Differentiable Manifolds
Lecture 11

Letp € M be a smooth manifolds. Th@p is the algebrgeofns ofC> functions near
p. Then g, is an ideal of germs that vanishpat V\G@ﬁ: Y figi| figi € 8, -
Furthermore],,M the vector space of linear derivat{?}ns» R is given by

Laf+bf =aL f +bL g ,and
Lfg=fpg+tgp/f.

Remember we proved thagM =~ &,/3% *  asavector space.
Now look atp € R" .

Example (of an element offl,R™ ) LeL f = g—f p € R . The notation foyf IS

T

2 €T,
3
A /‘F%ﬂa
L=
(3
e A =
T
/

Check that™- ,...,;:> forms a basis f6yR"
1 D Tn D

Lemma If f: R" — R is smooth neap , then its Taylor approxiroati
€3
fr+v —fp= gpu+t aij p+v v;v;.

i=1 " 1<i<j<n
€3,
S ep+wv v wheres p+v —0 av—0

wherea;; are smooth.



Proof We have

1 n

1
fp+v =fp + O%fp—i-tvdt:fp—i- 0 %pv,-+

1=
n

2
agjgxi ptitv vyvjdt = fp + 3—7{ p v +

1=1

1 52f

p+tv v;v;dt.

So our lemma implies if : §, — R is linear and vanishes%f),nthen

Lf= &pw
i.e., L is in the span c(fa%, . a%> . So now by independengepsse
az'a% f =0

for all functionsf € ¥, . Takg =1r; , thegfr—;{ =06;; ,89=0Vi

In conclusionl,R" is an -dimensional vector spacé Wasis

0 0
or; 7 Oy
p

p

on §,/32 " .0

Now consider a manifold/

@ J&n‘i

Then
0. f:U—-R ~ fopl:pU —R and
p'gioU —R ~ gop:U—R
so we have
"8 M =3F,, R" andyp, :§,, R" =5, M ,
as well as
* =2 =~ 2 n .2 n = 2
e g, M ng R andw*.gw R" =3, M .

So in conclusion],M =T, , R" for any chapt defined ngar d dim7,M =n.To

see this, letU,y be achart ngar and deline Mon thato
Xt 2z = Pz

i



and so the — the "coordinate functions;...,z, € §, m . Then wedsfine

a [ o=an fou.

So we have a basﬁ—, e ai , but nthés basis depends on choosing a char@o any
1 T

time we pick a chart, that determines a basigfar for us.

Problem Suppose we take a smooth pathR — R" wifh rit ..yt . We'd
like to confirm the velocity vector of this pathwhat we've determined. So we need to

show that we can thinkef 0 asr’ 0 ;-
7 o0

Definition  SupposeM and&' are manifolds ahd M — N is a smootttifum
Thenf determines a linear transformatibh: 7,M — Ty , N

Noticethen df L ¢g =L gf where: N — R
P

Problem Check thatdf, and the old definition dff  agree e ttase of a map
f:R" — R™. In fact, the matrices with respect to bases..,e,  tleesame.

Lecture 12

Lemma Supposgy: 0,a — R is smoothagdd =g 0 =...=¢g" 0 =0  then
gr = # 01 1—t"g"! ztdt. In particular,g x = f 2" for some smootf  (by

differentiating under the  sign).

n+l 1
n! 0

(u=1—-t", du=-nl1—t"" dv=g"" 2 ..?)

x

L—t"g™! wtdt="2

:Jl 1—t"lg™ ot + -2 1—¢t"tgn z dt

x

f — P (Taylor poly) is a degreg + 1 -th form (homogeneoulyrmpmmial) with smooth
coefficients.

f—-P=ecx x "wheresx —0 ax — 0

If Plinear, f = P modg?> .

T,M = §,/32 "
Equivalence classes of paths thropgh; ~ o9 if theyelsame velocity.
Equivalnce classes & 's "glue by charts".

