Lecture 13

Applications of "fiber dimension"

Example 1 Lines on surfaces in $\mathbb{P}^{\underline{3}}$.

Theorem A general surface in \mathbb{P}^3 of degree ≥ 4 contains no lines.

Note: To say that a "general" surface" has some property means: look at space of deg dsurfaces. This is parametrized by $\mathbb{P}^{\binom{d+3}{3}-1}$. The set of ones that do not have the property is a finite union of proper subvarieties.

$$U = \left\{ [F] \in \mathbb{P}^{\binom{d+3}{3}-1} \middle| V(F) \text{ has property} \right\} \text{ should be dense Zariski-open.}$$

<u>Proof</u> Look at the incidence variety, $\mathcal{I} = \left\{ (L, X) \in \mathbb{G}(1, 3) \times \mathbb{P}^{\binom{d+3}{3} - 1}, L \subseteq X \right\}.$ Let p_1 be the projection to $\mathbb{G}(1,3)$ and p_2 to $\mathbb{P}^{\binom{d+3}{3}-1}$. First, we have to know that I is a

projective variety.

 $\mathbb{G}(1,3)$ is a union of affine spaces isomorphic to \mathbb{A}^4 . Notice $\mathbb{G}(2,4) \cong \mathbb{G}(1,3)$. An open

affine set in $\mathbb{G}(2,4)$ is given by subspaces of the form: span $\left(\begin{pmatrix} 1 \\ 0 \\ a \\ L \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ c \\ r \end{pmatrix} \right)$, where

 $a, b, c, d \in k$ for choice of basis in k^4 . Can also define surface $X \subseteq {}^{\prime}\mathbb{P}^3$ of deg d with an

equation $F(x_0, x_1, x_2, x_3) = 0$. So then any point in L is $\begin{pmatrix} 1+t \cdot 0\\ 0+t \cdot 1\\ a+t \cdot c\\ b+t \cdot d \end{pmatrix}$, $t \in \mathbb{P}^1$.

 $L \subseteq X \Leftrightarrow F(1, t, a + tc, b + td)) \equiv 0$ in t. Expand, collect terms, coeffs at $1, t, t^2, ..., t^5$ give equations. This implies $I \cap \left(\mathbb{A}^4 \times \mathbb{P}^{\binom{d+3}{3}-1}\right)$ is closed subvariety \Rightarrow $I \subseteq \mathbb{G}(1,3) \times \mathbb{P}^{\binom{d+3}{3}-1}$ is a closed subvariety.

What else can we say? Well, p_1 is surjective. Say $L \in \mathbb{G}(1,3)$ is defined by $L_1 = L_2 = 0$. We can find polynomial F of deg d that contains L. Then $F = G_1L_1 + G_2L_2$, where G_1, G_2 are of deg d - 1.

$$I = \{(L, X) \mid L \subseteq X\} \xrightarrow{p_2} \mathbb{P}^{\binom{d+3}{3}-1}, \quad \xrightarrow{p_1} \mathbb{G}(1, 3).$$

- Fiber of p_1 : $\mathbb{P}GL(3)$ is transitive on lines, so we can move any line L to the one defined by $x_0 = x_1 = 0$

Polynomials F of deg d s.t. $V(F) \supseteq V(x_0, x_1)$. $F = Gx_0 + Hx_1$, deg $G = d - 1 = \deg H$, count dimension of such F.

$$2\binom{d-1+3}{3} - \binom{d-2+3}{3} \longleftarrow \text{ not to overcount cases when } G = x_1 G', H = x_0 H'.$$

= $2\frac{(d+2)(d+1)}{6} - \frac{(d+1)d(d-1)}{6} = \frac{d(d+1)(d+5)}{6}.$
- Fiber of $p_1 = \mathbb{P}^{\frac{d(d+1)(d+5)}{6}-1}.$

- Now use theorem of the fibers. Since $\mathbb{G}(1,3)$ is irreducible of dimension 4, by the theorem about fibers, *I* is irreducible of dim $\frac{d(d+1)(d+5)}{6} + 3$.

