Differentiable Manifolds

Lecture 11

Let $p \in M$ be a smooth manifolds. Then \mathfrak{F}_{p} is the algebra of germs of C^{∞} functions near p. Then \mathfrak{F}_{p} is an ideal of germs that vanish at p, with $\mathfrak{F}_{p}^{2}=\mathrm{e} \Sigma f_{i} g_{i} \mid f_{i} g_{i} \in \mathfrak{F}_{p} \mathrm{f}$. Furthermore, $T_{p} M$ the vector space of linear derivations $\tilde{\mathfrak{F}}_{p} \rightarrow \mathbb{R}$ is given by

$$
\begin{aligned}
& L \square a f+b f \square=a L \square f \square+b L \square g \square \text {, and } \\
& L \square f g \square=f \square p \square g+g \square p \square f .
\end{aligned}
$$

Remember we proved that $T_{p} M \cong{ }^{\wedge} \mathfrak{F}_{p} / \mathfrak{F}_{p}^{2}$ \%as a vector space.
Now look at $p \in \mathbb{R}^{n}$.
Example (of an element of $T_{p} \mathbb{R}^{m}$) Let $L \square f \square=\frac{\partial f}{\partial r_{i}} \square \emptyset \square \in \mathbb{R}$. The notation for L_{i} is $\frac{\partial}{\partial r_{i}}{ }_{p} \in T_{p}$.

Check that $\frac{\partial}{\partial r_{1}}{ }_{p}, \ldots, \frac{\partial}{\partial r_{n}}{ }_{p}{ }_{p}$ forms a basis for $T_{p} \mathbb{R}^{n}$.
Lemma If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is smooth near p, then its Taylor approximation

$$
\begin{aligned}
& \varepsilon \square p+\boldsymbol{v} \square \nmid \boldsymbol{v} l k w h e r e \varepsilon\lceil p+\boldsymbol{v} \square \rightarrow 0 \text { as } \boldsymbol{v} \rightarrow \mathbf{0}
\end{aligned}
$$

where $a_{i j}$ are smooth.

Proof We have

$$
\left.\begin{array}{rl}
f \square p+\boldsymbol{v} \square= & f \square p \square+{ }_{0}{ }_{0} \frac{d}{d t} f \square p+t \boldsymbol{v} \square d t=f \square p \square+{ }_{0}^{\mathbf{\prime}} \square_{i=1}^{1} \frac{\partial}{\partial r_{i}} \square p \square \boldsymbol{v}_{\boldsymbol{i}}+ \\
& \square \frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} \square p+t \boldsymbol{v} \square \boldsymbol{v}_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{j}} d t=f \square p \square+\square_{i=1}^{n} \frac{\partial f}{\partial r_{i}} \square p \square \boldsymbol{v}_{\boldsymbol{i}}+ \\
& \square{ }_{0}^{\mathbf{\prime}} \frac{1}{\partial^{2} f} \\
\partial x_{j} \partial x_{i} \\
\square
\end{array}\right) t \boldsymbol{v} \square \boldsymbol{v}_{\boldsymbol{i}} \boldsymbol{v}_{\boldsymbol{j}} d t . \quad \text {. }
$$

So our lemma implies if $L: \mathfrak{F}_{p} \rightarrow \mathbb{R}$ is linear and vanishes on \mathfrak{F}_{p}^{2}, then

$$
L \square f \square=\square \frac{\partial f}{\partial r_{i}} \square p \square \boldsymbol{v}_{\boldsymbol{i}}
$$

i.e., L is in the span of $\left\langle\frac{\partial}{\partial r_{1}}, \ldots, \frac{\partial}{\partial r_{n}}\right\rangle$. So now by independence, suppose

$$
\square a_{i} \frac{\partial}{\partial r_{i}} \square f \square=0
$$

for all functions $f \in \mathfrak{F}_{p}$. Take $f=r_{i}$, then $\frac{\partial r_{i}}{\partial r_{j}}=\delta_{i j}$, so $a_{i}=0 \forall i$.
In conclusion, $T_{p} \mathbb{R}^{n}$ is an n-dimensional vector space with basis

$$
{\frac{\partial}{\partial r_{1}}}^{\mathbf{1}}, \ldots,{\frac{\partial}{\partial r_{n}}}_{p}
$$

on ${ }^{\wedge} \mathfrak{F}_{p} / \mathfrak{F}_{p}^{2} \%$ o
Now consider a manifold M.

Then

$$
\begin{gathered}
\square \rho_{*} f: U \rightarrow \mathbb{R} \square \rightsquigarrow \square f \circ \varphi^{-1}: \varphi \square U \square \rightarrow \mathbb{R} \square \text { and } \\
\square \rho^{*} g: \varphi \square U \square \rightarrow \mathbb{R} \square \rightsquigarrow \square g \circ \varphi: U \rightarrow \mathbb{R} \square
\end{gathered}
$$

so we have

$$
\varphi^{*}: \mathfrak{F}_{p} \square M \square \cong \mathfrak{F}_{\varphi \square p} \square \mathbb{R}^{n} \square \text { and } \varphi_{*}: \mathfrak{F}_{\varphi \square p} \square \mathbb{R}^{n} \square \stackrel{\cong}{\leftrightharpoons} \mathfrak{F}_{p} \square M \square
$$

as well as

$$
\varphi^{*}: \mathfrak{F}_{p}^{2} \square M \square \cong \mathfrak{F}_{\varphi \llbracket p}^{2} \square \mathbb{R}^{n} \square \text { and } \varphi_{*}: \mathfrak{F}_{\varphi \llbracket p}^{2} \square \mathbb{R}^{n} \square \stackrel{(}{\cong} \mathfrak{F}_{p}^{2} \square M \square
$$

So in conclusion, $T_{p} M \cong T_{\varphi \llbracket \square \square} \mathbb{R}^{n}$ for any chart φ defined near p, and $\operatorname{dim} T_{p} M=n$. To see this, let $\square U, \varphi \square$ be a chart near p and define X_{i} on M, so that

$$
X_{i}: \boxed{\square \square}={ }_{i}^{\#} \square \rho \square \in \square
$$

and so then $\varphi \rightarrow$ the "coordinate functions" $x_{1}, \ldots, x_{n} \in \tilde{\mathfrak{F}}_{p} \square n \square$ Then we can define

$$
\frac{\partial}{\partial x_{i}} \square f \square=\frac{\partial}{\partial r_{i}} \square f \circ \varphi^{-1} \square
$$

So we have a basis $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}$, but note this basis depends on choosing a chart! So any time we pick a chart, that determines a basis for $T_{p} M$ for us.

Problem Suppose we take a smooth path $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{n}$ with $t \stackrel{\sigma}{\mapsto} \square_{1} \square \boxed{\square} \ldots, r_{n}[t]$ We'd like to confirm the velocity vector of this path is what we've determined. So we need to show that we can think of $\sigma^{\prime} \square 0 \square$ as $\square_{i} r^{\prime} \square \bigcirc \square \frac{\partial}{\partial r_{i}}{ }_{\sigma \square \square \square}{ }^{1}$

Definition Suppose M and N are manifolds and $f: M \rightarrow N$ is a smooth function. Then f determines a linear transformation $d f: T_{p} M \rightarrow T_{f \sqsubset \square \square} N$.

Notice then $\mathbb{F} d f_{p}^{1} \square L \square \square \emptyset \square=L \square g f \square$ where $g: N \rightarrow \mathbb{R}$.

Problem Check that $d f_{p}$ and the old definition of $d f$ agree in the case of a map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. In fact, the matrices with respect to bases e_{1}, \ldots, e_{n} are the same.