Tangent bundle
We are taking aet (not top space),_,, TpM = M x R"
Tangent bundle dR" : use the product topologférx R* =,/ T p xR" =T,




Charts: For each chart/, o od , defifie= wvly ~ to be a dombmchart (so
they are open), defing : U—>R'xR"=TR" Gp,v — @p,dp, v

’(ML

Wi §

'ﬂu[j":-"'.‘)k I

e
Fo

For the tangent bundles, any smooth nyapM — N determirfesI’'M — T'N
given bydf|r, = df, : HomT,M — Ty , N
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Last time, looked ap a polynomial as a map : C — C . Ther = a +ib so

dp, = _ab _ab . Singular iffa + ib = 0 ; critical points op are the zeroafsy’, so

there are finitely many.

p~f:82—-N—=S>-N (N is north pole), thenf extends to a smooth map
F:82 - 82st’f N =N.Thenf has finitely many critical points.

Definition = € S? is aregular value of f if there are no critical points fir! = f (i
f' & =0,z is aregular value).

x € S% is a critical value iff ! = contains a critical poirft.has finitely many critical
values, so the set of regular values is conne@bdervation: The function — #! «
is a locally constant function on the set of regukues.

#f-! z is finite for any regular value

#f~1 2 =0 forall regularz . Therf is constantBo s comista
Corlf Pis not constant, theR~! 0 is non-empty

Theorem (Sard's Thm)if f: M"™ — M™ is smooth then the set of critical values has
measure 0.
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Last time:

Def A smooth manifold-with-boundary is a Hausdogtend countable space with an
atlas of charts wu,¢p wherep : U — H"= x1,..,z, |z, >0 CR". ie,

Us=M. @,op;! is a diffeomorphism fromps U, NUj to U, NUzg . A
boundary point of\/ is a point that mapsitH* unadene (every) chart)

Theorem Suppose/™, N" are manifolds-with-boundary gndM/ — N isamdf
y is a regular value for botfi and féty,,  thén' y a rfeddhiwith-boundary and
oOf 'ty =fty NOM.

Proof Omitted.

Brouwer Fixed Pt Theorem For anyf : D" — D™ continuous has a fixed point.

Pf Suffice to assum¢ is smooth. Use Weierstrass. Thm

HOMEWORK
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Homework. (1) Prove that any smooth -manifold has a Rien@amnmetric.

(2) If M has a Riemannian metric, define the unitesp bundle
Uy= vel,M|peM, v =1 .

Prove thal/g. ~ P* (unit sphere bundle of 2-sphere diffeqhic tolP? ).
(3) Prove thaRP' c RP? B2 — 0 / ~ CR3— 0 /~ )isnotty fora
regular value; .
(4) Letf : S' — R be smooth. Suppoge is a regular value.

(a) Showthat#~!' y iseven.

(b) Show the # critical points>  #'y  forapye R

Last time, we showed the Brouwer fixed point theare

Definition. A (smooth)_vector fieldbn a manifold)M is a section @M |, the tangent
bundle, thatis, a mafM — T'M suchthaty € T,M

Definition. A Riemannian metric on a smooth manifdld  israifa (, ), where(, ), is
an inner prouct orf,, which ismooth in the following sens¢:: p — (X,Y), is a
smooth map fromd/ — R for any vector fieldS Y,



If U,y is a chart on M , thenU has a Riemannian metrigjth
(v,w), = dyp, v -dp, w . Furthermore, i/ ¢ R" ,thed/ has a Riemannian metrit a
(v,w), =00 -7 0. A corollary to this is that a compact manifoldtwboundary has a
RC M.

Partition of Unity Lemma. Assumel is a smooth manifold. Then there expshcsets
Ui, ... and functionsfi, ..., f, : M — R —R~ so thdl,, is compact, and the suppor
fo CU, =f;'R— 0 .Finally, X, fi=1 andU, is a locally finite family. Also
note eaclt/,, is contained in the domain fo a chart.

Theorem. A connected 1-manifold-with-boundary is diffeompbic to S!, 0,1, [0,1),
0,1 ~R.

Proof. LetM be al -manifold. If C R is an interval, an I — M o',t # 0 for
t € I. Thenthereexists: J — M sothatEocos .Theht =1 forall .
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Classify the smooth -manifolds:

Definition. Let M be a connected smooth -manifold. has anBRmmian metric
oc: a,b — Misunitspeedf o' ¢t =1forallte a,b.