We want to show that p_2 is not surjective if $d \ge 4$. Then $p_2(I)$ will be a proper closed irreducible subvariety, and we can take $U = \mathbb{P}^{\binom{d+3}{3}-1} - p_2(I)$. To show it, just compare dimensions. We have dim $\mathbb{P}^{\binom{d+3}{3}-1} = \binom{d+3}{3} - 1 = \frac{(d+3)(d+2)(d+1)}{6} - 1$ and dim $I = \frac{d(d+1)(d+5)}{6} + 3$. We see

$$\dim \mathbb{P}^{\binom{d+3}{3}-1} - \dim I = \frac{(d+3)(d+2)(d+1)}{6} - 1 - \frac{d(d+1)(d+5)}{6} - 3 = \frac{(d+1)(d^2+5d-6-d^2-5d)}{6} - 4 = d + 1 - 4 = d - 3.$$

Since $d \ge 4$, dim $I < \dim \mathbb{P}^{\binom{d+3}{3}-1} \Rightarrow$ Theorem. \Box <u>Note</u>: When $d \le 3$, there *are* lines on any surface. Case d = 1: The surface is a plane, so dim I > 2.

<u>Case d = 2</u>: We have a quadric surface, so if it's smooth, we can write it as $x_0x_1 = x_2x_3$. Then we could write for example a line $(\alpha t, t, \alpha t, t)$ for α a line in X (infinite family). <u>Case d = 3</u>: We have a cubic surface, and in this case, the dimensions are equal. There are exactly 27 lines on any smooth cubic surface.

Example 2 Study the determinental variety. Let M be the space of $m \times n$ matrices up to scale (so this will be a proj space $\cong \mathbb{P}^{mn-1}$). Let M_k be the matrices in M with rank $\leq k$. **Thm** Want to show that $M_k \subseteq M$ is an irreducible variety of coimension (m-r)(n-r).

Proof Let
$$I \subseteq M \times \mathbb{G}(n-r,n)$$
 so that

 $I = \{ (A, \Lambda) \mid A \text{ is a matrix of size } m \times n \text{ and } \Lambda \subseteq \ker A \}.$

<u>Exercise</u> I is a projective variety, $I \xrightarrow{p_1} M$ and $I \xrightarrow{p_2} \mathbb{G}(n-r,n)$.

-study p_2 : Fix subspace Λ of dimension $n - \underline{r}$. If $\Lambda \subseteq \ker A$, get induced map.

$$k^n/\Lambda \xrightarrow{A} k^m$$

- Dim n (n r)
- Space of such $\cong k^{rm}$.
- \implies Fibers of p_2 are $\cong \mathbb{P}^{rm-1}$.

 \implies *I* is irreducible and dim *I* = (rm - 1) + dim $\mathbb{G}(n - r, m) = (rm - 1) + (n - r)r$. - General "fiber" of p_1 is a single pt (dim 0).

(if $\operatorname{rk} A = r$, then only $(A, \operatorname{ker} A) \in I$.

 \Rightarrow image $p_1(I)$ is irreducible of dim = (rm - 1) + (n - r)r.

 $\operatorname{codim}(p_1(I), M) = (mn - 1) - (rm - 1 + rn - r^2) = mn - r - nr + r^2 = (m - r)(n - r).$

Define M_r by vanishing of $(r+1) \times (r+1)$ minors.

Lecture 14

Grassmannians

Say we have V a vector space. Want to talk about $\bigwedge^r V$. Say $e_1, ..., e_n$ is a basis of V. Then $\bigwedge^r V$ has as a basis: pick $i_1 < ... < i_s$, then $e_{i_1} \land ... \land e_{i_s}$. If $\delta \in S_r$, then $e_{i_{\delta(1)}} \land e_{i_{\delta(2)}} \land ... \land e_{i_{\delta(r)}} = \operatorname{sign}(\delta) e_{i_1} \land ... \land e_{i_s}$.