Lecture 12

Lemma Suppose $g: \mathbb{C}, a \mathbf{d} \rightarrow \mathbb{R}$ is smooth and $g \square \square \square=g^{\prime} \square 0 \square=\ldots=g^{\boxed{n} \square 0 \square}=0$ then $g \square c \square=\frac{x^{n}}{n!}{ }_{0}^{1} \square 1-t \square^{n} g^{\square n+1} \square x t d t$. In particular, $g \square x \square=f \square x \square x^{n}$ for some smooth f (by differentiating under the ${ }^{\prime}$ sign).
$\frac{x^{n+1}}{n!}{ }_{0}^{1} \square 1-t \square^{n} g^{\square n+1} \square x t \square d t=\frac{x^{n+1}}{n!} \square 1-t \square^{2} \frac{1}{x} g^{\square n} \square c t \square \square_{0}^{1}+\frac{x^{n}}{\square n-1 \square}{ }_{0}^{1}{ }_{0}^{1} \square 1-t \square^{n-1} g^{\square n} \square x \square d t$
$\left(u=\square 1-t \square^{n}, d u=-n \square 1-t \square^{n-1}, d v=g^{\boxed{n+1}} \square \square c \square \ldots\right.$..)
$f-P$ (Taylor poly) is a degree $k+1$-th form (homogeneous polynomial) with smooth coefficients.
$f-P=\varepsilon \square c \square \mid k x k^{n}$ where $\varepsilon \square x \square \rightarrow 0$ as $x \rightarrow 0$
If P linear, $f \equiv P \bmod \mathfrak{F}_{o}^{2}$.
$T_{p} M={ }^{\wedge} \mathfrak{F}_{p} / \mathfrak{F}_{p}^{2} \%$ o
Equivalence classes of paths through $p, \sigma_{1} \sim \sigma_{2}$ if they have same velocity.
Equivalnce classes of \mathbb{R}^{n} 's "glue by charts".

Tangent bundle

We are taking a set (not top space), ${ }^{-}{ }_{p \in M} T_{P} M=M \times \mathbb{R}^{n}$.
Tangent bundle of \mathbb{R}^{n} : use the product topology on $M \times \mathbb{R}^{n} \equiv{ }^{-}{ }_{p \in M} T$, epf $\times \mathbb{R}^{n} \equiv T_{p}$.

Charts: For each chart $\square U, \varphi \square$ on M, define $\widehat{U}={ }^{-}{ }_{u \in U} T_{p}$ to be a domain of a chart (so they are open), define $\widehat{\varphi}: \widehat{U} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n} \equiv T \mathbb{R}^{n}, \widehat{\varphi} \square \rho, v \square \rightarrow \square \rho \square \rho \square d \varphi_{p} \square \downarrow \square$

For the tangent bundles, any smooth map $f: M \rightarrow N$ determines $d f: T M \rightarrow T N$ given by $\left.d f\right|_{T_{p}}=d f_{p}: \operatorname{Hom}^{\wedge} T_{p} M \rightarrow T_{f \square \square \square} N \% o$

Lecture 14

 $d p_{z}=\mathbb{F}_{-b}^{a} \quad$| $-b$ |
| :---: | . Singular iff $a+i b=0$; critical points of p are the zeroes of p^{\prime}, so there are finitely many.

$p \rightsquigarrow f: S^{2}-N \rightarrow S^{2}-N$ (N is north pole), then f extends to a smooth map $\widehat{f}: S^{2} \rightarrow S^{2}$ s.t. $\widehat{f} \square N \square=N$. Then f has finitely many critical points.

Definition $x \in S^{2}$ is a regular value of f if there are no critical points in $f^{-1} \square x \square$ (if $f^{-1} \square x \square=\emptyset, x$ is a regular value).
$x \in S^{2}$ is a critical value if $f^{-1} \square x \square$ contains a critical point. f has finitely many critical values, so the set of regular values is connected. Observation: The function $x \rightarrow \# f^{-1}[x \square$ is a locally constant function on the set of regular values.
$\# f^{-1} \square c \square$ is finite for any regular value x.
$\# f^{-1} \square c \square=0$ for all regular x. Then f is constant so P is constant.
Cor If P is not constant, then $P^{-1} \square \square$ is non-empty
Theorem (Sard's Thm) If $f: M^{n} \rightarrow M^{m}$ is smooth then the set of critical values has measure 0 .

Lecture 16

Last time:
Def A smooth manifold-with-boundary is a Hausdorff second countable space with an atlas of charts $\quad \square \mu, \varphi \square$ where $\varphi: U \rightarrow H^{n}=\mathrm{e}\left\lfloor x_{1}, \ldots, x_{n} \square \mid x_{n} \geq 0 \mathrm{f} \subset \mathbb{R}^{n}\right.$. i.e., - $U_{\alpha}=M . \quad \varphi_{\alpha} \circ \varphi_{b}^{-1}$ is a diffeomorphism from $\varphi_{\beta} \square U_{\alpha} \cap U_{\beta} \square$ to $\varphi \square U_{\alpha} \cap U_{\beta} \square$ A boundary point of M is a point that maps to ∂H^{k} under some (every) chart)

Theorem Suppose M^{m}, N^{n} are manifolds-with-boundary and $f: M \rightarrow N$ is smooth. If y is a regular value for both f and for $\left.f\right|_{\partial M}$ then $\left.f^{-1} \square\right\rangle \square$ a manifold-with-boundary and $\partial \square f^{-1} \square \Downarrow \square=f^{-1} \square \square \cap \partial M$.

Proof Omitted.
Brouwer Fixed Pt Theorem For any $f: D^{n} \rightarrow D^{n}$ continuous has a fixed point.
Pf Suffice to assume f is smooth. Use Weierstrass Thm.

HOMEWORK

Lecture 17

Homework. (1) Prove that any smooth n-manifold has a Riemannian metric.
(2) If M has a Riemannian metric, define the unit sphere bundle

$$
U_{M}:=\mathrm{e} v \in T_{p} M|p \in M,|v|=1 \mathrm{f}
$$

Prove that $U_{S^{2}} \approx \mathbb{P}^{3}$ (unit sphere bundle of 2-sphere diffeomorphic to \mathbb{P}^{3}).
(3) Prove that $\mathbb{R P}^{1} \subset \mathbb{R P}^{2}\left(\mathbb{R}^{2}-\mathrm{e} 0 \mathrm{f} / \sim \subset \mathbb{R}^{3}-\mathrm{e} 0 f / \sim\right)$ is not $f^{-1} \square \square$ for a regular value y.
(4) Let $f: S^{1} \rightarrow \mathbb{R}$ be smooth. Suppose y is a regular value.
(a) Show that $\# f^{-1} \square y \square$ is even.
(b) Show the \# critical points $\geq \# f^{-1} \square \square \square$ for any $y \in \mathbb{R}$.

Last time, we showed the Brouwer fixed point theorem.
Definition. A (smooth) vector field on a manifold M is a section of $T M$, the tangent bundle, that is, a map $X M \rightarrow T M$ such that $X \square p \square \in T_{p} M$.

Definition. A Riemannian metric on a smooth manifold M is a family \langle,\rangle_{p} where \langle,\rangle_{p} is an inner prouct on T_{p} which is smooth in the following sense: $f: p \mapsto\langle X, Y\rangle_{p}$ is a smooth map from $M \rightarrow \mathbb{R}$ for any vector fields X, Y.

If $\square U, \varphi \square$ is a chart on M, then U has a Riemannian metric, with $\langle v, w\rangle_{p}=d \varphi_{p} \square v \square \cdot d \varphi_{p} \square w \square$ Furthermore, if $M \subset \mathbb{R}^{N}$, then M has a Riemannian metric and $\langle v, w\rangle_{p}=\sigma \square \square \square \cdot \tau \square \square \mathrm{A}$ corollary to this is that a compact manifold-with-boundary has a $R \subset M$.

Partition of Unity Lemma. Assume M is a smooth manifold. Then there exist open sets U_{1}, \ldots and functions $f_{1}, \ldots, f_{n}: M \rightarrow \mathbb{R}-\mathbb{R}^{-}$so that $\overline{U_{n}}$ is compact, and the support $\square f_{n} \square \subset U_{n}=f_{n}^{-1} \square \mathbb{R}-\operatorname{e0f} \square$ Finally, $\square_{i=1}^{\infty} f_{i}=1$ and U_{n} is a locally finite family. Also note each U_{n} is contained in the domain fo a chart.

Theorem. A connected 1-manifold-with-boundary is diffeomorphic to $S^{1}, \mathbb{C}, 1 \mathrm{~d}[0,1)$, $\square 0,1 \square \approx \mathbb{R}$.

Proof. Let M be a 1-manifold. If $I \subset \mathbb{R}$ is an interval, an $\sigma: I \rightarrow M, \sigma^{\prime} \square \square \neq 0$ for $t \in I$. Then there exists $\tau: J \rightarrow M$ so that $\tau=\sigma \circ s$. Then $\boldsymbol{k}^{\prime}{ }^{[} t[\mathrm{k}=1$ for all t.

