
Differentiable Manifolds

Lecture 11

Let  be a smooth manifolds. Then  is the algebra of germs of  functions near: − Q G¹:
∞

: : œ 0 1 l 0 1 −. Then  is an ideal of germs that vanish at , with .¹ ¹ D ¹: 3 3 3 3 ::
# e f

Furthermore,  the vector space of linear derivations  is given by˜X Q Ä: :¹ ‘

P +0 � ,0 œ +P 0 � ,P 1

P 01 œ 0 : 1 � 1 : 0

� � � � � �� � � � � � .
, and

Remember we proved that  as a vector space.X Q z Î: : :
# ‡ˆ ‰¹ ¹

Now look at .: − ‘8

Example  (of an element of )  Let . The notation for  isX P 0 œ : − P: 3
7 `0

`<‘ ‘� � � �
3

`
`< :

:
3
¹ − X .

Check that  forms a basis for .` `
`< `<: :

:
8

" 8
¹ ¹ß ÞÞÞß X ‘

Lemma   If  is smooth near , then its Taylor approximation0 À Ä :‘ ‘8
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where  are smooth.+34



Proof  We have

 0 : � œ œ� �@ 0 : � 0 : � > .> 0 : � :� � � � � � � ��' '
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" "
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  .� � �'
!

" ` 0
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So our lemma implies if  is linear and vanishes on , thenP À Ä¹ ‘ ¹: :
#

P 0 œ :� � � �� `0
`<3

@3

i.e., is in the span of . So now by independence, supposeP Ø ß ÞÞÞß Ù` `
`< `<" 8 � � �+ 0 œ !3

`
`<3

for all functions . Take , then , so .0 − 0 œ < œ + œ !a3¹ $: 3 34 3
`<
`<

3

4

In conclusion,  is an -dimensional vector space with basisX 8:
8‘

` `
`< `<: :" 8

¹ ¹ß ÞÞÞß

on  . ˆ ‰¹ ¹: :
# ‡

Î �

Now consider a manifold .Q

Then
  and� � � �� �: ‘ : : ‘‡

�"0 À Y Ä { 0 ‰ À Y Ä� � � �� �: : ‘ : ‘‡1 À Y Ä { 1 ‰ À Y Ä

so we have
: ¹ ¹ ‘ : ¹ ‘ ¹‡ 8 8

: ‡ :: :À Q Ä À Ä Q¶ ¶� � � � � � � �: :� � � � and ,
as well as

: ¹ ¹ ‘ : ¹ ‘ ¹‡ # # 8 # 8 #
: :: :‡À Q Ä À Ä Q¶ ¶� � � � � � � �: :� � � � and .

So in conclusion,  for any chart  defined near , and dim . ToX Q z X : X Q œ 8: ::
8

:� �‘ :

see this, let  be a chart near  and define  on , so that� �Yß : \ Q: 3

\ À D œ D3
3

� � � �# � �:



and so then the "coordinate functions" . Then we can define˜: ¹Ä B ß ÞÞÞß B − 7" 8 :� �
` `
`B `<

�"
3 3
� � � �0 œ 0 ‰ : .

So we have a basis , but note  So any` `
`B `B" 8

ß ÞÞÞß this basis depends on choosing a chart!
time we pick a chart, that determines a basis for  for us.X Q:

Problem   Suppose we take a smooth path  with . We'd5 ‘ ‘
5

À Ä > È < > ß ÞÞÞß < >8
" 8� �� � � �

like to confirm the velocity vector of this path is what we've determined. So we need to

show that we can think of  as  .5w w `
`<

!
� � � � ¹! < !�

3 3 5� �
Definition    Suppose  and  are manifolds and  is a smooth function.Q R 0 À Q Ä R
Then  determines a linear transformation .0 .0 À X Q Ä X R: 0 :� �

Notice then  where .Œ ¹ � � � � � �.0 P 1 œ P 10 1 À R Ä
:

‘

Problem  Check that  and the old definition of  agree in the case of a map.0 .0:

0 À Ä / ß ÞÞÞß /‘ ‘8 7
" 8. In fact, the matrices with respect to bases  are the same.

-----------------------------------
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Lemma   Suppose  is smooth and  then1 À !ß + Ä 1 ! œ 1 ! œ ÞÞÞ œ 1 ! œ !c d � � � � � �‘ w 8� �
1 B œ " � > 1 B> .> 1 B œ 0 B B 0� � � � � � � �'B

8x !

" 8 8�" 88 � � . In particular,  for some smooth  (by
differentiating under the  sign).'
B B " B
8x 8x B 8�" x! !

" "8 8 8�"8�" 8 8

!

"
8�" 8�" 8' '� � � � � � � � � � � �º" � > 1 B> .> œ " � > 1 B> � " � > 1 B .>� � � � � �� �

( ...?)? œ " � > ß .? œ �8 " � > ß .@ œ 1 B� � � � � �8 8�" 8�"� �

0 � T 5 � " (Taylor poly) is a degree -th form (homogeneous polynomial) with smooth
coefficients.
0 � T œ B B B Ä ! B Ä !& &� �k k � �k k 8 where  as 
If  linear,  mod .T 0 ´ T ¹9

#

X Q œ Î: : :
# ‡ˆ ‰¹ ¹ .

Equivalence classes of paths through ,  if they have same velocity.: µ5 5" #

Equivalnce classes of 's "glue by charts".‘8

Tangent bundle
We are taking a  (not top space), .set -

:−Q T
8X Q œ Q ‚ ‘

Tangent bundle of : use the product topology on , .‘ ‘ ‘8 8 8
:−Q :Q ‚ ´ X : ‚ ´ X- e f



Charts: For each chart  on , define  to be a domain of a chart (so� � -Yß Q Y œ Xs: ?−Y :

they are open), define , .: ‘ ‘ ‘ : : :s sÀ Y Ä ‚ ´ X :ß @ Ä : ß . @s 8 8 8
:� � � �� � � �

For the tangent bundles, any smooth map  determines 0 À Q Ä R .0 À XQ Ä XR
given by Hom ..0l œ .0 À X Q Ä X RX : : 0 ::

ˆ ‰� �
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Last time, looked at a polynomial as a map . Then  so: : D À Ä : D œ + � 3,� � � �‚ ‚ w

.: œ + � 3, œ ! : :
+ � ,
� , +D

wŒ . Singular iff ; critical points of  are the zeroes of , so

there are finitely many.