 $\sum a_{1i}e_i \wedge \sum a_{2i}e_i \wedge \ldots \wedge \sum a_{ri}e_i = \det(a_{ij})e_{i_1} \wedge \ldots \wedge e_{i_s}.$

Grassmannians: $G(r, n) = \{r \text{-dim subspaces of } V^n\} = \mathbb{G}(r-1, n-1) = \text{ space of } \mathbb{P}^{r-1} \text{ in } \mathbb{P}^{n-1}.$

Plücker embedding

Want to put $G(r, n) \hookrightarrow \mathbb{P}(\bigwedge^r V) \cong \mathbb{P}(\stackrel{n}{r})^{-1}$. If V has dimension $n, \bigwedge^r V$ has dimension $\binom{r}{n}$. If $W^r \subset V$, choose basis for $W: v_1, ..., v_r$. Then send $w \mapsto v_1 \land ... \land v_r$. Choosing a different basis leads to the same point in $\mathbb{P}(\bigwedge^r V)$ so the map is well defined.

Say we are looking at $e_1 \wedge e_2 + e_3 \wedge e_4$ (in $\bigwedge^2 V$). In general, you can not write it as $v_1 \wedge v_2$.

Remark The Plücker embedding is injective and the image is characterized by those elements in $\bigwedge^r V$ that are completely decomposable.

Take $v \in \bigwedge^r V$ with $w \mid v (w \in V)$. If $w \wedge v = 0$, then we can write $v = w \wedge v'$, where $v' \in \bigwedge^r V$. Take $u \in V^*$ (the dual). Then we can extend $\bigwedge^r V \xrightarrow{\perp} \bigwedge^{r-1} V$, with $u(e_{i_1} \wedge ... \wedge e_{i_r}) = \sum (-1)^{j-1} u(e_{ij}) = e_{i_1} \wedge ... \wedge e_{i_{(j-1)}} \wedge e_{i_{(j+1)}} \wedge ... \wedge e_{1_r}$. Then $u_1 \perp (u_2 \perp ... (u_{r-1} \perp x)) \wedge x = 0 \Leftrightarrow x \in \bigwedge^r V$ is completely decomposable. So we get the Plücker relations with basis $e_1, ..., e_n$ and dual basis $e_1^*, ..., e_n^*$, so we can choose $p_{i_1,...,i_r}$ to be the coefficient of $e_{i_1} \wedge ... \wedge e_{i_r}$. So then $\sum (-1)^t p_{i_1,...,i_{r-1}} p_{j_1,...,j_{t+1},...,j_{r+1}} = 0$. This has to be true for all $i_1, ..., i_{r-1}, j_1, ..., j_{r+1}$. Then if we look at $G(2, 4) \equiv \mathbb{G}(1, 3)$ (space of lines in \mathbb{P}^3). Then $p_{12}p_{34} - p_{13}p_{24} + p_{14}p_{24} = 0$ so the Grassmanian of lines in \mathbb{P}^3 (G(2, 4)) is a quadric hypersurface in \mathbb{P}^5 .

Example: Let $k = \mathbb{C}$ and choose a basis of V. Take $F_i = \text{span}\{e_1, ..., e_n\}$.

Schubert Varieties

Defined in G(r, n). Pick a partition $n - r \ge \lambda_1 \ge \lambda_2 \ge ... \ge \lambda_r \ge 0$ and fix a flag $F = 0 \subset F_1 \subset ... \subset F_n = V$. Then $\sum_{\lambda_i} F = = \{ W \in G(r, n) | \dim(W \cap F_{n-r+i-\lambda_i}) \ge i \}.$

Example Look at $\mathbb{G}(1,3) = G(2,4)$. Then

$$\begin{split} \sum_{1,0} &= \{ W \in G(2,4) \mid \dim W \cap F_2 \geq 1 \text{ and } \dim W \cap F_4 \geq 2 \}. \text{ Then} \\ F_1 \subseteq F_2 \subseteq F_3 \subseteq F_4 \text{ and we have a subvariety of lines that intersect a fixed line in space.} \\ \sum_{2,0} &= \{ W \in G(2,4) \mid \dim W \cap F_1 \geq 1 \text{ and } \dim W \cap F_4 \geq 2 \} \text{ is the set of lines that} \\ \text{pass through a fixed point in space.} \\ \sum_{1,1} &= \{ W \in G(2,4) \mid \dim W \cap F_2 \geq 1 \text{ and } \dim W \cap F_3 \geq 2 \} \text{ is the set of lines} \\ \text{contained in a fixed plane.} \\ \sum_{2,1} &= ? \end{split}$$