Lecture 18

Classify the smooth 1-manifolds:
Definition. Let M be a connected smooth 1-manifold. M has a Riemannian metric $\sigma: c a, b \mathrm{~d} \rightarrow M$ is unit speed if $\mid \sigma^{\prime} \square \square \square=1$ for all $t \in \mathrm{Ca}, b \mathrm{~d}$

Properties of unit speed

- If $\sigma: \mathrm{ca}, b \mathrm{~d} \rightarrow M$ is any path with $\sigma^{\prime}[\square \square \neq 0$, then there is a reparametrization $\tau[\square \square=$ $\sigma \square f \square \square \square$ so that τ is unit speed.
- If $\sigma: I \rightarrow M$ and $\tau: J \rightarrow M$ are unit speed and if there exists $t \in I \cap J$ so that $\sigma \square \square \square=\tau \square \square \square$ then $\left.\square \vdash \circ \sigma^{-1}\right|_{U} \square \square \square \square=1$ (not -1) (for some subset U). Furthermore, then there is a path $\nu: I \cup J \rightarrow M$ so that $\left.\nu\right|_{I}=\sigma$ and $\left.\nu\right|_{J}=\tau$. Hence, $\tau \circ \sigma^{-1}=\mathrm{id}$ where both are defined).
- If $\square U, \varphi \square$ is a chart around $p \in M$, then φ^{-1} is a path and we can reparametrize it to be unit speed. Hence, U is the image of a unit speed path.

Construction. Let $\square U_{1}, \varphi_{1} \square \square U_{2}, \varphi_{2} \square \ldots$ be a sequence of charts, so that U_{i} is connected and $-{ }_{i=1}^{\infty} U_{i}=M$. Construct a sequence of unit speed paths $\sigma_{n}: I_{n} \rightarrow M$ so that either σ_{n} is not injective for some $n\left(M \approx S^{1}\right)$, or σ_{n} is surjective for some n ($M \approx I$ an interval in R), or $I_{n} \supset I_{n-1}$. If the sequence is infinite, we need to show there is a diffeomorphism from ${ }^{-} I_{n} \rightarrow M$. Now consider $\sigma_{n} \square I_{n} \square$ a proper open set. Then there exists X which is a limit point of $\sigma_{n} \square I_{n} \square$ but $x \notin \sigma_{n} \square I_{n} \square$ Then choose $U_{k}, \varphi_{k} \square$ with $x \in U_{k}$ so that $\varphi_{k} \square c \square=a_{n}$ or b_{n}. Define $I_{n+1}=I_{n} \cup^{-} \mathrm{e} \varphi\left\lceil U_{i} \square \mid x \in U_{i} \mathrm{f}\right.$. Then for each $\square U_{i}, \varphi_{i} \square$ with $x \in U_{i}$, there is a path τ_{i} so that $\tau_{i} \square a_{n} \square=x$ and $\square \tau_{i} \circ \sigma_{n}^{-1} \square \square a_{n} \square=1$. Translate φ_{i}, reflect if necessary to get $\widehat{\varphi}_{i}$. Set $\tau_{i}=\widehat{\varphi}_{i}^{-1}$. Now suppose σ_{n} is not injective.

If $\sigma_{n} \square \mathrm{x} \square=\sigma_{n}\left\lceil x^{\prime} \square\right.$ let $\alpha=\mathrm{k} x-x^{\prime} \mathbf{k}$ Then $\sigma_{n} \square x+\alpha \square=\sigma_{n} \square c \square$ [too confusing to copy from the board!]

Lecture 19

Lemma 1. Suppose M is a smooth manifold. There exist open sets $V_{1} \subset V_{2} \subset \ldots$ such that $M=-{ }_{i=1}^{\infty} V_{i}$, and $\bar{V}_{i} \subset V_{i+1}, \bar{V}_{i}$ compact.

Proof. Let B be a countable basis, $B=\mathrm{e} B_{i} \mathrm{f}_{i \in \mathbb{Z}}$ with \bar{B}_{i} compact. Construct V_{i} inductively. Take $V_{1}=B_{1}$. Then \bar{V}_{1} is compact, so $\bar{V}_{1} \subset B_{1} \cup \ldots \cup B_{n}$ for some N. Let n_{1} be the first integer so that $\bar{V}_{i} \subset{ }^{-}{ }_{i=1}^{n_{1}} B_{i}$. Then set $V_{2}={ }^{-}{ }_{i=1}^{n_{1}} B_{i}$. For the inductive step, let n_{k} be the first integer so $V_{k-1} \subset-{ }_{i=1}^{n_{k}} B_{i}=V$. Then $-{ }_{i=1}^{\infty} V_{i}=-{ }_{i=1}^{\infty} B_{i}=M$ since $n_{k} \rightarrow \infty$.

Lemma 2. Suppose M is a manifold and let B be a basis for the topology. Then there are elements $\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots \in B$ such that
(1) $M=-{ }_{i=1}^{\infty} U_{i}$.
(2) Each U_{i} meets only finitely many U_{J}.

Proof. Let V_{i} be given by Lemma 1 . Then choose $U_{1}, \ldots, U_{n_{1}}$ so that they cover \bar{V}_{1}, and choose $U_{n_{1}+1}, \ldots, U_{n_{2}}$ so that they cover $\bar{V}_{2}-V_{1}$. For the inductive step, $U_{n_{k}+1}, \ldots, U_{n_{k+1}}$ cover $\bar{V}_{k}-{ }^{-n_{k}} \bar{i}_{k} \bar{U}_{i}$ and be disjoint from $\overline{\overline{-}_{i=1}^{n_{k}-2} U_{i}}$ for $n_{k}<i \leq n_{k+1}$. Then U_{i} is disjoint from $U_{j}\left(j \leq n_{k}\right)$. In particular, each point of M is in finitely many U_{i}.

Corollary. (Partition of unity lemma) Choose B to consist of (open) chart domains U such that there exists a smooth $f_{U}: M \rightarrow \mathbb{R}$ with $f_{U} \square c \square>0$ for $x \in U, f_{U} \square x \square=0$ for $x \in M-U$. Then construct U_{1}, U_{2}, \ldots by Lemma 2 so that $f=\square{ }_{i=1}^{\infty} f_{U_{i}}$ is a positive smooth function. Define $g_{i}:=f_{U_{i}} / f$ so that $\square{ }_{\text {supp } g_{i}} g_{i}=1$ (and note supp $g_{i}=U_{i}$).

Lemma. Suppose M is a connected manifold. Let B be a basis for the topology consisting of connected open sets. Then there exist $W_{1}, W_{2}, \ldots \in B$ such that - ${ }_{i=1}^{\infty} W_{i}=M$ with $W_{n} \cap{ }^{\wedge}{ }_{i=1}^{n-1} W_{i} \% \not \subset \emptyset$.

Proof. Let V_{i} be given as in Lemma 2. Then $W_{1}=V_{1}, W_{2}, \ldots, W_{n_{2}}$ are all elements of $\square V_{i} \square$ that meet $W_{1} . W_{n_{k}+1}, \ldots, W_{n_{k+1}}, \ldots$ are elements that meet $-{ }_{i=1}^{n_{k}} W_{i}$. Consider - $\mathrm{e} V_{i} \mid V_{i} \neq W_{j}$ for any $i, j \mathbf{f}=A$. Then A is open, $B={ }^{-}{ }_{i=1}^{\infty} W_{i}$ is open, and $A \cap B \neq \emptyset$. Also, M is connected.

Let M be a connected 1-manifold. Then we can give M a Riemannian metric.

- If I is an interval in \mathbb{R}, then $\sigma: I \rightarrow M$ is unit speed if $\sigma^{\prime} \mathbb{\square} \square \mathbb{k}=1$ for all $t \in I$.
- Any path $\sigma: I \rightarrow M$ can be reparametrized as a unit speed path with the same image.
- Suppose $\sigma: I \rightarrow M$ and $\tau: J \rightarrow M$ are unit-speed. Then $I \cap J \ni t, \sigma \square \square \square=\tau \square \square \square$ and $\square \circ \tau^{-1} \square \square \square=1[\star]$. But this implies there exists a unit-speed path $\nu: I \cup J \rightarrow M$ with $\left.\nu\right|_{I}=\sigma$ and $\left.\nu\right|_{J}=\tau$. Also notice $\left.\sigma \circ \tau^{-1}\right|_{I \cap J}=\mathrm{id}$.
- If $\square U, \varphi \square$ is a chart for M, then φ^{-1} is a path so there is a unit speed path $\sigma_{U}: I \rightarrow M$, and $\sigma_{U} \square I \square=M$ and $\sigma_{U} \square \square \bar{Z}=U$.
- Suppose $\sigma: I \rightarrow M, \tau: J \rightarrow M$ are unit speed and $x \in \sigma \square \square \cap \tau \square J \square$ Consider then there is $a \in R$ such that $\tau\lceil a \pm t \square$ and σ satisfy the conditions in $[\star]$.

