{n}(N, M) .
$$

Lecture 34

Theorem. If (R, \underline{m}) is a Noetherian local ring, then a complex F. of free modules over R is minimal if and only if $d_{n} \otimes 1_{R}: F_{n} \otimes_{R} \underline{k} \rightarrow F_{n-1} \otimes_{R} \underline{k}$ if and only if the matrices representing d_{n} have all entries in the maximal ideal \underline{m}.

Minimal free resolutions of a given module M are unique up to isomorphism.
Theorem. (Auslander-Büchsbaum) If (R, \underline{m}) is Noetherian local and M is a finitely generated R-module such that $\operatorname{pd}_{R}(M)<\infty$, then $\operatorname{pd}_{R}(M)+\operatorname{depth}(M)=\operatorname{depth}(R)$.

Example of application

We want to detect when a ring is Cohen-Macaulay. We can do this with the following corollary.

Corollary. (a) If there is a finitely generated module M with $\operatorname{pd}_{R}(M)=\operatorname{dim}(R)$, then the ring R is Cohen-Macaulay.
(b) If R is Cohen-Macaulay and M is a finitely generated R-module with $\operatorname{pd}_{R}(M)=$ $\operatorname{dim}(R)$, then $\underline{m} \in \operatorname{Ass}(M)$.
Proof. In general, depth $(R) \leq \operatorname{dim} R$ with equality if and only R is Cohen-Macaulay. But then $\operatorname{dim} R \leq \operatorname{pd}_{R}(M)+$ depth $M=\operatorname{depth} R \leq \operatorname{dim} R$ holds if and only if depth $R=\operatorname{dim} R$ (gives Cohen-Macaulayness) and depth $M=0$ (if and only if $\underline{m} \in$ $\operatorname{Ass}(M)$).

Proof. (of theorem) We will use induction on the projective dimension $p=\operatorname{pd}_{R}(M)$. If $p=0$, this is equivalent to saying M is projective, but the ring is local so this is equivalent to M being free. This implies depth $(M)=\operatorname{depth}(R / \operatorname{Ann}(M))=\operatorname{depth}(R)$.

Now consider $p=1$. We pick a minimal free resolution,

$$
0 \rightarrow R^{m} \xrightarrow{f} R^{n} \rightarrow M \rightarrow 0
$$

where f has entries in \underline{m}. Recall depth $(M)=\inf \left\{i \mid R / \underline{m}=\operatorname{Ext}^{i}(k, M) \neq 0\right\}$ (theorem from last time). This gives

$$
\ldots \rightarrow \operatorname{Ext}^{i}\left(k, R^{m}\right) \rightarrow \operatorname{Ext}^{i}\left(k, R^{n}\right) \rightarrow \operatorname{Ext}^{i}(k, M) \rightarrow \operatorname{Ext}^{i+1}\left(k, R^{m}\right) \rightarrow \ldots
$$

But notice $\operatorname{Ext}^{i}\left(k, R^{\xi}\right) \cong \bigoplus_{\xi \text { times }} \operatorname{Ext}^{i}(k, R)$ for $\xi \in\{m, n\}$. But then the map

$$
\bigoplus_{m} \operatorname{Ex} t^{i}(k, R) \stackrel{\widetilde{f}}{\rightarrow} \bigoplus_{n} \operatorname{Ext}^{i}(k, R)
$$

is the same matrix as f. So then from earlier $x \operatorname{Ext}^{i}(N, M)=0$, so the map

$$
\oplus_{m} \operatorname{Ext} t^{i}(k, R) \stackrel{\widetilde{f}}{\rightarrow} \oplus_{n} \operatorname{Ext}^{i}(k, R) \rightarrow \operatorname{Ext}^{i+1}\left(k, R^{m}\right) \rightarrow \ldots
$$

is in fact 0 . Furthermore,

$$
0 \rightarrow \bigoplus_{n} \operatorname{Ext}^{i}(k, R) \rightarrow \operatorname{Ext}^{i}(k, M) \rightarrow \bigoplus_{m} \operatorname{Ext}^{i+1}(k, R) \rightarrow 0
$$

Then $\operatorname{depth}(M)=\min \left\{i \mid \operatorname{Ext}^{i}(k, M) \neq 0\right\}$, and depth $(R)=\min \left\{i \mid \operatorname{Ext}^{i}(k, R) \neq 0\right\}$. Notice $\operatorname{Ext}^{i}(k, M)=0$ implies $\operatorname{Ext}^{i+1}(k, R)=0$. On the other hand, $\operatorname{Ext}^{i}(k, M) \neq 0$ implies $\operatorname{Ext}^{i}(k, R) \neq 0$ or $\operatorname{Ext}^{i+1}(k, R) \neq 0$ so that depth $R=\operatorname{depth} M+1=\operatorname{pd}_{R}(M)$.