: { 0 À W � R Ä W �R R 0# #  (  is north pole), then  extends to a smooth map
0 À W Ä W 0 R œ R 0s s# # s.t. . Then  has finitely many critical points.� �
Definition regular value   is a  of  if there are no critical points in  (ifB − W 0 0 B# �"� �
0 B œ g B�"� � ,  is a regular value).

B − W 0 B 0# �" is a critical value if  contains a critical point.  has finitely many critical� �
values, so the set of regular values is connected. Observation: The function #B Ä 0 B�"� �
is a locally constant function on the set of regular values.

#  is finite for any regular value .0 B B�"� �
#  for all regular . Then  is constant so  is constant.0 B œ ! B 0 T�"� �
Cor If  is not constant, then  is non-emptyT T !�"� �
Theorem (Sard's Thm)  If  is smooth then the set of critical values has0 À Q Ä Q8 7

measure 0.
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Last time:

Def   A smooth manifold-with-boundary is a Hausdorff second countable space with an
atlas of charts  where . i.e.,� � e f� �?ß À Y Ä L œ B ß ÞÞÞß B l B � ! §: : ‘8 8

" 8 8- � � � � .    is a diffeomorphism from  to . AY œ Q ‰ Y ∩ Y Y ∩ Yα α " α " α ": : : :,
�"

boundary point of  is a point that maps to  under some (every) chart)Q `L5

Theorem   Suppose  are manifolds-with-boundary and  is smooth. IfQ ßR 0 À Q Ä R7 8

C 0 0 l 0 C is a regular value for both  and for  then  a manifold-with-boundary and`Q
�"� �

` 0 C œ 0 C ∩ `Q� � � �� ��" �" .

Proof  Omitted.

Brouwer Fixed Pt Theorem   For any  continuous has a fixed point.0 À H Ä H8 8

Pf  Suffice to assume  is smooth. Use Weierstrass Thm.0

HOMEWORK
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Homework.   (1) Prove that any smooth -manifold has a Riemannian metric.8

(2) If  has a Riemannian metric, define the unit sphere bundleQ

Y ³ @ − X Q l : − Qß @ œ "Q :e fl l .

Prove that  (unit sphere bundle of 2-sphere diffeomorphic to ).Y ¸W
$ $

# � �

(3) Prove that  ( ) is not  for a‘� ‘� ‘ ‘" # # $ �"§ � ! Î µ § � ! Î µ 0 Ce f e f � �
regular value .C

(4) Let  be smooth. Suppose  is a regular value.0 À W Ä C" ‘

 (a)  Show that #  is even.0 C�"� �
 (b) Show the # critical points #  for any .� 0 C C −�"� � ‘

Last time, we showed the Brouwer fixed point theorem.

Definition.   A (smooth) vector field on a manifold  is a section of , the tangentQ XQ
bundle, that is, a map  such that .\Q Ä XQ \ : − X Q� � :

Definition.   A Riemannian metric on a smooth manifold  is a family  where  isQ Øß Ù Øß Ù: :

an inner prouct on  which is  is aX Ø\ß ] Ù: :smooth in the following sense: 0 À : È
smooth map from  for any vector fields , .Q Ä \ ]‘



If  is a chart on , then  has a Riemannian metric, with� �Yß Q Y:
Ø@ß AÙ œ . @ † . A Q § Q: : :

R: : ‘� � � �. Furthermore, if , then  has a Riemannian metric and
Ø@ß AÙ œ ! † !: 5 7� � � �. A corollary to this is that a compact manifold-with-boundary has a
V § Q .

Partition of Unity Lemma .  Assume  is a smooth manifold. Then there exist open setsQ
Y ß ÞÞÞ 0 ß ÞÞÞß 0 À Q Ä � Y" " 8 8

� and functions  so that  is compact, and the support‘ ‘� � � �e f �0 § Y œ 0 � ! 0 œ " Y8 8 3 88
�"

3œ"
∞ . Finally,  and  is a locally finite family. Also‘

note each  is contained in the domain fo a chart.Y8

Theorem.  A connected 1-manifold-with-boundary is diffeomorphic to , ,W !ß " ß Ò!ß "Ñ" c d� �!ß " ¸ ‘.

Proof.   Let  be a -manifold. If  is an interval, an ,  forQ " M § À M Ä Q > Á !‘ 5 5w� �
> − M À N Ä Q œ ‰ = > œ " >. Then there exists  so that . Then  for all .7 7 5 7k k� �w
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Classify the smooth -manifolds:"

Definition.   Let  be a  connected smooth -manifold.  has a Riemannian metricQ " Q
5 À +ß , Ä Qc d  is unit speed if  for all .l l c d� �5w > œ " > − +ß ,

Properties of unit speed

• If  is any path with , then there is a reparametrization 5 5 7À +ß , Ä Q > Á ! > œc d � � � �w

5 7� �� �0 > , so that is unit speed.

• If  and  are unit speed and if there exists  so that5 7À M Ä Q À N Ä Q > − M ∩ N

5 7 7 5� � � � � � � �> œ > ‰ l > œ " �" Ð Y, then  (not ) for some subset ). Furthermore, then�"
Y

w

there is a path  so that  and . Hence, id where/ / 5 / 7 7 5À M ∪ N Ä Q l œ l œ ‰ œM N
�"

both are defined).