Choose a connected chart neighborhoods for M as in Lemma 3. Then let U_{1}, U_{2}, \ldots be so that ${ }^{-}{ }_{i=1}^{n} U_{i}$ is connected and meets $U_{n+1} ;$ also ${ }^{-}{ }_{i=1}^{\infty} U_{i}=M$. Then charts $\varphi_{i}: U_{i} \rightarrow \mathbb{R}$ with unit speed paths $\sigma_{1}, \sigma, \ldots$ so that $\sigma_{n} \square I_{n} \square=U_{n}$. Then we can construct by induction intervals $J_{1} \subset J_{2} \subset \ldots$, and unit speed paths $\tau_{1}, \tau_{2}, \ldots$ so that $\tau_{i}: J_{i} \rightarrow M$ with $\left.\tau_{i}\right|_{J_{i+1}}=\tau_{i-1}$ and $\tau_{i} \square J_{i} \square={ }^{-}{ }_{j=1}^{i} U_{i}$. Then $J=-{ }_{i=1}^{\infty} J_{i}$ and $\tau: J \rightarrow M$ can be constructed unit speed $\left.t\right|_{J_{i}}=\tau_{i}$ so that $\tau \square J \square=M$. If τ is injective it is a diffeomorphism. Otherwise $\tau \square a \square=\tau \square a+m \square$ for some $a, a+m \in J$. Then construct $\bar{\tau}: \mathbb{R} \rightarrow M$ so that $\tau \square c \square=\tau \square x+k m \square$ where k is chosen so $x+k m \in \mathrm{C}, a+m \mathrm{~d}$ Then observe $\bar{\tau} \square x+m \square=\tau \square x \square$ is smooth, so we can take any point in M, take the pre-image of $\bar{\tau}$ to get back to the real line \mathbb{R}, and then map it to the circle with $x \xrightarrow{g} e^{2 \pi i x / m}$, and we've constructed a diffeomorphism from f to the circle.

Lecture 20

Definition. A smooth function $f: M \rightarrow N$ is smoothly homotopic to smooth $g: M \rightarrow N$ if there is a smooth homotopy

$$
H: M \times \mathbb{C}, 1 \mathrm{~d} \rightarrow N \text { with } H \square c, 0 \square=f \square c \square H\lceil c, 1 \square=g \square x \square
$$

Definition. An isotopy for a smooth manifold M is when $f, g: M \rightarrow M$ are diffeomorphisms so then f is smoothly isotopic if there is a smooth $H: M \times \mathbb{C}, 1 \mathrm{~d} \rightarrow M$ with $H \square c, 0 \square=f \square c \square$ and $H \square c, 1 \square=g \square c \square$ and $H \square c, t \square$ is a diffeomorphism for $t=1,2$.

Theorem. If N is connected n-manifold, and z, y are two points of N there there is a diffeomorphism $f: N \rightarrow N$ such that $f \square y \square=z$ and f is isotopic to id_{N}.

Lecture 22

[Not understandable...]
Definition. An orientable manifold M^{n} has a differentiable structure such that $d^{\wedge} \varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ / qqas positive determinant at each point.

Example. The annulus is orientable. The Mobius strip is not (if you take overlapping chart neighborhoods eventually they overlap through the Mobius band). An ordered basis of $\mathbb{R}^{n}{e_{1}}_{1}, \ldots, e_{n} \square$ is positive/negative if $f \ldots$

A manifold M is oriented if and only if there is a choice of ordered basis $\varlimsup_{1}, \ldots, e_{n} \square$ for $T_{p} M, p \in M$, so that for any chart $\square U, \varphi \square \square d \varphi_{p} \square e_{1} \square \ldots, d \varphi_{p} \square e_{n} \square$ is positive.

Define "deg" of $f: M \rightarrow N$ in \mathbb{Z} by if y is a regular value of f, and $x \in f^{-1} \square \square \square$ $\operatorname{sign}_{f} \square x \square=+1$ if $d f_{x}$ maps a positive basis to a positive basis, and -1 if it maps a positive basis to a negative basis. Then deg f is the $\square_{x \in f^{-1} \square \square} \operatorname{sign}_{f} \square x \square$ for any regular value y.

Lecture 23

An orientable manifold M^{n} has a differentiable structure such that $d^{\wedge} \varphi_{\alpha} \circ \varphi_{\beta}^{-1} \%_{\text {bas }}$ positive determinant at each point, if and only if we can choose a (not necessarily continuous) basis for each $T_{p} M$ such that if p and q are in the chart domain for φ then the bases map to compatible bases for \mathbb{R}^{n} under $d \varphi$.

If $f: M \rightarrow N$ takes compact, oriented n-manifolds to y : regular value for f, for $x \in f^{-1} \square \square \square$ define

$$
\operatorname{sign}_{f} \square x \square=œ_{-1}^{1} \quad \begin{aligned}
& \text { if } d f_{x} \text { carries a positive basis to a positive basis } \\
& \text { otherwise. }
\end{aligned}
$$

Then "define" $\operatorname{deg} f=\square_{x \in f^{-1} \square \rho^{\prime}} \operatorname{sign}_{f} \square \times \square$
Proposition. Suppose M^{n+1} is a compact orentied $n+1$-manifold-with-boundary and N is a compact, oriented n-manifold. If $f: M \rightarrow N$ is smooth then y is a regular value with $\left.\operatorname{deg}_{y} \square f\right|_{\partial M} \square=0$.

Lecture 24

As from last time, we have a map $f: M \rightarrow N$ with the former an $\square n+1 \square$ manifold-with-boundary, and the latter an n-manifold (both oriented). Then $y \in N$ is regular for f, $f / \partial M$. Then $\left.\operatorname{deg} f\right|_{\partial M}=0$.

Proof. Consider $f^{-1} \square \gamma \square$ First, an orientation of M gives us an orientation of ∂M. Take a point $p \in \partial M$ with a basis $\left\lceil e_{1}, \ldots, e_{n} \square\right.$ for $T_{p} \partial M$. Then V is an outward vector in $T_{p} M$. Then $\operatorname{sign} \square e_{1}, \ldots, e_{n} \square=\operatorname{sign} \square \square, e_{1}, \ldots, e_{n} \square$ Let v be a non-zero vector in $T_{p} f^{-1} \square y \square$ and then extend v to a positive basis of $T_{p} M$. Then $d f_{p} \square \epsilon_{1}, \ldots, e_{n} \square$ is a basis for $T_{f \square \square \square} N$. We have to show sign $\square \square=\operatorname{sign} d f_{p} \square e_{1}, \ldots, e_{n} \square$ Say $p \in \partial M$. Then $\square v, e_{1}, \ldots, e_{n} \square$ is positive for M which implies $\epsilon_{1}, \ldots, e_{n} \square$ is positive for ∂M is v points out and negative if v points in. If v is a positive tangent vector to $f^{-1} \square \square \square$ then $\operatorname{sign}_{\left.f\right|_{\partial M}} \square p \square$ is positive or negative if v points out or in, respectively. Let $M=W \times \mathbb{C}, 1 \mathrm{~d}$ where W is oriened. Then $W \times \mathrm{e} 0 \mathrm{f}, W \times \mathrm{elf}$ is oriented. How does this orientation of $W \times \mathrm{e} 0$, 1f compare with the orientation inherited from M ?

If $f_{0} \sim f_{1} \Longrightarrow \operatorname{deg}_{y} f_{0}=\operatorname{deg}_{y} f_{1}$. Assume y is regular for f, f_{2}. What if y is regular for f_{0}, f_{1} but not H. Choose nbhd U of y s.t. for every pt of u is regular for f_{0}, f_{1} with $\operatorname{deg}_{U} f_{0}=\operatorname{deg}_{y} f_{0}$ and same for f_{1}. Then choose $z \in U$ regular. Then $\operatorname{deg}_{z} f_{0}=\operatorname{deg}_{z} f_{1}$. If y, z are regular for f then $\operatorname{deg}_{y} f=\operatorname{deg}_{H \llbracket, z \square} f$ for all t, so there exists an isotopy $H: M \times I \rightarrow M$ so that $H \square x, t \square$ is a differeomoprhism, $H \square x, 0 \square=x$, and $H \square y, 1 \square=1$.