Properties of unit speed

elf o: a,b — M is any path withv’ t # 0 , then there is a reparaimationr ¢t =
o ft ,sothatr is unit speed.

elfo:I—Mand7:J — M are unit speed and if there exists I N .J fsat t
ot =7t,then roo !y’ t =1 (not—1 ) for some subsét ). Furthermore, then
thereisapatv: TUJ — M sothat; =c anffy=7 .Henceo!'= id where
both are defined).

« If U,y isachartaroung € M ,then! is a path and wereparametrize it to be
unit speed. Hencé] is the image of a unit spetdd pa

Construction. Let Uy, ¢ , Us, s , ... be a sequence of charts, sothat isexied
and ;2,U; = M . Construct a sequence of unit speed pathd,, — M  thasither
o, is not injective for somex M ~ S' ), ar, is surjectiver fsomen [/ ~I an
interval in R), orl, 2 I, 1 . If the sequence is infinite, weeed to show there is a
diffeomorphism from I, — M . Now consider, I, a proper opeh Jhen there
exists X which is a limit point of,, I, , but¢ o, I, . Then clseoU;,p; with

x € Uy so thatpy, * =a, ob, .Definé,.; =1,U ¢ U; |x€U; .Then foreach
U;,p; with z € U;, there is a path; so thata, ==z ang oo, ! "a, =1
Translatep; , reflect if necessary to get . GHet o, ! . Napposer,, is not injective.



If 0,2 =0, 2 ,leta= z—2a'. Theno, r+a =0, v .[too confusing to copy
from the board!]
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Lemma 1. Supposdﬁ is a sm_ooth manifold. There exist @l C V5, C ... such
thatM = 2 V;,and/; C Viy; V; compact.

Proof. Let B be a countable basi8 = B; ., withy compact. @aosV;
inductively. Takel; = B, . Thel; is compact, 89 C B, U...UB,  for samelet
ny be the first integer so that; ¢ ., B; . Then $ét= [, B; . Forititeictive
step, letn;, be the first integer 8¢_, ¢ *,B;=V . Theid, V= X B;=M
sincen; — oo .0

Lemma 2. SupposeV/ is a manifold and Bt be a basish@rtdpology. Then there
are elements Y 4... ¢ B such that

1 M= 2 U.

(2) EachU; meets only finitely mary;

Proof. LetV; be given by Lemma 1. Then chod5e..., U, so tiet tover//; , and
choose,,, 1, ..., U,, so thatthey covés — V4 . For the inductive $fgp,1, ..., Uy,.,
coverV, — ™ U, and be disjoint from™ > U; fen, <i<mn,.; .Thé&h is
disjoint fromU; ( < n; ). In particular, each point 8f  irsfinitely manyU; .LJ

Corollary. (Partition of unity lemma) ChooseB to consist of (open) chart domains
such that there exists a smodgih: M — R withz >0 foe U fy,z =0 for
z € M —U. Then construct;, U, ... by Lemma 2 so thlae =, fu, is a positive
smooth function. Defing; .= fi,/f so thaty,,,,9: =1  (and note supp U; 01).

Lemma. SupposeM is a connected manifold. It be asbi@si the topology
consisting of connected open sets. Then there eWistW,,... ¢ B such that

ioilWi =M W|th Wn N ?;llwi 7é @

Proof. LetV; be given as in Lemma 2. Théh, =V, Wy, ..., W, are all elémenh

V; that meetW; W, 1,...,W,,.,,... are elements that meet' W, . Consider
Vi|V; # W,foranyi,j =A. Then A is openB= XW, is open, and

AN B # (). Also, M is connected]

Let M be a connected 1-manifold. Then we can give Rieanannian metric.

e If Tisaninterval iR ,then : I — M isunitspeeddf ¢t =1forallteI.

* Any patho : I — M can be reparametrized as a unit spatdwith the same image.



e Supposer : I — M and:J — M are unit-speed. ThenJ 5t o t, =7t , and
oot 't =1 [%]. But this implies there exists a unit-speedhpat I U J — M
with v|; = o andv|; = 7 . Also noticer o 77|y = id.