• If  is a chart around , then  is a path and we can reparametrize it to be� �Yß : − Q: :�"

unit speed. Hence,  is the image of a unit speed path.Y

Construction.   Let , … be a sequence of charts, so that  is connected� � � �Y ß Y ß ß Y" " # # 3: :
and . Construct a sequence of unit speed paths  so that either-

3œ"
∞

3 8 8Y œ Q À M Ä Q5

5 58 8
" is not injective for some  ( ), or  is surjective for some  (  an8 Q ¸ W 8 Q ¸ M

interval in ), or . If the sequence is infinite, we need to show there is aV M ¨ M
�8 8�"
Î

diffeomorphism from . Now consider  a proper open set. Then there- � �M Ä Q M8 8 85
exists  which is a limit point of , but . Then choose  with\ M B Â M Y ß5 5 :8 8 8 8 5 5� � � � � �
B − Y B œ + , M œ M ∪ Y l B − Y5 5 8 8 8�" 8 3 3 so that  or . Define . Then for each: :� � e f- � �� � � � � � � �Y ß B − Y + œ B ‰ + œ "3 3 3 3 3 8 3 88

�" w
: 7 7 7 5 with , there is a path  so that  and .

Translate , reflect if necessary to get . Set . Now suppose  is not injective.: : 7 : 53 3 83 3
�"s sœ



If , let . Then . [too confusing to copy5 5 α 5 α 58 8 8 8
w w� � � � k k � � � �B œ B œ B � B B � œ B

from the board!]
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Lemma 1.   Suppose  is a smooth manifold. There exist open sets  suchQ Z § Z § ÞÞÞ" #

that , and ,  compact.Q œ Z Z § Z Z-
3œ"
∞

3 3 3�" 3

Proof.   Let  be a countable basis,  with  compact. Construct F F œ F F Ze f3 3 33−™

inductively. Take . Then  is compact, so  for some . LetZ œ F Z Z § F ∪ ÞÞÞ ∪ F R" " " " " 8

8 Z § F Z œ F" 3 3 # 33œ" 3œ"
8 8 be the first integer so that . Then set . For the inductive- -" "

step, let  be the first integer so . Then 8 Z § F œ Z Z œ F œ Q5 5�" 3 3 33œ" 3œ" 3œ"
8 ∞ ∞- - -5

since . 8 Ä ∞5 �

Lemma 2.   Suppose  is a manifold and let  be a basis for the topology. Then thereQ F
are elements U U  such that" #ß ß ÞÞÞ − F

(1)  .Q œ Y-
3œ"
∞

3

(2) Each  meets only finitely many .Y Y3 N

Proof.  Let  be given by Lemma 1. Then choose  so that they cover , andZ Y ß ÞÞÞß Y Z3 " 8 ""

choose  so that they cover . For the inductive step, Y ß ÞÞÞß Y Z � Z Y ß ÞÞÞß Y8 �" 8 # " 8 �" 8" # 5 5�"

cover  and be disjoint from  for . Then  isZ � Y Y 8 V 3 Ÿ 8 Y5 3 3 5 5�" 33œ" 3œ"
8 8 �#- -5 5

disjoint from  ( ). In particular, each point of  is in finitely many . Y 4 Ÿ 8 Q Y4 5 3 �

Corollary.    ( ) Choose  to consist of (open) chart domains Partition of unity lemma F Y
such that there exists a smooth  with  for ,  for0 À Q Ä 0 B W ! B − Y 0 B œ !Y Y Y‘ � � � �
B − Q � Y Y ßY ß ÞÞÞ 0 œ 0. Then construct  by Lemma 2 so that  is a positive" # Y3œ"

∞�
3

smooth function. Define  so that  (and note supp ). 1 ³ 0 Î0 1 œ " 1 œ Y3 Y 3 3 313 3
�

supp �

Lemma.   Suppose  is a connected manifold. Let  be a basis for the topologyQ F
consisting of connected open sets. Then there exist  such that[ ß[ ß ÞÞÞ − F" #- -ˆ ‰

3œ" 3œ"
∞ 8�"

3 8 3[ œ Q [ ∩ [ Á g with .

Proof.   Let  be given as in Lemma 2. Then ,  are all elements ofZ [ œ Z [ ß ÞÞÞß[3 " " # 8#� � -Z [ [ ß ÞÞÞß[ ß ÞÞÞ [3 " 8 �" 8 33œ"
8 that meet .  are elements that meet . Consider

5 5�"

5- -e fZ l Z Á [ 3ß 4 œ E E F œ [3 3 4 33œ"
∞ for any . Then  is open,  is open, and

E ∩ F Á g Q. Also,  is connected. �

Let  be a connected 1-manifold. Then we can give  a Riemannian metric.Q Q

•  If  is an interval in , then  is unit speed if  for all .M À M Ä Q > œ " > − M‘ 5 5k k� �w

•  Any path  can be reparametrized as a unit speed path with the same image.5 À M Ä Q



•  Suppose  and  are unit-speed. Then , , and5 7 5 7À M Ä Q À N Ä Q M ∩ N ® > > œ >� � � �� � � �5 7 /‰ > œ " æ À M ∪ N Ä Q�" w  [ ]. But this implies there exists a unit-speed path 
with  and . Also notice id./ 5 / 7 5 7l œ l œ ‰ l œM N M∩N

�"

•  If  is a chart for , then  is a path so there is a unit speed path ,� �Yß Q À M Ä Q: : 5�"
Y

and  and .5 5Y Y� � � �M œ Q M œ Y

•  Suppose ,  are unit speed and . Consider then5 7 5 7À M Ä Q À N Ä Q B − M ∩ N� � � �
there is  such that  and  satisfy the conditions in [ ].+ − V + „ > æ7 5� �

Choose a connected chart neighborhoods for  as in Lemma 3. Then let  be soQ Y ßY ß ÞÞÞ" #

that  is connected and meets ; also . Then charts - -
3œ" 3œ"
8 ∞

3 8�" 3 3 3Y Y Y œ Q À Y Ä: ‘

with unit speed paths  so that . Then we can construct by induction5 5 5" 8 8 8ß ß ÞÞÞ M œ Y� �
intervals , and unit speed paths  so that  withN § N § ÞÞÞ ß ß ÞÞÞ À N Ä Q" # " # 3 37 7 7

7 7 7 73 N 3�" 3 3 3 34œ" 3œ"
3 ∞l œ N œ Y N œ N À N Ä Q

3�"
 and . Then  and  can be constructed� � - -

unit speed  so that . If  is injective it is a diffeomorphism. Otherwise>l œ N œ QN 33
7 7 7� �

7 7 7 ‘� � � �+ œ + �7 +ß + �7 − N À Ä Q for some . Then construct  so that
7 7� � � � c dB œ B � 57 5 B � 57 − +ß + �7 where  is chosen so . Then observe
7 7 7� � � �B �7 œ B Q is smooth, so we can take any point in , take the pre-image of  to

get back to the real line , and then map it to the circle with , and we've‘ B Ä /
1

# 3BÎ71

constructed a diffeomorphism from  to the circle.0
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Definition.   A smooth function  is  to smooth0 À Q Ä R smoothly homotopic
1 À Q Ä R  if there is a smooth homotopy

L À Q ‚ !ß " Ä R L Bß ! œ 0 B L Bß " œ 1 Bc d � � � � � � � � with , .

Definition.   An isotopy for a smooth manifold  is when  areQ 0ß 1 À Q Ä Q
diffeomorphisms so then  is 0 smoothly isotopic if there is a smooth L À Q ‚ !ß " Ä Qc d
with  and , and  is a diffeomorphism for .L Bß ! œ 0 B L Bß " œ 1 B L Bß > > œ "ß #� � � � � � � � � �
Theorem.   If  is connected -manifold, and  are two points of  there there is aR 8 Dß C R
diffeomorphism  such that  and f  is isotopic to id .0 À R Ä R 0 C œ D� � R



[Laptop lost power...]
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[ Not understandable... ]

Definition .   An orientable manifold Q8 has a differentiable structure such that
. ‰ˆ ‰: :α "

�"  has positive determinant at each point.

Example.   The annulus is orientable. The Mobius strip is not (if you take overlapping
chart neighborhoods eventually they overlap through the Mobius band). An ordered basis
of   is positive/negative if ...‘8

" 8� �/ ß ÞÞÞß / 0

A manifold  is oriented if and only if there is a choice of ordered basis  forQ / ß ÞÞÞß /� �" 8

X Q : − Q Yß . / ß ÞÞÞß . /: : " : 8, , so that for any chart   is positive.� � � �� � � �: : :

Define "deg" of  in  by if  is a regular value of , and ,0 À Q Ä R C 0 B − 0 C™ �"� �
sign  if  maps a positive basis to a positive basis, and  if it maps a0 B� �B œ � " .0 �"
positive basis to a negative basis. Then deg  is the sign  for any regular0 B� � �B−0 C 0�"� �
value .C
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An orientable manifold Q . ‰8 �" has a differentiable structure such that  hasˆ ‰: :α "

positive determinant at each point, if and only if we can choose a (not necessarily
continuous) basis for each  such that if  and  are in the chart domain for then theX Q : ;: :

bases map to compatible bases for  under .‘ :8 .

If  takes compact, oriented -manifolds to regular value for , for0 À Q Ä R 8 C À 0
B − 0 C�"� � define

sign .
 if  carries a positive basis to a positive basis
otherwise.0

B� � œB œ
" .0
�"

Then "define" deg sign .0 œ B� � �B−0 C 0�"� �
Proposition.   Suppose  is a compact orentied -manifold-with-boundary andQ 8� "8�"

R 8 0 À Q Ä R C is a compact, oriented -manifold. If  is smooth then  is a regular value
with deg .C `Q� �0 l œ !

Lecture 24

As from last time, we have a map  with the former an -manifold-0 À Q Ä R 8� "� �
with-boundary, and the latter an -manifold (both oriented). Then  is regular for ,8 C − R 0
0Î`Q 0 l œ !. Then deg .`Q



Proof.   Consider . First, an orientation of  gives us an orientation of . Take0 C Q `Q�"� �
a point  with a basis  for . Then  is an outward vector in .: − `Q / ß ÞÞÞß / X `Q Z X Q� �" 8 : :

Then sign sign . Let  be a non-zero vector in  and� � � � � �/ ß ÞÞÞß / œ @ß / ß ÞÞÞß / @ X 0 C" 8 " 8 :
�"

then extend  to a positive basis of . Then  is a basis for . We@ X Q .0 / ß ÞÞÞß / X R: : " 8 0 :� � � �
have to show sign sign . Say . Then  is positive� � � � � �@ œ .0 / ß ÞÞÞß / : − `Q @ß / ß ÞÞÞß /: " 8 " 8

for  which implies  is positive for  is  points out and negative if Q / ß ÞÞÞß / `Q @ @� �" 8

points in. If  is a positive tangent vector to  then sign  is positive or@ 0 C :�"
0l� � � �

`Q

negative if  points out or in, respectively. Let  where  is oriened.@ Q œ [ ‚ !ß " [c d
Then ,  is oriented. How does this orientation of  compare[ ‚ ! [ ‚ " [ ‚ !ß "e f e f e f
with the orientation inherited from ?Q

If deg deg . Assume  is regular for . What if  is regular for0 µ 0 0 œ 0 C 0ß 0 C! " C ! C " #Ö