If $f: M \rightarrow M$ is an orientation-reversing diffeomorphism then f is not homotopic to φ_{M} with $\operatorname{deg} f=-1=-\operatorname{deg} \varphi_{M}$.

If $M=S^{n}$ with $f \square c \square=-x$, then $\operatorname{deg} f=1$ if n is odd and -1 if n is even, with

$$
\left.\operatorname{det} d f=\begin{array}{cccc}
\hat{\imath} & -1 & 0 & \ldots \\
& \ldots & \ddots & 0 \\
& \ldots & 0 & -1 \\
\ldots
\end{array}\right)=+1 \text { if } n \text { is even and }-1 \text { if } n \text { is odd. }
$$

If n is even, then any vector field on S^{n} has a zero vector.

Lecture 25

We were looking at $\alpha: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $\alpha \square x \square=-x$, a linear transformation. Have $\operatorname{det} \alpha=-1$ if n is odd, else even. So α is orientation preserving if n is even.
Look at $\alpha: S^{n-1} \rightarrow S^{n-1}$. Then α is orentiation preserving on S^{n-1} if and only if it is on \mathbb{R}^{n}.

Lecture 26

Theorem. Let V_{1}, V_{2} be vector fields on a compact smooth manifold M with isolated zeroes. Then ind $V_{1}=$ ind V_{2}.
(1) Show that $\operatorname{ind}_{Z} V$ is well-defined. [etc]

Lemma. \quad Suppose U is a convex open set in \mathbb{R}^{n} and V is a vector field on U with a zero at $z \in U$. Also suppose $f: U \rightarrow \mathbb{R}^{n}$ is a diffeomorphism from U to $f[U \square$
Theorem 2. If U is a convex open set in \mathbb{R}^{n} and $f: U \rightarrow \mathbb{R}^{n}$ is a diffemorphism from U, then f is isotopic to id.

Proposition. If V is a vector field such that (1) V points out on $\partial M(V \cdot N>0)$ and (2) V has isolated zeroes in $M-2 M$. Then ind $V=\operatorname{deg}$ Gauss : $\partial M \rightarrow S^{n-1}$.

Notice then Ind $V \equiv$ Ind V^{\prime} for any two oltr fields.

Lecture 27

We had a compact manifold M, with a vector field V on M with isolated zeroes so that

$$
\text { Ind } V \underset{V \sqcap Z \sqcap=0}{\square} \operatorname{Ind}_{Z} V=\underset{V \square Z \square=0}{\square} \operatorname{deg} f_{Z}
$$

with $f_{Z}: S_{\varepsilon} \rightarrow S^{n}$.
Definition. If U is an open neighorhood of z, an isolated zero of a vector field V, then z is non-degenerate if $d V_{z}$ is non-singular.
Example. For $f \square x, y \square$ if $V=\nabla f=\langle\partial f / \partial x, \partial f / \partial y\rangle$, then

$$
V \square c, y \square=\frac{\partial f}{\partial x} \square c, y \square \vec{i}+\frac{\partial f}{\partial y} \square c, y \square \vec{j}
$$

so that the matrix $d V_{z}$ with respect to $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$ is the Hessian matrix

$$
\begin{array}{ccc}
\hat{I} & \frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \tilde{N} \\
\text { Ï } & \frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array} \text { Ò }
$$

Lemma 2. Suppose V has an isolated zero at z. Then an arbitrarily small perturbation of V will have $\operatorname{deg}_{z} \square V \square$ non-degenerate zeroes in a small neighborhood of z.

Lemma 1. If z is a non-degenerate zero of V, then $\operatorname{deg}_{z} V= \pm 1$.
Proof. V (thought of as a diffeomorphism) is smoothly isotopic to the identity or to a reflection (degree is 1 or -1 , respectively).

Lecture 28

Theorem. If M is a smooth n-manifold and V is a vector field on M with isolated

(removed points circled)
If z is a nondegenerate zero of V, then if $d V_{z}$ is non-singular, in this case

$$
\operatorname{Ind}_{z} V=œ_{-1}^{1} \quad \text { if } \quad \text { if } \operatorname{det} d V_{x}>0
$$

If V is arbitrary with isolated zeroes, then we can perturb $\mathrm{i} V$ to a vector field with nongenerated zeroes of the same index.

with $\square \operatorname{ind}_{Z_{i}} V^{\prime}=\operatorname{ind}_{z} V$.
Embed M in \mathbb{R}^{n} for some N. Define $N_{\varepsilon} \subset \mathbb{R}^{n}$ by $N_{\varepsilon}=\mathrm{e} x \in \mathbb{R}^{n}: \operatorname{dist} \square c, N \square \leq \varepsilon \mathrm{f}$.
Assume:
(1) for small enough $\varepsilon, N_{\varepsilon}$ is a smooth manifold.
(2) for even simaller

$$
T \mathbb{R}^{n}=\mathbb{R}^{n} \times \mathbb{R}^{n}
$$

Then $T M \subset M \times \mathbb{R}^{n} \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ at each point of $M, T_{x} M$ is a subspace of $T_{x} \mathbb{R}^{n}$ with] $a_{i} \partial / \partial x_{i}$ tangent vectors to \mathbb{R}^{n}.
Assume $M \subset \mathbb{R}^{n}$. Then if $N M \subset M \times \mathbb{R}^{n}, N M=\mathrm{e}\left\lfloor x, v \square \mid v \perp T_{x} M\right.$ (subspace of \mathbb{R}^{n}) f
Then $N M$ is a submanifold of $M \times \mathbb{R}^{n} \subset T \mathbb{R}^{n} \equiv \mathbb{R}^{n} \times \mathbb{R}^{n}$. Using Gramm-Schmidt process we can find smothing that is smooth $\left(N M \rightarrow \mathbb{R}^{n}\right.$ by $\square c, v \square \rightarrow x+v, x \in N$, $\left.v \perp T_{x} M\right)$.

Assume: (1) for small enough $\varepsilon, N_{\varepsilon}$ is a smooth manifold, and (2) for even smaller ε there is a well-defined map $r: N_{\varepsilon} \rightarrow M$ such that r is smooth and $r \square r \square$ is the closest point on M.

If we choose a $d \psi_{\llbracket r, 0 \square}$ nonsingular, then the inverse function theorem shows ψ is a homeomorphism of a neighborhood of $x \in M$.
Hence, $\quad N M_{\varepsilon}=\mathrm{e}\left\lceil x, v \square \in N M \mid \nmid \nmid \lll<\varepsilon \mathrm{f} \rightarrow \mathbb{R}^{n}\right.$. We claim $\exists \varepsilon>0$ such that $\psi: N M_{\varepsilon} \rightarrow \mathbb{R}^{n}$ is injective. Otherwise, we find a sequence $\left\lceil x_{n}, v_{n} \square\left\lceil x_{n}^{\prime}, v_{n}^{\prime} \square\right.\right.$ so that $\psi \square x, v_{n} \square=\psi \square x_{n}^{\prime}, v_{n}^{\prime} \square$ and $\nVdash v_{n} \nless k \rightarrow 0$. We find a subsequence of $\square x_{n}^{\prime} \square$ converging to x. For larger $\left\lceil x_{n}, v_{n} \square\right.$ and $\left\lceil x_{n}^{\prime}, v_{n}^{\prime} \square\right.$ of a trivial inside of the embedded neighborhood of x. So then r is a projection $\circ \psi^{-1}$.