Finally, consider $p>1$. Take the presentation $0 \rightarrow K \rightarrow R^{n} \rightarrow M \rightarrow 0$. Then $\operatorname{pd}_{R}(M)=p$ implies $\operatorname{pd}_{R}(k)=p-1$. By induction, $p-1+\operatorname{depth} K=\operatorname{depth} R$. Now we only need to show depth $K=$ depth $M+1$. We have

$$
\ldots \rightarrow \operatorname{Ext}^{i-1}(k, M) \rightarrow \operatorname{Ext}^{i}(k, K) \rightarrow \operatorname{Ext}^{i}(k, R)^{n} \rightarrow \operatorname{Ext}^{i}(k, M) \rightarrow \ldots
$$

So then depth $R>$ depth K. Then if we let $d=\operatorname{depth} K$,

$$
\operatorname{Ext}^{d-1}(k, R)=\operatorname{Ext}^{d}(k, K)=0,
$$

so that $\operatorname{Ext}^{d}(K, k) \cong \operatorname{Ext}^{d-1}(k, M)$. Then the earlier long sequence has to be minimal, so depth $M=$ depth $K-1$.
Proposition. Let (R, \underline{m}) be a Noetherian local ring, and M a finitely generated R module. Take

$$
0 \rightarrow F_{n} \rightarrow F_{n-1} \rightarrow \ldots \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

to be a minimal free resolution. Then
(1) $\operatorname{rank}\left(F_{i}\right)=\operatorname{dim}_{k} \operatorname{Tor}_{i}(M, k)$. (where the rank is the so-called Betti \# of M)
(2) $\operatorname{pd}_{R}(M)=n=\sup \left\{i \mid \operatorname{Tor}_{i}(M, k) \neq 0\right\}$.
(3) $\operatorname{gd}(R)=\mathrm{pd}_{R}(k)$.

Furthermore,

$$
\begin{equation*}
\ldots \xrightarrow{0} F_{i} \otimes k \xrightarrow{0} F_{i-1} \otimes k \rightarrow \ldots \tag{1}
\end{equation*}
$$

where the homology here is $\operatorname{Tor}_{i}(M, k)$. Then $\operatorname{Tor}_{i}(M, k) \cong F_{i} \otimes_{R} k$.
(2) We know from the previous theorem that $\operatorname{pd}_{R}(M)=\sup \left\{i \mid \operatorname{Tor}_{i}(M, k) \neq 0\right\}=n$.
(3) We can compute $\operatorname{Tor}_{i}(k, M)$ by taking the minimum free resolution for k. So

$$
\operatorname{pd}_{R}(M) \leq \operatorname{pd}_{R}(k)
$$

Lecture 35

Koszul complex

This is the most important example of a complex. Let R be a ring with $E \triangle R^{n}$ with basis e_{1}, \ldots, e and $\lambda: E \rightarrow R$ a linear form (in E^{*}). Construct $K .(\lambda)$ sas follows:

$$
K_{i}=\bigwedge^{i} E \cong R^{\binom{n}{i}}
$$

with $d_{i}: K_{i} \rightarrow K_{i-1}$ given by $\bigwedge^{i} E \xrightarrow{d_{i}} \bigwedge^{i-1} E$. Then

$$
d_{i}\left(v_{1} \wedge \ldots \wedge v_{i}\right)=\sum_{j=0}^{i}(-1)^{j-1} \lambda\left(v_{j}\right) v_{1} \wedge \ldots \wedge \widehat{v}_{j} \wedge \ldots \wedge v_{i}
$$

where \widehat{v}_{j} means we are excluding v_{i} from the \wedge 's.
Exercise. (1) If you have two differential forms with $\omega \in \bigwedge^{p} E$, and $\eta \in \bigwedge^{q} E$, then

$$
\mathrm{d}(\omega \wedge \eta)=\mathrm{d} \omega \wedge \eta+(-1)^{p} \omega \wedge \mathrm{~d} \eta
$$

(2) Use (1) to show $d_{i} \circ d_{i+1}=0 \forall i$.

We get a complex

$$
0 \rightarrow \bigwedge_{R}^{n} E \rightarrow \bigwedge^{n-1} E \rightarrow \ldots \rightarrow \bigwedge^{2} E \xrightarrow{d} E^{d=\lambda} \rightarrow R \rightarrow R / \operatorname{Im}(\lambda) \rightarrow 0
$$