« If U,y isachartforM ,thep—! isa path so thera imit speed pathy : I — M
andoy I =M anby I =U .

» Supposer : I - M 7:J — M areunitspeedand o I N7 J . Consider then
thereisa € R suchthata +£¢ amd satisfy the conditioriskth

Choose a connected chart neighborhoods\for  asnmia 3. Then ldt/y, Us,... be so
that [, U; is connected and meéfs,; ; alsg,U; =M . Then chartd/; — R
with unit speed paths;,o,... sothat I, =U, . Then we can cectshy induction
intervals J; C J, C ..., and unit speed paths, 7, ... so that J, — M with
Tilg,, = Ti-1 andr; J; = ;lei .Thens = 2,J; and:J — M can be constructed
unit speed|;, =7, sothatJ =M .4 is injective itis a ddfnorphism. Otherwise
Ta =7a+m for some a,a+m € J . Then construct: R — M so that
Tx =717x+km where k£ is chosen sor+km € a,a+m . Then observe
7T x+m =71 x IS smooth, so we can take any pointMh , takeptieeimage ofrf to
get back to the real linR , and then map it todinele with 9, gamiaf ™ and we've
constructed a diffeomorphism frofn  to the circle.

£
N\
ﬁf(@,‘

ML f'a(j
P
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Definition. A smooth functionf: M — N issmoothly homotopic to smooth
g: M — N if there is a smooth homotopy

H:Mx 0,1 = NwithH 2,0 =fz ,Hz,1 =gz .

Definition. An isotopy for a smooth manifold/ is whefig: M — M are
diffeomorphisms so thefi @noothly isotopidf there is a smoothi/ : M x 0,1 — M
with H z,0 = f x andH z,1 =g« ,andH z,t is adiffeomorphism fox 1,2

Theorem. If N is connectedr -manifold, andy  are two pointsh\othere there is a
diffeomorphismf : N — N suchthgty =2z andf isisotopictgid .



[Laptop lost power...]

Lecture 22
[ Not understandable... ]

Definition. Anorientable manifold M™ has a differentiable structure such that
d o, 0 9051 has positive determinant at each point.

Example. The annulus is orientable. The Mobius stripas (if you take overlapping
chart neighborhoods eventually they overlap thraixghMobius band). An ordered basis
of R” ey,...,e, IS positive/negative if ...

A manifold M is oriented if and only if there is laice of ordered basigy, ..., e, for
T,M,p e M, sothat for any chart/, ¢ dy, e ,...,dyp, e, is positive.

Define "deg" off : M — N inZ byify is aregular value pfandz € f~' y ,

signy x = + 1 ifdf, maps a positive basis to a positive basisl—1 if it maps a
positive basis to a negative basis. Then fleg eisth . sigry = forany regular
valuey .
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An orientable manifold M™ has a differentiable structure such thatp,, ogpgl has
positive determinant at each point, if and onlywi& can choose a (not necessarily
continuous) basis for eadi M/  such that if and iratke chart domain fap then the
bases map to compatible basesR6ér  uader

If f:M — N takes compact, oriented -manifolds to: regulalue for f, for
x € f~!y define

1 if df, carries a positive basis to a positive basis

SO T =" 1 otherwise.

Then "define" degf = .., signz

Proposition. SupposeV/™*! is a compact orentied- 1  -manifold-witbrgtary and
N is a compact, oriented -manifold.fif: M — N is smoothrtly is a regular value
with deg, flonr =0.
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As from last time, we have a mgp: M — N  with the former a+ 1 -manifold-
with-boundary, and the latter an -manifold (botleonted). Theny € N is regular fgr ,
f/OM.Then dedf |spny =0 .



Proof. Considerf~! y . First, an orientation df  gives nsodentation o)/ . Take
a pointp € OM with a basisey, ...,e,, fdf,0M .Thén is an outwardteein7,M .