Lecture 29

Finite dimensional real vector space

Definition. A function $f: V_{1} \times \ldots \times V_{k} \rightarrow W$ is multilinear if

$$
f\left[v_{1}, \ldots, v_{i-1}, \cdot, v_{i+1}, \ldots, v_{k} \square\right.
$$

is linear for each i.
Example. A basic example is if $f_{1}: V_{1} \rightarrow W, \ldots, f_{k}: V_{k} \rightarrow W$, then $f_{1} \cdot \ldots \cdot f_{k}$ is multilinear. An algebra A is a vector space with a product that satisfies $\square \alpha \cdot v \square v=$ $v \cdot \square \alpha w \square=\alpha \square \cdot w \square$ and A is a ring.
There exists a vector space $T=T\left\lceil v_{1}, \ldots, v_{k} \square\right.$ which is "universal" for multilinear functions in the sense: (1) there is a multilinear function $\varphi: V_{1} \times \ldots \times V_{k} \rightarrow T$, and (2) if $f: V_{1} \times \ldots \times V_{k} \rightarrow W$ is multilinear, then it factors as

$$
V_{1} \times \ldots \times V_{k} \xrightarrow{\varphi} T
$$

$$
\begin{gathered}
\square v, \alpha v_{2}+\beta v_{2}^{\prime} \square-\alpha\left\lceil v_{1}, v_{2} \square-\beta\left\lceil v_{1}, v_{2}^{\prime} \square\right.\right. \\
\square \alpha v_{1}+\beta v_{1}^{\prime}, v_{2} \square-\alpha \llbracket v_{1}, v_{2} \square-\beta \llbracket v_{1}^{\prime}, v_{2} \square \\
\square \alpha v, w \square-\alpha \square v, w \square \text { and } \\
\square v, \beta w \square-\beta \square, w \square
\end{gathered}
$$

Notation: $\varphi\left[v_{1}, \ldots, v_{k} \square\right.$ is written $v_{1} \otimes \ldots \otimes v_{k}$.
Suppose e_{1}, \ldots, e_{n} is a basis for v and f_{1}, \ldots, f_{m} is a basis for w. We can construct a basis for $v \otimes w$, say by $\mathrm{e} e_{i} \otimes f_{j} \mathrm{f}$. We can show these span $v \otimes w$. Suppose $f: V \times W \rightarrow Z$ is multilinear. Let $v=\square a_{i} e_{i} \in V$ and $w=\square b_{j} f_{j} \in W$. Then

$$
f \llbracket v, w \square=f \square a_{i} e_{i}, \square b_{j} f_{j} \square=\square{ }_{i=1}^{n} a_{i} b_{j} f \llbracket \rrbracket_{i}, e_{j} \square
$$

This means f is uniquely determined by specifying $f \complement_{i}, e_{j} \square$ If

$$
\delta_{\text {■, }, ~} \text { [] } a_{i} e_{i}, \square b_{j} f_{j} \square=a_{i} b_{i}
$$

then multilinear functions form a vector space with basis $\delta_{\square, j \square}(\mathrm{dim}=m n)$. So this corresponds to $e_{i} \otimes e_{j}$.
Definition. $f: V_{1} \times \ldots \times V_{k} \rightarrow W$ is an alternating mutilinear function if
(1) f is multilinear.
(2) $f \square v_{1}, \ldots, v_{i}, v_{i+1}, \ldots, v_{k} \square=-f \square v_{1}, \ldots, v_{i+1}, v_{i}, \ldots, v_{k} \square$

Example. If $\operatorname{dim} V=d$, consider det : $V^{k} \rightarrow \mathbb{R}$. From linear algebra, we know this is an example of an alternating multilinear function.
Example. $\mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $[v, w \square \rightarrow v \times w$ (cross product).
$f \square a_{1 j} e_{j}, \square a_{2 j} e_{j}, \ldots, \square a_{n} e_{j} \square=\square f^{\wedge} e_{\sigma \square \square}, \ldots, e_{\sigma \llbracket \square} \% \theta k \cdot f\left\lceil ط_{1}, \ldots, e_{n} \square\right.$

Lecture 30

We were taking vector spaces V, W so that $f: V \times W \rightarrow Z$ is multilinear.
Theorem. There exists a unique vector space $V \otimes W$ such that for any multilinear $f: V \times W \rightarrow Z$ there exists a unique linear $T: V \otimes W \rightarrow Z$ so that

$$
\begin{gathered}
V \times W \rightarrow V \otimes W \\
\quad \\
\quad \downarrow T
\end{gathered}
$$

Proof. Construct a vector space with bases $\square, w \square \in V \times W, R$ with R a subspace generated by the relations

$$
\begin{aligned}
& \square v, \alpha v_{2}+\beta v_{2}^{\prime} \square-\alpha\left\lceil v_{1}, v_{2} \square-\beta \square v_{1}, v_{2}^{\prime} \square\right. \\
& \square \alpha v_{1}+\beta v_{1}^{\prime}, v_{2} \square-\alpha \square v_{1}, v_{2} \square-\beta \square v_{1}^{\prime}, v_{2} \square
\end{aligned}
$$

$$
\begin{gathered}
\square \alpha v, w \square-\alpha \square v, w \square \text { and } \\
\square v, \beta w \square-\beta \square v, w \square
\end{gathered}
$$

Then we have $V \times W \rightarrow H \rightarrow H / R$ with $V \times W \rightarrow Z$ so that there is a unique mapping $H \rightarrow Z$ and $H / R \rightarrow Z$ that makes the diagram commute. Then we call $H / R=V \otimes W$.

$$
\text { Multi } \square V, W ; Z \square=\text { emultilinear functions } V \times W \rightarrow Z \mathrm{f}
$$

It is clear this is finite dimensional. Choose bases e_{1}, \ldots, e_{n} for ${ }^{-} f_{1}, \ldots, f_{n+1}$ for W. If $F: V \times W \rightarrow Z$ is multilinear, then $F \square \square a_{i} e_{i}, \square b_{j} f_{j} \square=\square a_{i} b_{j} F \square e_{i}, f_{j} \square$ Then $E_{i j} \in \operatorname{Multi} \square V, W, Z \square$ Then $E_{i j}\left\lceil e_{k}, f_{l} \square=1\right.$ if $i=k, j=1$ and 0 otherwise. So then $F=\square F\left[e_{i}, e_{j} \square \cdot E_{i j}\right.$. So this is saying that Multi $\square V, W ; \mathbb{R} \square \approx$ Linear $\square V \otimes W, \mathbb{R} \square=$ W^{*} (the dual). Therefore $\square V \otimes W \square^{*}$ is finite dimensional with dimension $\operatorname{dim} V \cdot \operatorname{dim} W$. Then V is unnaturally isomorphic to V^{*}, meaning we can construct an isomorphism by choosing a basis e_{1}, \ldots, e_{n} of V and considering $e_{1}^{*}, \ldots, e_{n}^{*} \in V^{*}$. This is defined by $e_{i}^{*} \square e_{j} \square=\delta_{i j}$. Then $f \in V^{*}$ means we can uniquely write $f=\square f \square e_{i} \square e_{i}^{*}$. If V is a Hilbert space, this is canonical. If e_{i} are an orthonormal basis, then $e_{i} \rightarrow e_{i}^{*}$. Then $\square^{*} \square^{*} \approx V$ cononically, so v $\square f \square=f \square \mathrm{\square} \square$

Then the $E_{i j}$ form a basis for Multi $\square V, W ; \mathbb{R} \square$ so that $E_{i j} \in \square V \otimes W \square$ is dual to $e_{i} \otimes e_{j} \equiv$ image of $\square_{i}, e_{j} \square$ We can then construct the tensor algebra

$$
T \square V \square=9 \underset{n=0}{\infty} T_{n} \square V \square
$$

with $T_{0} \square V \square=\mathbb{R}, T_{1} \square V \square=V$, and $T_{n} \square V \square=T_{n-1} \square V \square \otimes V$. Then $T \square V \square$ is an algebra with $T_{n} \square V \square \otimes T_{m} \square V \square \rightarrow T_{n} \square V \square \otimes T_{m} \square V \square \equiv T_{m+n} \square V \square$ Then $T \square V \square$ is a graded algebra.
A similar proof can be given for $f: V \times \ldots \times V \rightarrow Z$.

Lecture 31

Continued lecture from Warner chapter 2.