0 ß 0 L Y C ? 0 ß 0! " ! "but not . Choose nbhd  of  s.t. for every pt of  is regular for  with
deg deg  and same for . Then choose  regular. Then deg deg . IfY ! C ! " D ! D "0 œ 0 0 D − Y 0 œ 0
Cß D 0 0 œ 0 > are regular for  then deg deg  for all , so there exists an isotopyC L CßD� �
L À Q ‚ M Ä Q L Bß > L Bß ! œ B L Cß " œ " so that  is a differeomoprhism, , and .� � � � � �
If is an orientation-reversing diffeomorphism then  is not homotopic to 0 À Q Ä Q 0 :Q

with deg -deg .0 œ �" œ :Q

If  with , then deg  if  is odd and  if  is even, withQ œ W 0 B œ �B 0 œ " 8 �" 88 � �
det  if  is even and  if  is odd..0 œ œ � " 8 �" 8

�" ! ÞÞÞ
! ä !
ÞÞÞ ! �"

Î Ñ
Ï Ò

If  is even, then any vector field on  has a zero vector.8 W8
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We were looking at  with , a linear transformation. Haveα ‘ ‘ αÀ Ä B œ �B8 8 � �
det  if  is odd, else even. So  is orientation preserving if  is even.α αœ �" 8 8

Look at . Then  is orentiation preserving on  if and only if it is onα αÀ W Ä W W8�" 8�" 8�"

‘8.

Lecture 26

Theorem.   Let  be vector fields on a compact smooth manifold  with isolatedZ ß Z Q" #

zeroes. Then ind ind .Z œ Z" #

(1) Show that ind  is well-defined. [etc]^ Z

Lemma.    Suppose  is a convex open set in  and  is a vector field on  with a zeroY Z Y‘8

at . Also suppose  is a diffeomorphism from  to D − Y 0 À Y Ä Y 0 Y Þ‘8 � �
Theorem 2.   If  is a convex open set in  and  is a diffemorphism fromY 0 À Y Ä‘ ‘8 8

Y 0, then  is isotopic to id.



Proposition.   If  is a vector field such that (1)  points out on  (  andZ Z `Q Z † R W !Ñ
(2)  has isolated zeroes in . Then ind deg Gauss .Z Q � #Q Z œ À `Q Ä W8�"

Notice then Ind Ind  for any two of these vector fields.Z œ Z w

Lecture 27

We had a compact manifold , with a vector field  on  with isolated zeroes so thatQ Z Q

Ind Ind deg Z œ Z œ 0� �
Z ^ œ! Z ^ œ!

^ ^� � � �
with .0 À W Ä W^

8
&

Definition .    If  is an open neighorhood of , an isolated zero of a vector field , thenY D Z
D .Z is non-degenerate if  is non-singular.D

Example.   For , if , then0 Bß C Z œ f0 œ Ø`0Î`Bß `0Î`CÙ� �
Z Bß C œ Bß C 3 � Bß C 4t t� � � � � �`0 `0

`B `C

so that the matrix  with respect to  is the Hessian matrix.Z ßD
` `
`B `C

Î Ñ
Ï Ò

` 0 ` 0
`B `B`C

` 0 ` 0
`C`B `C

# #

#

# #

#

.

Lemma 2.   Suppose  has an isolated zero at . Then an arbitrarily small perturbation ofZ D
Z Z D will have deg  non-degenerate zeroes in a small neighborhood of .D� �
Lemma 1.   If  is a non-degenerate zero of , then deg .D Z Z œ „ "D

Proof.   (thought of as a diffeomorphism) is smoothly isotopic to the identity or to aZ
reflection (degree is  or , respectively)." �"

Lecture 28

Theorem.   If  is a smooth -manifold and  is a vector field on  with isolatedQ 8 Z Q



(removed points circled)

If  is a nondegenerate zero of , then if  is non-singular, in this caseD Z .ZD

Ind .
if det 
if det D

B

B
Z œ

" .Z W !
�" .Z V !œ

If  is arbitrary with isolated zeroes, then we can perturb i  to a vector field with non-Z Z
generated zeroes of the same index.

with  ind ind .� ^ D
w

3
Z œ Z

Embed  in  for some . Define  by dist .Q R R § R œ B − À BßR Ÿ‘ ‘ ‘ &8 8 8
& & e f� �

Assume:

 (1)  for small enough ,  is a smooth manifold.& R&



X œ ‚‘ ‘ ‘8 8 8.

Then  at each point of ,  is a subspace of  withXQ § Q ‚ § ‚ Q X Q X‘ ‘ ‘ ‘8 8 8 8
B B�  tangent vectors to .+ `Î`B3 3

8‘

Assume . Then if ,  (subspace of Q § RQ § Q ‚ RQ œ Bß @ l @ ¼ X Q‘ ‘8 8
Be f� � ‘8)

Then  is a submanifold of . Using Gramm-SchmidtRQ Q ‚ § X ´ ‚‘ ‘ ‘ ‘8 8 8 8

process we can find smothing that is smooth (  by ,RQ Ä Bß @ Ä B � @ß B − R‘8 � �
@ ¼ X QÑB .

Assume: (1) for small enough ,  is a smooth manifold, and (2) for even smaller & &R&

there is a well-defined map  such that  is smooth and  is the closest< À R Ä Q < < B& � �
point on .Q

If we choose a  nonsingular, then the inverse function theorem shows  is a.< <� �Bß!

homeomorphism of a neighborhood of .B − Q

Hence, . We claim  such thatRQ œ Bß @ − RQ l @ V Ä b W !& e f� � k kk k & ‘ &8

< ‘À RQ Ä B ß @ ß B ß @&
8 w w

8 8 8 8 is injective. Otherwise, we find a sequence  so that� � � �
< <� � � � k k � �k kBß @ œ B ß @ @ Ä ! B B8 8

w w w
8 8 8 and . We find a subsequence of  converging to .