Then signey, ...,e,, = sigm,ei,...,e, . Lev be a non-zero vectorIjyy ! y and
then extend to a positive basisiofMl . Thif ey, ..., e, issasbior 7’y , N . We
have to show sign = sighf, ei,....,e, .Say OM . Thenei,... e, is positive

for M which implies ey, ...,e,, is positive foOM is points oahd negative ifv
points in. If v is a positive tangent vector fo' y rtheigry,,, p is positive or
negative ifv points out or in, respectively. Lef =W x 0,1 heveW is oriened.
ThenW x 0 ,W x 1 is oriented. How does this orientatioii6fx 0,1 compare
with the orientation inherited from/ ?

If fo ~ fi = deg, fo = deg f1 . Assumg is regular fér f, . Whayif isuleg for
fo, fibut not H . Choose nbhtif  of s.t. for every ptuof ragular for fy, fi with
deg; fo = deg f, and same fgr . Then choeseU regular. Treerfde deg f; . If
y,z are regular forf then defj= deg. f for all , so therestexan isotopy
H: M xI— M sothatd z,t is adiffereomoprhistf, z,0 =z« ,afAdy,1 =1

If f: M — Mis an orientation-reversing diffeomorphism th&ms not homotopic te),
with degf = —1 = -degpy, .

If M =S"with f + = —x,thendegf =1 ih isoddandl if iseventhvi

-1 0 ..
detdf = 0 -, 0 = +1ifnisevenandl it isodd.
0 -1

If nis even, then any vector field ¢if  has a zexcter.
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We were looking ata: R" — R" witha x = —z , a linear transformatiddave
deta = —1 ifn is odd, else even. &0 is orientation @nasg ifn is even.

Look ata : "1 — §"~1 Them is orentiation preserving §fr! if anmdyy if it is on
R”.
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Theorem. LetVi, Vs, be vector fields on a compact smooth méahifd with isolated
zeroes. Then infl; = inth

(1) Show thatind V' is well-defined. [etc]

Lemma. Supposé/ is aconvex openseRin  ®nd istawvkeld onU with a zero
atz € U. Also suppos¢ : U — R" is a diffeomorphism frém ft&/ .

Theorem 2. If U is a convex openseti®R’ apid U — R" is a diffemagphfrom
U, thenf is isotopic to id.



Proposition. If V' is a vector field such that (1) points amoM (/- N > 0) and
(2) V has isolated zeroes i — 2M . Then Ind= deg Gaddd — S"!

Notice then Ind/ = Ind/’ for any two of these vectetds.
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We had a compact manifold , with a vector fiegld Mnwith isolated zeroes so that

IndV = Ind;V = degf,
V Z =0 V Z =0

with £, : S. — S™.

Definition. If U is an open neighorhood of , an isolatecbz# a vector field , then
z is non-degeneratedfV, is non-singular.
Example. Forf x,y ,ifV =Vf=(df/0x, 0f/dy), then

Vay =gayi+fay]

so that the matrixV.  with respect b, a% is the Hessiatrix

o2f  9f
Ox? 0xdy
of  &f
Oyox oy?

Lemma 2. Supposé” has an isolated zere at . Then amaailyismall perturbation of
V will have deg V' non-degenerate zeroes in a smajhiheirhood of: .

Lemma 1. If zis a non-degenerate zerolof , then.dég- + 1

Proof. V (thought of as a diffeomorphism) is smoothlgtapic to the identity or to a
reflection (degree i$ or1 , respectively).
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Theorem. If M is a smoothn -manifold andd  is a vector field M with isolated



(removed points circled)
If zis a nondegenerate zeroéf , thedWif is namgslar, in this case

1 if detdV, >0

nd.- V=" it getav. <o

If V' is arbitrary with isolated zeroes, then we panturb i/ to a vector field with non-
generated zeroes of the same index.

with  indz V' = ind, V.
EmbedM inR"™ for som& .Defin€. CR" B = ze€R": distN <e
Assume:

(1) for small enough Iy. is a smooth manifold.