Lecture 32 [Warner 62-66]

We let $\Lambda \square M \square$ be so that the fiber over p is $\Lambda \square \Gamma_{p} M \square$ Then $\mathcal{T}_{r, s} \square M \square$ the fiber over p, is

$$
r \text { times } \quad s \text { times }
$$

Denote $\mathfrak{X} \square M \square=$ evector fields on $M \mathrm{f}$ as a module over C^{∞}-smooth functions on M ([Warner; 64]). Notice k-forms are also a module over $C^{\infty} \square M \square$ If a k-form ω is an alternating k-linear (multilinear) funciton from the $C^{\infty} \square M \square$ module to $\mathfrak{X} \times \ldots \times \mathfrak{X} \rightarrow$ $C^{\infty} \square M \square$ Then $\omega \square X_{1}, \ldots, X_{k} \square \square p \square=\omega_{p} \square X_{1} \square p \square \ldots, X_{k} \square p \square$ is a differential k-form if and only if alternating k-linear functions from the $C^{\infty} \square M \square$ module $\mathfrak{X} \times \ldots \times \mathfrak{X}$ to $C^{\infty} \square M \square$

Lemma. Suppose $\omega: \mathfrak{X} \times \ldots \times \mathfrak{X} \rightarrow C^{\infty} \square M \square$ is alternating multilinear. Also let $\square X_{1}, \ldots, X_{k} \square \square Y_{1}, \ldots, Y_{k} \square \in \mathfrak{X} \times \ldots \times \mathfrak{X}$ are such that $X_{i} \square p \square=Y_{i} \square p \square$ Then

$$
\left.\omega\right|_{p} \square X_{1}, \ldots, X_{k} \square=\left.\omega\right|_{p} \square Y_{1}, \ldots, Y_{k} \square
$$

Proof. It suffices to assume $X_{1} \square \rho \square \ldots, X_{k} \square p \square=0$. We choose a chart neighborhood U around p. In $U, X_{i}=\square a_{i} \frac{\partial}{\partial X_{i}}$ with $a_{i} \in C^{\infty} \square \square$ and $a_{i} \square p \square=0$. We then choose a bump function $\varphi \equiv 1$ on $W \subset U$ and $\varphi \equiv 0$ on $M-U$. Then $\overline{X_{i}}=\square \square a_{i} \varphi\left\lceil\Sigma \Sigma \varphi \frac{\partial}{\partial x_{i}}<\right.$. Then $X_{i}=\square \square a_{i} \varphi\left\lceil\right.$ Š $\varphi \frac{\partial}{\partial x_{i}}<+\square 1-\varphi^{2} \square X_{i}=\overline{X_{i}}+\square 1-\varphi^{2} \square X_{i}$ so $\omega^{\wedge} \overline{X_{1}}, \overline{X_{n}} \% 0$ at p because $\square X_{1}, \ldots, X_{n} \square$ is 0 at p.

Graded modules, e.g., $E \square M \square$ for homomorphisms f from $E \square M \square \rightarrow E \square M \square$

- f has degree i if $f: E^{n} \square M \square \rightarrow E^{n+1} \square M \square$
- f is a derivation if $f \square \omega \wedge \eta \square=f \square \omega \square \wedge \eta+\omega \wedge f \square \eta \square$
- f is an antiderivation if $f \square \omega \wedge \eta \square=f \square \omega \square \wedge \eta+\square-1 \square \rho \omega \wedge f\left\lceil\square \square\right.$ where $\omega \in E^{p} \square M \square$ and $\eta \in E[\square]$

Theorem. There is a unique antiderivation $d: E \square M \square \rightarrow E \square M \square$ of degree -1 satisfying $d^{2}=0$ and $d \square f \square=d f$ for $f \in E^{0} \square M \square \equiv C^{\infty} \square M \square$
In \mathbb{R}^{n} with $f \square x_{0}, \ldots, x_{n} \square$ smooth, $d f=\square \frac{\partial f}{\partial x_{i}} d x_{i}$, where $d x_{i}$ is a linear functional on tangent vectors, $d x_{i} \square X \square \in C^{\infty},\left.d x_{i}\right|_{p} \square \square \in \mathbb{R}$ with $v \in T_{p} \mathbb{R}^{n}$. Then $d x_{i}$ is the dual to the standard basis vector field.

Lecture 34

Homework. Warner, chapter 2: 9, 10, 12, 13.
If $E \square M \square$ are differential k forms with a module over $C^{\infty} \square M \square$ bundle with fibers $\Lambda \square \Gamma_{p} \square^{*}$ thath as product \wedge. Also, there is a unique degree 1 antiderivation $d: E \square M \square \rightarrow E \square M \square$ such that $d^{2}=0(d \square \| \square \square \square=0)$ with $d \square f \square=d f$. Furthermore,

$$
d\left\lceil\omega \wedge \eta \square=d \omega \wedge \eta+\square-1 \Gamma^{p} \wedge d \eta \text { when } \omega \in E^{p} \square M \square\right.
$$

Also, $E^{0} \square M \square \equiv C^{\infty} \square M \square$ Suppose $f, g \in E^{0} \square M \square\left(C^{\infty}\right.$ functions), with $\omega \in E^{p} \square M \square$ and $f \wedge \omega=\omega \wedge f$. Further, $\omega \wedge \eta=\square-1 \square^{p q} \eta \wedge \omega$ when $\omega \in E^{p}, \eta \in E^{q}$. The convention is that $f \wedge \omega \equiv f \omega=\omega f$ and $\omega \wedge f \equiv f \omega=\omega f$. If we have $f, g \in C^{\infty} \square M \square$ then $\mathrm{d} \square f g \square=$ $\mathrm{d} f \cdot g+g \cdot \mathrm{~d} f=g \cdot \mathrm{~d} f+f \cdot \mathrm{~d} g$. Then $\mathbb{R}^{n}=M$ and $E^{0} \equiv C^{\infty}$ with E_{1}, \ldots, E_{n} constant vector fields, $E_{i}\left\lceil\varphi \square=e_{i}, E_{i} \equiv \frac{\partial}{\partial x_{i}}\right.$. We know E_{1} has basis $\mathrm{d} x_{1}, \ldots, \mathrm{~d} x_{n}$. Then

$$
\mathrm{d} x_{i} \check{\mathrm{~S}} \frac{\partial}{\partial x_{j}}<=\delta_{i j},
$$

which is a constant function arising from the differential form applied to the partial. Notice $\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} \square X, Y \square \in C^{\infty}$, with $X=a_{1} \frac{\partial}{\partial x_{1}}+a_{2} \frac{\partial}{\partial x_{2}}+\ldots$ and $Y=b_{1} \frac{\partial}{\partial x_{1}}+\ldots$, with

$$
\mathrm{d} x_{1} \wedge \mathrm{~d} x_{2} \square X<Y \square=\mathrm{d} x_{1} \square X \square \mathrm{~d} x_{2} \square Y \square-\mathrm{d} x_{1} \square Y \square \mathrm{~d} x_{2} \square X \square=a_{1} b_{2}-a_{2} b_{1} .
$$

Now, if we take $f \in C^{\infty}$, then

$$
\mathrm{d} f=\frac{\partial f}{\partial x_{1}} \mathrm{~d} x_{1}+\frac{\partial f}{\partial x_{2}} \mathrm{~d} x_{2}+\ldots
$$

with $\mathrm{d} x_{i} \in E^{\prime}, \mathrm{d} \square \mathrm{d} x_{1} \square=0$,

$$
\begin{aligned}
\mathrm{d} \square f \mathrm{~d} x_{1} \square & =\mathrm{d} f \wedge \mathrm{~d} x_{1}+f \mathrm{~d} \square \mathrm{~d} x_{1} \square=\check{\mathrm{S}} \frac{\partial f}{\partial x_{1}} \mathrm{~d} x_{1}+\frac{\partial f}{\partial x_{2}} \mathrm{~d} x_{2}+\frac{\partial f}{\partial x_{3}} \mathrm{~d} x_{3}<\wedge \mathrm{d} x_{1} \\
& =-\frac{\partial f}{\partial x_{2}} \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2}-\frac{\partial f}{\partial x_{3}} \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{3},
\end{aligned}
$$

so that $\square a_{i} \mathrm{~d} x_{i} \in E^{\prime}$ and so

$$
\left.\mathrm{d} \square \square \square a_{i} \mathrm{~d} x_{i} \square=\mathrm{d} \check{\square}\right]_{i, j} \check{\mathrm{~S}} \square \frac{\partial a_{i}}{\partial x_{j}} \mathrm{~d} x_{j}<\wedge \mathrm{d} x_{i}<\prod_{i, j, k}^{\square} \text { [BOARD WAS ERASED]. }
$$