For larger  and  of a trivial inside of the embedded neighborhood of . So� � � �B ß @ B ß @ B8 8 8 8
w w

then  is a projection . < ‰ <�" �

Lecture 29

Finite dimensional real vector space

Definition.    A function  is  if0 À Z ‚ ÞÞÞ ‚ Z Ä [" 5 multilinear

0 @ ß ÞÞÞß @ ß † ß @ ß ÞÞÞß @� �" 3�" 3�" 5

is linear for each .3

Example.   A basic example is if , ..., , then  is0 À Z Ä [ 0 À Z Ä [ 0 † ÞÞÞ † 0" " 5 5 " 5

multilinear. An algebra  is a vector space with a product that satisfies E † @ A œ� �α
@ † A œ @ † A E� � � �α α  and  is a ring.

There exists a vector space  which is "universal" for multilinearX œ X @ ß ÞÞÞß @� �" 5

functions in the sense: (1) there is a multilinear function , and (2) if: À Z ‚ ÞÞÞ ‚ Z Ä X" 5

0 À Z ‚ ÞÞÞ ‚ Z Ä [" 5  is multilinear, then it factors as

Z ‚ ÞÞÞ ‚ Z X" 5 Ò
:

à



� � � � � �@ß @ � @ � @ ß @ � @ ß @α " α "# " # "# #
w w ,

� � � � � �α " α "@ � @ ß @ � @ ß @ � @ ß @" # " # #" "
w w ,

� � � �α α@ß A � @ß A , and

� � � �@ß A � @ß A" " .

Notation:     is written .:� �@ ß ÞÞÞß @ @ Œ ÞÞÞ Œ @" 5 " 5

Suppose  is a basis for  and  is a basis for . We can construct a basis/ ß ÞÞÞß / @ 0 ß ÞÞÞß 0 A" 8 " 7

for , say by . We can show these span . Suppose  is@ Œ A / Œ 0 @ Œ A 0 À Z ‚[ Ä ^e f3 4

multilinear. Let  and . Then@ œ + / − Z A œ , 0 − [� �3 3 4 4

0 @ß A œ 0 + / ß , 0 œ + , 0 / ß /� � � � � �� � �3 3 4 4 3 4 3 43œ"
8 .

This means  is uniquely determined by specifying . If0 0 / ß /� �3 4

$� �3ß4
� �� �+ / ß , 0 œ + ,3 3 4 4 3 3

then multilinear functions form a vector space with basis  (dim ). So this$� �3ß4 œ 78

corresponds to ./ Œ /3 4

Definition.     is an  if0 À Z ‚ ÞÞÞ ‚ Z Ä [" 5 alternating mutilinear function

 (1)  is multilinear.0

 (2)  .0 @ ß ÞÞÞß @ ß @ ß ÞÞÞß @ œ �0 @ ß ÞÞÞß @ ß @ ß ÞÞÞß @� � � �" 3 3�" 5 " 3�" 3 5

Example.    If dim , consider det . From linear algebra, we know this isZ œ . À Z Ä5 ‘
an example of an alternating multilinear function.

Example.    by  (cross product).‘ ‘ ‘$ $ $‚ Ä @ßA Ä @ ‚ A� �
0 + / ß + / ß ÞÞÞß + / œ 0 / ß ÞÞÞß / œ 5 † 0 / ß ÞÞÞß /� � � �� � � � ˆ ‰"4 4 #4 4 8 4 " 8" 85 5� � � � .

Lecture 30

We were taking vector spaces  so that  is multilinear.Z ß[ 0 À Z ‚[ Ä ^

Theorem.   There exists a unique vector space  such that for any multilinearZ Œ[
0 À Z ‚[ Ä ^ X À Z Œ[ Ä ^ there exists a unique linear  so that

Z ‚[ Ä Z Œ[

à Æ X

^ .

Proof.    Construct a vector space with bases  with  a subspace� � ‚@ß A − Z ‚[ V V

generated by the relations

� � � � � �@ß @ � @ � @ ß @ � @ ß @α " α "# " # "# #
w w ,

� � � � � �α " α "@ � @ ß @ � @ ß @ � @ ß @" # " # #" "
w w ,



� � � �α α@ß A � @ß A , and

� � � �@ß A � @ß A" " .

Then we have  with so that there is a uniqueZ ‚[ Ä L Ä LÎV Z ‚[ Ä ^
mapping  and that makes the diagram commute. Then we callL Ä ^ LÎV Ä ^
LÎV œ Z Œ[ .

Multi multilinear functions .� � e fZ ß[ à^ œ Z ‚[ Ä ^

It is clear this is finite dimensional. Choose bases  for  for . If/ ß ÞÞÞß / 0 ß ÞÞÞß 0 [" 8 " 8�"-
J À Z ‚[ Ä ^ J + / ß , 0 œ + , J / ß 0 is multilinear, then . Then� � � �� � �3 3 4 4 3 4 3 4

I − Z ß[ ß^ I / ß 0 œ " 3 œ 5ß 4 œ " !34 34 5 6Multi . Then  if  and  otherwise. So then� � � �
J œ J / ß / † I Z ß[ à ¸ Z Œ[ß œ� � � � � � �3 4 34. So this is saying that Multi Linear‘ ‘

[ Z Œ[‡ ‡ (the dual). Therefore  is finite dimensional with dimension � � dim dim .Z † [

Then  is unnaturally isomorphic to , meaning we can construct an isomorphism byZ Z ‡

choosing a basis  of  and considering . This is defined by/ ß ÞÞÞß / Z / ß ÞÞÞß / − Z" 8 " 8
‡ ‡ ‡

/ / œ 0 − Z 0 œ 0 / / Z‡ ‡ ‡
3 34 34 3� � � ��$ . Then means we can uniquely write . If  is a Hilbert

space, this is canonical. If  are an orthonormal basis, then . Then / / Ä / Z ¸ Z3 3 3
‡ ‡ ‡� �

cononically, so v� � � �0 œ 0 @ Þ

Then the  form a basis for Multi  so that  is dual toI Z ß[ à I − Z Œ[34 34
‡� � � �‘

/ Œ / ´ / ß /3 4 3 4image of . We can then construct the � � tensor algebra

X Z œ X Z� � � �9
8œ!
∞

8 ,

with , , and . Then  is an algebraX Z œ X Z œ Z X Z œ X Z Œ Z X Z! " 8 8�"� � � � � � � � � �‘
with . Then  is a graded algebra.X Z Œ X Z Ä X Z Œ X Z ´ X Z X Z8 7 8 7 7�8� � � � � � � � � � � �
A similar proof can be given for . 0 À Z ‚ ÞÞÞ ‚ Z Ä ^ �

Lecture 31

Continued lecture from Warner chapter 2.