TRTL — R?L X RTL.
ThenTM Cc M x R" C R" x R" at each point d¥/ 7,,M is a subspac&,®" with
a; 0/0x; tangent vectors tR”
AssumeM C R" .TheniNM C M xR"NM = z,v |v L T,M (subspaceR)

Then NM is a submanifold oM x R" C TR" =R" x R" . Using Gramm-Schmidt
process we can find smothing that is smoath\{ — R" bw —z+v,xeN ,
v L T,M).

Assume: (1) for small enough N. is a smooth madjfaind (2) for even smaller
there is a well-defined map: N. — M  such that is smoaoithrax is the closest
point onM .

If we choose aivy ,, nonsingular, then the inverse fanctheorem shows) is a
homeomorphism of a neighborhoodwo& M

Hence, NM.= =z,v e NM| v <e¢ —R". We claim 3 >0 such that

¥ : NM. — R" is injective. Otherwise, we find a sequenas,v, , z), v, sat th
Y x,v, =1 2,0, and v, — 0.We find a subsequence of, converging to
For larger z,,,v, andz),v/, of atrivial inside of the embeatideighborhood of . So

thenr is a projection ¢p~! [

Lecture 29

Finite dimensional real vector space

Definition. A functionf : V; x ... x V, — W ismultilinear if
f U1, e Vitt, , Vid1y eeey Uk

is linear for each .

Example. A basic example is ify : Vi —= W , . : Vi, = W |, thefh-...- [ is
multilinear. An algebrad is a vector space with radoict that satisfiesa - v w =
v- aw =av-w andA isaring.

There exists a vector spacdé="T vy,...,v; which is "universal' multilinear
functions in the sense: (1) there is a multilifegactiony : V; x ... x V;, — T, and (2) if
f: Vi x..xV, — W is multilinear, then it factors as

V1><...><Vk£>T
N



v, Uy + v, —a vy, v — B v,
avy + fu), vy —a vy,ve — B V), v,
av,w —a v,w ,and
v,fw — G v,w .

Notation: ¢ vy, ..., v, IS Writtenv; ® ... ® vy, .

Suppose,...,e, Iisabasisfor afd..., [, is a basisufor . &deconstruct a basis

forv®w, say by e; ® f; . We can show these spanw . Suppodé x W — Z
multilinear. Letv =  a;e; € V andv = b;f; € W . Then

fow =f ae, bifi = Ljabjf eie;.
This meansf is uniquely determined by specifying,e; If
67?,1' a;€e;, bjfj = aibi

then multilinear functions form a vector space va#tsis ; ; (dim= mn ). So this
corresponds te; ® e;

Definition.  f: Vi x ... x V, — W is amalternating mutilinear function if
(1) f is multilinear.
(2) f v1, eV, Vig1s ey U = —f UL, e, Vi1, Vg ey U

Example. If dimV = d, consider detV* — R . From linear algebra, kmew this is
an example of an alternating multilinear function.

Example. R3 x R? — R? by v,w — v x w (cross product).

f a15€y, a25€j; -, an€; = f €s15€0n :kf €1y.-y€En
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We were taking vector spacésW  sothatV x W — Z is mulaline

Theorem. There exists a unique vector spacex W such thraarfg multilinear
f:V xW — Z there exists a unique lin€ar: V@ W — Z  so that

VxW-VW
\ 1T
Z.

Proof. Construct a vector space with basesy ¢ V xW R With ubsace
generated by the relations

/ /
v,avy + vy —a v, v — B v,y ,

/ /
avy + Bv,v2 —a v,v9 — B U], ve

is



av,w —a v,w ,and

v,fw — G v,w .

Then we haveV xW — H — H/R withV x W — Z so that there is a unique
mapping H — Z andH/R — Z that makes the diagram commute. Thenca¥
H/R=VaW.

Multi V., W;Z = multilinear functionsV x W — Z

It is clear this is finite dimensional. Choose Isasg...,e,, for fi,..., foi1 forW . If
F:VxW —Z is multilinear, thenF  aje;, b;f; = aibjF e;, f; . Then
EjeMulti V.W,Z . Then E;j e, fi =1 ifi=Fk,j=1 and0 otherwise. So then
F = Feje; - E;j So this is saying that Multv, W;R ~ Linedr @ W,R =
W* (the dual). Thereforel/ @ W * s finite dimensional witimensiondim V" - dim W’ .
ThenV is unnaturally isomorphic 6 , meaning we canstruct an isomorphism by
choosing a basis;,...,e, 0oF  and considerieg...,e’ € V* . This ignddf by
e; ej =06;. Thenf € V* means we can uniquely wrfte=  f e; ef VIf isaHibe
space, this is canonical. ¢f are an orthonormaishahene; — e . ThenV* * =~ V
cononically, sovf = f v .