In $\mathbb{R}^{3}, \mathrm{~d} f=\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \mathrm{~d} y+\frac{\partial f}{\partial z} \mathrm{~d} z$ with

$$
\mathrm{d}\left\lceil\mathrm{~d} f \square=\frac{\partial^{2} f}{\partial x^{2}} \mathrm{~d} x \wedge \mathrm{~d} x+\frac{\partial^{2} f}{\partial y \partial x} \mathrm{~d} y \wedge \mathrm{~d} x+\frac{\partial f}{\partial z \partial x} \mathrm{~d} z \wedge \mathrm{~d} x+\frac{\partial^{2} f}{\partial x \partial y} \mathrm{~d} x \wedge \mathrm{~d} y+\frac{\partial^{2} f}{\partial y^{2}} \mathrm{~d} y \wedge \mathrm{~d} y+\ldots\right.
$$

If I, J, K are constant vector fields, then the Riemannian metric given by

$$
I \cdot I=J \cdot J=K \cdot K=1 \text { and } I \cdot J=J \cdot K=K \cdot I=0
$$

give the pairing $\mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ which induces an isomorphism T to its dual space T^{*}.
Now let

$$
\mathrm{d} x \leftrightarrow I, \mathrm{~d} y \leftrightarrow J, \mathrm{~d} z \leftrightarrow K \text { for } E^{1} \leftrightarrow \mathfrak{X}
$$

with $p d x+q \mathrm{~d} y+r \mathrm{~d} z \rightarrow p I+q J+r K$. Then E^{3} is a one dimensional C^{∞}-module so the basis $\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z$ is given by $E^{3} \leftrightarrow C^{\infty}$. Then there is a natural pairing (called the Hodge star) $E^{2} \times E^{1} \rightarrow E^{3} \equiv C^{\infty}$ with $\omega \times \eta \rightarrow \omega \wedge \eta$ and $E^{2} \equiv \square E^{1} \square ँ \equiv \mathfrak{X}$. Then we need to show $E^{0} \leftrightarrow C^{\infty}, E^{1} \leftrightarrow \mathfrak{X}, E^{2} \leftrightarrow \mathfrak{X}$, and $E^{3} \leftrightarrow C^{\infty}$. Then we'll get

$$
\begin{gathered}
p d x+q \mathrm{~d} y+r \mathrm{~d} z \leftrightarrow p I+q J+r K \\
p d x \wedge \mathrm{~d} y+q \mathrm{~d} y \wedge \mathrm{~d} z+r \mathrm{~d} z \wedge \mathrm{~d} x \leftrightarrow p K+q I+r K
\end{gathered}
$$

for $f \mathrm{~d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z \rightarrow f$, with

$$
\begin{aligned}
& \mathrm{d}: E^{0} \rightarrow E^{1} \leftrightarrow f \leftrightarrow \nabla f \\
& \mathrm{~d}: E^{1} \rightarrow E^{2} \quad X \rightarrow \nabla \times X \quad \text { (curl) } \\
& \mathrm{d}: E^{2} \rightarrow E^{3} \quad X \rightarrow \nabla \cdot X \quad \text { (div) }
\end{aligned}
$$

[I really don't know where this is going...]

Lecture 35

Pull-backs

If $E: M \rightarrow N$ is smooth and $\omega \in E^{k} \square N \square$ then f determines a pull-back of ω, $\delta f \square \omega \square \in E^{k} \square M \square$ with $\delta f \square \omega \square v_{1}, \ldots, v_{k} \square=\omega\left\lceil d f \square v_{1} \square \ldots, d f \square v_{k} \square\right.$
with $v_{i} \in T_{p} M$. One way of describing a differential form is something you can integrate over an M-manifold. A k-form is something you can integrate over a singular k-chain. We want to find a singular k-chain σ and its boundary $\partial \sigma$, where we define ${ }^{\prime}{ }_{\sigma} \omega$ with $\omega \in E^{k} \square M \square$ Then we want to prove Stokes' Theorem [Warner pg 144]: ' ${ }_{\partial \sigma} \omega={ }_{\sigma}{ }_{\sigma} d \omega$. Here, σ is a $\square k+1 \square$ chain and $d \omega$ is a $\square k+1 \square$ form, and $\partial \sigma$ is a k-chain and ω is a k form. Then consider smooth singular k-simplexes. Define a smooth singular k-chain to be a formalism $\square_{i=1}^{n} a_{i} \sigma_{i}$ with $a_{i} \in \mathbb{R}$ where σ_{i} is a smooth singular k-simplex.
For simplexes, Warner's notation is $\Delta^{0}=\mathrm{e} 0 \mathrm{f}, \Delta^{1}=[0,1]$, and

$$
\Delta^{n}=\square \square^{x_{1}, \ldots, x_{n} \mid \square} x_{0 \leq x_{i} \leq 1} x_{i} \ddot{\mathrm{Y}} .
$$

Suppose σ is a singular k-simplex, i.e., $\sigma: \Delta^{k} \rightarrow M$. We can define (ω a k-form)

$$
{ }^{\prime}{ }_{\sigma} \omega={ }^{\prime}{ }_{\Delta^{k}} \partial \sigma \square \omega \square={ }_{\Delta^{k}} f
$$

where the boundary $\partial \sigma \square \omega \square=f d x_{1} \wedge d x_{2} \wedge \ldots \wedge d x_{k}$, with $\partial \sigma \square \omega \square \in E^{k}\left[\Delta^{k} \square\right.$
Before we continue, let's examine what we have done so far in light of what we know from calculus. For line integrals, let $\sigma: \mathbb{C}, 1 \mathrm{~d} \rightarrow \mathbb{R}^{2}$ with $\sigma \square \square \square=\square c \square \square \square y \square \square \square$ be a path with a vector field $\vec{F}=P \vec{i}+Q \vec{j}$. Then

$$
)_{\sigma} \vec{F} \cdot d \vec{s}={ }_{0}^{1} P \square x \square \square \square y \square \square \cdot x^{\prime} \square \square+Q \square x \square \square y \square \square \square \cdot y^{\prime} \square \square d t .
$$

Then we know that this is independent of the parameterization with the same endpoints. Then $\vec{i} \rightarrow d x, \vec{j} \rightarrow d y$, and $\vec{F} \rightarrow \omega=P d x+Q d y$. Then

$$
{ }_{\sigma}{ }_{\sigma} \omega={ }_{0}^{1} \partial \sigma \square \omega \square={ }_{0}^{1} f \square \square \square d t,
$$

where $\partial \sigma \square \omega \square=f \wedge d t$. So then

$$
\partial \sigma \square P d x+Q d y \square=\square P \square x \square \square \square y \square \square \square x^{\prime} \square \square \square+Q \square x \square \square y \square \square \square y^{\prime} \square \square \square d t
$$

with $\sigma \square \square \square=\square x \square t \square y \square t \square$ so that $\partial \sigma \square d x \square=x^{\prime} \square t \square d t$ and $\partial \sigma \square d y \square=y^{\prime} \square \square \square d t$, and of course $\partial \sigma \square P \square \square \square=P \square c \square \square y \square \square \square$ and $\partial \sigma \square Q \square \square=Q \square x \square \square y \square \square \square$

Now let's go back to the general case. Take a k-chain σ so that

$$
a_{i} \sigma_{i} \text { where } \sigma_{i} \text { are simplexes, }
$$

then

$$
{ }^{\prime}{ }_{\sigma}=\square a_{i}{ }^{\prime}{ }_{\sigma_{i}} \omega .
$$

Lecture 36

We want to define the boundary of a smooth singular k-simplex $\sigma:{ }^{k} \rightarrow M$ (denoted by $\partial \sigma$). The boundary of Δ^{0} (a point) is 0 . For Δ^{1}, it is $\sigma \square \square-\sigma \square \square \square$ ("distance" from 0 to 1). We want to create a map $K_{0}^{1} \square \square \square=0, K_{1}^{1} \square \square \square=1, K_{0}^{1}: \Delta^{0} \rightarrow \Delta^{1}$ and $K_{1}^{1}: \Delta^{0} \rightarrow \Delta^{1}$. For a 2 -simplex (triangle), the boundary is given by $\sigma^{0}-\sigma^{1}+\sigma^{2}=\sigma \circ K_{0}^{2}-\sigma \circ K_{1}^{2}+$
$\sigma \circ K_{2}^{2}$ with $K_{i}: \Delta^{1} \rightarrow \Delta^{2}$. We can map the 1-simplex (unit interval) onto the three edges
of the 2-simplex (triangle). For a 3-simplex (tetrahedron), $\partial \sigma=\sigma_{0}-\sigma_{1}+\sigma_{2}-\sigma_{3}$.
Some basic homology and application to proving Stokes' Theorem (see Warner)