<u>Theorem</u> (from topology) $H^*(G(r, n), \mathbb{Z})$ (cohomology). The Schubert classes given as an additive basis of this cohomology as λ varies over all the partitions $n - r \ge \lambda_1 \ge ... \ge \lambda_r \ge 0.$

Lecture 17

Take the homogeneous coordinate ring of a closed algebraic set in \mathbb{P}^n ,

$$S(X) = k[x_0, ..., x_n] / \mathcal{I}(X)$$

and define the Hilbert function $h_X(m) = \dim S(X)_m$ with $m \in \mathbb{N}$, that is, the codimension of the space of homogeneous polynomials of degree m vanishing on X.

Last time, $h_X(m) = d$ if X was d points in \mathbb{P}^n provided $m \ge d - 1$.

<u>Thm</u> Let $X \subset \mathbb{P}^n$ be a closed algebraic set and let h_X be its Hilbert function. Then $\exists p_X$ a polynomial such that $h_X(m) = p_X(m)$ for $m \gg 0$ and deg $p_X = \dim X$.

Bertini's Theorem

For X^k a general linear space, a set $Y = X \cap \Lambda$, and $\mathcal{I}(Y) = \overline{(\mathcal{I}(X), \mathcal{I}(\Lambda))}$ (saturation).

<u>Definition</u> Let $\mathcal{I} \subset k[x_0, ..., x_n]$. The <u>saturation</u> of of $\overline{\mathcal{I}} = \{F \in k[x_0, ..., x_n] \mid F(z_0, ..., z_n)^m \subset \mathcal{I}\}.$ Notice $\overline{\mathcal{I}}/\mathcal{I}$ is Noetherien is service bet \mathcal{I} and $\overline{\mathcal{I}}$ across

Notice $\overline{\mathcal{I}}/\mathcal{I}$ is Noetherian is equivalent to saying that \mathcal{I} and $\overline{\mathcal{I}}$ agree after a certain degree.

Proof. (of Bertini's) Let $X \cap \Lambda = Y$ where Y is a collection of points,

 $\Lambda = \{L_1 = \dots = L_k = 0\}.$ Then $\mathcal{I}^0 = \mathcal{I}(X) \subset \mathcal{I}^1 = (\mathcal{I}(X), L_1) \subset \mathcal{I}^2 = (\mathcal{I}(X), L_1, L_2) \subset \dots \subset I^{(k)}.$ But then $h^{\alpha}(m) = \dim (S(X)/\mathcal{I}^{\alpha})_m$ and $h^k(m) = \text{constant if } m \gg 0$. We want to calculate $h^0_X(m)$. Consider the exact sequence $S^{\alpha-1}_{(m-1)} \xrightarrow{L_{\alpha}} S^{\alpha-1}_m \to S^{\alpha}_m \to 0.$ Then $h^{\alpha}(m) = h^{\alpha-1}(m) - h^{\alpha-1}(m-1)$. So then

$$h^{\alpha-1}(m+k)=c+\sum_{i=m}^{m+k}h^{\alpha}(i).$$

Hence, by induction, it follows that $h_X^0(m)$ is a polynomial of degree k.

The leading coefficient of $p_X(m)$ will be very important for us. It will define the degree of the variety. In case X is a curve, $p_X(m) = cm + (1 - g)$. Then g is called the genus of the curve c.