Then theE;; form a basis for Mulir, W; R so that; e VoW * is dual t
e; ® e; = image of e;,e; . We can then construct thesor algebra

TV =22, T, V,

with 7,V =R, TV =V, andT, V =T, 1V ®V . Therdl' V  is an algebra
withT, V T,V —-T,V 1T,V =T,,, V .ThenT V is a graded algebra.

A similar proof can be givenfgf : V x ... x V — Z [
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Continued lecture from Warner chapter 2.

Lecture 32[wWarner 62-66]
We letA M be so that the fiber over AsT,M . Then M ftber overp , is
T,M®..0TM,® TM; @ ... TM; .
r times s times

DenoteX M = vector fields on/ as a module ovér -smoatictions onM
([Warner; 64]). Noticek -forms are also a moduleroge® M . If a k-formw is an
alternatingk -linear (multilinear) funciton from th&>* M -module toX x ... x X —
C* M .Thenw Xy,..,X; / p =w, X1 p,..., X} p is adifferentiakk -form if and
only if alternatingk -linear functions from th¢>~ M  -mddX x ... x X toC>* M .



Lemma. Supposew : X X .... x X — C>* M is alternating multilinear. Also let
X1y Xy, Y, €Xx...xXaresuchthak; p =Y; p .Then

w|p Xl, ,Xk = w|p 1/1, ,Yk .
Proof. It suffices to assum&; p ,..., X; p =0 . We choose a charthbeidoodl/

aroundp . InU ,X; = «a; % witha; e C* U and; p =0 . We then choose a
bump functionp =1 oW CcU angg=0 of —U .Theh = a;p "o #
Then X; = a;p ‘Pa H#H+ 1- VX, =X;+ 1—¢? X; sow X1, X, =0 atp

becauseXy,...,X, 8 atll

Graded modules, e.g5; M, for homomorphisins floM — E M

- f hasdegre¢ if: E" M — E"' M

- fisaderivationiff wAn =fw An+wA fn

- fis an antiderivationif wAn =fw An+ -1 wAf é whewee EP M  and
nek M.

Theorem. There is a unique antiderivatian £ M — E M of degrde tisleng
d>=0andd f =df forf cE' M =C>® M

In R™ with f z,...,x, smoothdf = %fd:cz , wheréz; is a linear functional o

tangent vectors{z; X € C*® dz;|, v € R withe T,R" . Thelr; is the dual to the
standard basis vector field.

Lecture 34
Homework. Warner, chapter 2: 9, 10, 12, 13.

If £ M are differentialt forms with a module over M loile with fibersA 7), *
thath as product\ . Also, there is a unique deg@rastiderivationd : £ M — E M
suchthatl? =0 d d a =0 )withi f =df .Furthermore,

dwAn =dwAn+ —17ANdnpwhenwe EP M .

Also, E° M = (C> M . Suppose¢,gc E° M (> functions), withe E» M  and
fAw=wA f. FurtherwAn= —-1"nAw whew e E? n € E7 . The convention is
thatf A\w = fu=wf andv A f = fu=wf .Ifwe havg,gec C° M thenfcy =
df -g+g-df =g-df + f- ob TheR" = M and?’ = C>* witly, ..., E, constant
vector fields,F; p =¢;, E;, = (%7 . We knowr; has basisd..., z,d .Then

dr;"" 2 # = by,

which is a constant function arising from the diffietial form applied to the partial.
Notice dc; A ds X, Y € C™, withX = ala% + %%2 +... and = bla% + ..., with

da:l/\dng<Y :CtL’1X dIZQY —dL’1Y dJQX = a1by — asby .