Lecture 32 [Warner 62-66]

We let  be so that the fiber over  is . Then , the fiber over , isA A g� � � � � �Q : X Q Q :: <ß=

ðóóóóóóñóóóóóóò ðóóóóóóóñóóóóóóóòX Q Œ ÞÞÞ Œ XQ Œ XQ Œ ÞÞÞ Œ XQ

< =

: : : :
‡ ‡

 times  times

.

Denote vector fields on  as a module over -smooth functions on Ë� � e fQ œ Q G Q∞

([Warner; 64]). Notice -forms are also a module over . If a -form  is an5 G Q 5∞� � =
alternating -linear (multilinear) funciton from the -module to 5 G Q ‚ ÞÞÞ ‚ Ä∞� � Ë Ë
G Q \ ß ÞÞÞß \ Î : œ \ : ß ÞÞÞß \ : 5∞

" 5 : " 5� � � � � � � �� � � �. Then  is a differential -form if and= =

only if alternating -linear functions from the -module  to .5 G Q ‚ ÞÞÞ ‚ G Q∞ ∞� � � �Ë Ë



Lemma.    Suppose  is alternating multilinear. Also let= Ë ËÀ ‚ ÞÞÞÞ ‚ Ä G Q∞� �� � � � � � � �\ ß ÞÞÞß \ ß ] ß ÞÞÞß ] − ‚ ÞÞÞ ‚ \ : œ ] :" 5 " 5 3 3Ë Ë are such that . Then

= =l \ ß ÞÞÞß \ œ l ] ß ÞÞÞß ]: " 5 : " 5� � � �.
Proof.    It suffices to assume . We choose a chart neighborhood \ : ß ÞÞÞß \ : œ ! Y" 5� � � �
around . In ,  with  and . We then choose a: Y \ œ + + − G Y + : œ !3 3 3 3

`
`\

∞� � � � �
3

bump function  on  and  on . Then .: : : :´ " [ § Y ´ ! Q � Y \ œ +3 3
`
`B

�� �Š ‹
3

Then  so  at \ œ + � " � \ œ \ � " � \ \ ß\ œ ! :3 3 3 3 3 " 8
`
`B

# #� � � � � � �Š ‹ ˆ ‰: : : : =
3

because  is  at . � �\ ß ÞÞÞß \ ! :" 8 �

Graded modules, e.g., , for homomorphisms  from :I Q 0 I Q Ä I Q� � � � � �
-   has degree if .0 3 0 À I Q Ä I Q8 8�"� � � �
-   is a derivation if .0 0 • œ 0 • � • 0� � � � � �= ( = ( = (

-   is an antiderivation if é  where  and0 0 • œ 0 • � �" • 0 − I Q� � � � � � � � � �= ( = ( = =: :

( − I Q� �.
Theorem.    There is a unique antiderivation  of degree  satisfying. À I Q Ä I Q �"� � � �
. œ ! . 0 œ .0 0 − I Q ´ G Q# ! ∞ and  for .� � � � � �
In  with  smooth, , where  is a linear functional on‘8

! 8 3 3
`0
`B0 B ß ÞÞÞß B .0 œ .B .B� � �

3

tangent vectors, ,  with . Then  is the dual to the.B \ − G .B l @ − @ − X .B3 3 : : 3
∞ 8� � � � ‘ ‘

standard basis vector field.

Lecture 34

Homework.   Warner, chapter 2: 9, 10, 12, 13.

If  are differential  forms with a module over  bundle with fibers I Q 5 G Q X� � � � � �∞
:

‡A

thath as product . Also, there is a unique degree  antiderivation • " . À I Q Ä I Q� � � �
such that  ( ) with . Furthermore,. œ ! . . + œ ! . 0 œ .0# � � � �� �

. • œ . • � �" • . − I Q� � � � � �= ( = ( ( =: : when .

Also, . Suppose  (  functions), with  andI Q ´ G Q 0ß 1 − I Q G − I Q! ∞ ! ∞ :� � � � � � � �=
0 • œ • 0 • œ �" • − I − I= = = ( ( = = (. Further,   when , . The convention is� �:; : ;

that  and . If we have , then d0 • ´ 0 œ 0 • 0 ´ 0 œ 0 0ß 1 − G Q 01 œ= = = = = = ∞� � � �
d d d d . Then  and  with  constant0 † 1 � 1 † 0 œ 1 † 0 � 0 † 1 œ Q I ´ G I ß ÞÞÞß I‘8 ! ∞

" 8

vector fields, . We know  has basis d d . ThenI : œ / ß I ´ I B ß ÞÞÞß B3 3 3 " " 8
`
`B� �

3

d ,B œ3 34
`
`BŠ ‹

4
$

which is a constant function arising from the differential form applied to the partial.
Notice d d , with  and , withB • B \ß ] − G \ œ + � + � ÞÞÞ ] œ , � ÞÞÞ" # " # "

∞ ` ` `
`B `B `B� �

" # "

d d d d d d .B • B \ V ] œ B \ B ] � B ] B \ œ + , � + ," # " # " # " # # "� � � � � � � � � �



Now, if we take , then0 − G∞

d d d0 œ B � B � ÞÞÞ`0 `0
`B `B" #

" #

with d , d d ,B − I B œ !3 "
w � �

 d d d d d d d d d d� � � � Š ‹0 B œ 0 • B � 0 B œ B � B � B • B" " " " # $
`0 `0 `0
`B `B `B" # $

"

                          d d d d ,œ � B • B � B • B`0 `0
`B `B" # " $

# $

so that d  and so� + B − I3 3
w

 d d  d d d d  [BOARD WAS ERASED].� �� �� � � �Š ‹Š ‹+ B œ B • B œ
3ß 4ß 5

3 3 4 33ß4
`+
`B

3

4

In , d d d d  with‘$ `0 `0 `0
`B `C `D0 œ B � C � D

d d d d d d d d d d d d� �0 œ B • B � C • B � D • B � B • C � C • C � ÞÞÞ` 0 ` 0 `0 ` 0 ` 0
`B `C`B `D`B `B`C `C

# # # #

# #

If  are constant vector fields, then the Riemannian metric given byMß N ßO

  and M † M œ N † N œ O † O œ " M † N œ N † O œ O † M œ !

give the pairing  which induces an isomorphism  to its dual space .‘ ‘ ‘$ $ ‡‚ Ä X X
Now let

d , d , d  for B Ç M C Ç N D Ç O I Ç" Ë

with d d . Then  is a one dimensional -module so: .B � ; C � < D Ä :M � ;N � <O I G$ ∞

the basis d d d  is given by . Then there is a natural pairing (called theB • C • D I Ç G$ ∞

Hodge star)  with  and . Then weI ‚I Ä I ´ G ‚ Ä • I ´ I ´# " $ ∞ # " ‡
= ( = ( Ë� �

need to show , , and . Then we'll getI Ç G I Ç ß I Ç I Ç G! ∞ " # $ ∞Ë Ë

: .B � ; C � < D Ç :M � ;N � <Od d

: .B • C � ; C • D � < D • B Ç :O � ;M � <Od d d d d

for  d d d , with0 B • C • D Ä 0

d À I Ä I Ç 0 Ç f0! "

d       (curl)À I Ä I \ Ä f‚\" #

d        (div)À I Ä I \ Ä f † \# $

 [I really don't know where this is going...]

Lecture 35

Pull-backs

If  is smooth and , then  determines a pull-back of ,I À Q Ä R − I R 0= =5� �
$ = $ = =0 − I Q 0 @ ß ÞÞÞß @ œ .0 @ ß ÞÞÞß .0 @� � � � � �� � � �� � � �5

" 5 " 5   with  



with . One way of describing a differential form is something you can integrate@ − X Q3 :

over an -manifold. A -form is something you can integrate over a singular -chain.Q 5 5
We want to find a singular -chain  and its boundary , where we define  with5 `5 5 ='

5

= = =− I Q œ .5
`

� � ' '. Then we want to prove Stokes' Theorem [Warner pg 144]: .
5 5

Here,  is a -chain and  is a -form, and  is a -chain and is a -5 = 5 =� � � �5 � " . 5 � " ` 5 5
form. Then consider smooth singular -simplexes. Define a smooth singular -chain to be5 5

a formalism  with  where  is a smooth singular -simplex.�
3œ"

8

3 3 3 3+ + − 55 ‘ 5

For simplexes, Warner's notation is , and? ?! "œ ! ß œ Ò!ß "Óe f
?8

" 8 3
!ŸB Ÿ"

œ B ß ÞÞÞß B l B Ÿ �
3

.

Suppose is a singular -simplex, i.e., . We can define (  a -form)5 5 ? =5 À Ä Q 55

' ' '� �
5 ? ?
= 5 =œ ` œ 05 5

where the boundary , with .` œ 0 .B • .B • ÞÞÞ • .B ` − I5 = 5 = ?� � � � � �" # 5
5 5

Before we continue, let's examine what we have done so far in light of what we know
from calculus. For line integrals, let  with  be a path5 ‘ 5À !ß " Ä > œ B > ß C >c d � � � �� � � �#

with a vector field . ThenJ œ T3 � U4t t t

) ' � � � � � � � �� � � � � � � �
5
J † .= œ T B > ß C > † B > � U B > ß C > † C > .>t t

!

" w w .

Then we know that this is independent of the parameterization with the same endpoints.
Then , , and . Then3 Ä .B 4 Ä .C J Ä œ T .B � U.Ct t t =

' ' '� � � �
5
= 5 =œ ` œ 0 > .>! !

" " ,

where . So then` œ 0 • .>5 =� �
` T.B � U.C œ T B > ß C > B > � U B > ß C > C > .>5� � � �� � � � � � � �� � � � � � � �w w

with  so that  and , and of course5 5 5� � � � � � � � � � � �� � � �> œ B > ß C > ` .B œ B > .> ` .C œ C > .>w w

` T > œ T B > ß C > ` U > œ U B > ß C >5 5� �� � � � � �� � � �� � � � � � � �, and .

Now let's go back to the general case. Take a -chain  so that5 5

� +3 3 35 5   where  are simplexes,

then

' '�
5 5
œ +3

3
=.

Lecture 36

We want to define the boundary of a smooth singular -simplex  (denoted5 À Ä Q5 5

by ). The boundary of  (a point) is . For , it is  ("distance" from  to` ! " � ! !5 ? ? 5 5! " � � � �
" O ! œ ! O ! œ " O À Ä O À Ä). We want to create a map , ,  and .! " ! "

" " " ! " " ! "� � � � ? ? ? ?

For a 2-simplex (triangle), the boundary is given by 5 5 5 5 5! " # # #
! "� � œ ‰O � ‰O �



5 ? ?‰ O O À Ä#
# " #

3 with . We can map the 1-simplex (unit interval) onto the three edges
of the 2-simplex (triangle). For a 3-simplex (tetrahedron), .` œ � � �5 5 5 5 5! " # $

Some basic homology and application to proving Stokes' Theorem (see Warner)