Now, if we takef € C'*™ , then
df = hdey + gL vy + ...
with dz; € B/, d dr; =0,
dfdey =dfAd+fddy =90 di+ 5L dy+ L as# A d

o T T awanzq ,
sothat a; d; € £/ and so

dd a dy; =d " aa, &# N ai# = [BOARD WAS ERASED].
1,7,k

INR?, df = L dr+ 5L oy + 5L & with

ddf =Lbdendi+ 2L dnd+ 2 dn d+ 2L dn g+ 54 dn gt
If 7, J, K are constant vector fields, then the Riemanmnmtric given by
I-I=J-J=K-K=1landl-J=J - K=K-1=0

give the pairingR? x R* — R which induces an isomorphism itd@ual spacé™*
Now let

dr < I,dy < J, & < K forB' < X

with pdx +qdy +r dz — pI +qJ +rK . ThenE? is a one dimensioa® -module so
the basisd A @A d is given by < C> . Then there is a napaaing (called the
Hodge stanE? x E' — E3=C™ witwxn—wAn and?= E' "=X .Thenwe
need to showt? « C® E' « X, E? < X ,anll® < C> . Then we'll get

pdx+qdy+rdz < pl +qJ +rK
pde Ndy+qdyNde+r kA o — pK +ql + 7K
for fdr Ady A b — [, with
d:E' - E'« f— Vf
d:E' - E?> X —-VxX (curl)
d:E? - FE* X —-V-X (div)

[l really don't know where this is going...]

Lecture 35

Pull-backs

If E: M — Nissmoothand € E¥ N ,thefi determines a pull-back,of
5f w € EF M with §f w vi,...,vp =wdf vi ,....,df vy



with v; € T,M. One way of describing a differential formssmething you can integrate
over anM -manifold. A& -form is something you caregrate over a singular -chain.
We want to find a singulak -chaim  and its boundawsy where we define w  with

w € E* M . Then we want to prove Stokes' Theorem [Warnefl44j: goW = Ldw.
Here,c isak+1 -chainandv is&+1 -form, ahd B a +leidw is & -
form. Then consider smooth singukar -simplexesiriged smooth singuldr -chain to be

n
a formalism a;0; witho; € R where; is a smooth singular fden.
=1

For simplexes, Warner's notatiord§ = 0 , A’ =10,1] ,and
A" = §&T1; -+ Ty | Ti =g
0<z,<1
Supposer is a singular -simplex, i, A¥ — M . We cameefi ak -form)
W= pdow = o f
where the bounda§o w = fdxi Adxs A ... Adxy, , Witho w € EF AF

Before we continue, let's examine what we have danér in light of what we know
from calculus. For line integrals, let: 0,1 — R? witht = xt ,yt bepath

with a vector fieldt” = Pi + Q7 . Then
((F-di= ,Pat,yt -2t +Qut,yt -yt dt.

Thenqwe kn0\iv that this isjndependent of the patanmation with the same endpoints.
Then: — dx ,j — dy ,andF — w = Pdx + Qdy . Then
JW= Olaaw = Olft dt,
wheredo w = f Adt . So then
0o Pdr +Qdy = Pzt ,yt 27t +Quxzt,yt yt dt

withot = zt,yt sothaWo dox =2t dt ando dy =4 t dt , and of course
o Pt =Pxt,yt ,anddo Q t =Q zt ,yt

Now let's go back to the general case. Take a nehab that

a;o; Whereo; are simplexes,

then

Lecture 36

We want to define the boundary of a smooth singkkasimplexo : ¥ — M (denoted
by dc). The boundary oA? (a point)is . FAf |, ibisl — o 0 (“distance" from) to
1). Wewanttocreateamdfyy 0 =0 K 0 =1 K} : A" - Al afig: A" — Al
For a 2-simplex (triangle), the boundary is givgno — o' + 02 =00 K2 — 00 K? +



oo K3 with K; : A — A%, We can map the 1-simplex (unit intervaljmthe three edges
of the 2-simplex (triangle). For a 3-simplex (tbedron),0oc = oy — 01 + 09 — 03 .

Some basic homology and application to proving Stas' Theorem(see Warner)