<u>Example</u> Let c be a plane curve of deg d. Then it has f of degree d with $\mathcal{I} = (f)$ so then g is a homogeneous polynomial of degree m vanishing in f | g, and dim $S(X)_m$ is the codimension of the space of deg m polynomials divisible by f. If $m \ge d$, g = fh where h is homogeneous of degree m - d. Then the dimension of the space of homogeneous polynomials of the space of homogeneous polynomials of degree m - d is

$$\binom{m+2}{2} - \binom{m-d+2}{2} = [(m+2)(m+1) - (m-d+2)(m-d+1)]/2 = \frac{(m+1)(m+2) - (m+2)(m+1) + d(m+2) + d(m+1) - d^2}{2} = \frac{d(2m+3) - d^2}{2} = dm + \frac{-d^2 + 3d}{2}.$$

Then $1 - g = \frac{-d^2 + 3d}{2}$ so that $\frac{(d-1)(d-2)}{2} = g$ (this is called arithmetic genus). Notice

d = 1, 2 implies g = 0 and d = 3 implies g = 1, and d = 4 means g = 3. \Box

If c is smooth over \mathbb{C} , then we can consider c as a complex manifold. Up to homeomorphism, any such complex manifold is a sphere with g handles (like a teacup).

Tangent spaces

Start with $X \subset \mathbb{A}^n$, want to define the tangent space at a point $x \in X$. As a first approximation, let $T_x X$ be the union of all the tangent lines to X at x.

Then take $\mathcal{I}(X) = (F_1, ..., F_m)$, say x = (0, 0, ..., 0). Any line passing through x, $L_a = \frac{t(a_1, ..., a_n)}{\text{fixed}} t \in k$. Then $F_1(ta_1, ..., ta_n) = F_2(ta_1, ..., ta_n) = ... = F_m(ta_1, ..., ta_n) = 0$ describes. So each of these polynomials are polynomials of one variable, $F_j(ta) = c_j \prod_n (t - \alpha_j)^{i_n}$. $f_a(t) = \text{hcf}(F_1(ta), ..., F_m(ta))$.

Definition The <u>multiplicity of intersection</u> of L_a with X is the multiplicity with which (t-a) divides $f_a(t)$. If $f_a(t) \equiv 0$, set this mult to $+\infty$.

 L_a is tangent to X at x if the mult. of intersection of L_a with X at x is at least 2.

X is a hypersurface, have F = 0. Then express F = L + G where L is linear and order $G \ge 2$. Then F(ta) = L(ta) + G(ta) = tL(a) + G(ta) (where deg t is at least 2 in G(ta)). The line ta can be tangent to $f = 0 \Leftrightarrow L(a) = 0$.

 $L = \sum_{i=1}^{n} \frac{\partial F}{\partial x_i}(0) x_i$. The tangent space at a point to a hypersurface L = 0.

Example If $F = y^2 - x^3$ at (0,0), then $\frac{\partial F}{\partial x} = 3x^2$ at (0,0) both vanish, and at $\frac{\partial F}{\partial y} = 2y$.

Lecture 18

A line is given by $L_{\vec{a}} = t\vec{a}$. Then $f_{\vec{a}}(t) = hcf(F(t\vec{a})) \Leftrightarrow hcf(F_1(t\vec{a}), ..., F_m(t\vec{a}))$ where the F_i generate $\mathcal{I}(X), F \in \mathcal{I}(X)$. To say that $L_{\vec{a}}$ has contact of order ≥ 2 means t^2 divides $f_{\vec{a}}(t)$. For F a hypersurface, the Taylor expansion

$$F = L + F_2 + \dots$$

$$F(t\vec{a}) = L(t\vec{a}) + F_2(t\vec{a}) + \dots = tL(\vec{a}) + t^2F_2(\vec{a}) + \dots$$

 $L_{\vec{a}} = t\vec{a}$ has contact of order ≥ 2 if and only if $L(\vec{a}) = 0$.

$$L = \sum_{i=1}^{n} \frac{\partial F}{\partial x_i}(0) x_i.$$
 In general, the tangent space $\vec{x} = (t_1, ..., t_n).$
$$\sum_{i=1}^{n} \frac{\partial F}{\partial x_i}(t_i) (x_i - t_i).$$

If X is not a hypersurface, the tangent space is the intersection fo all the linear spaces to a set of generators $F_1, ..., F_m$ of $\mathcal{I}(X)$. The kernel of the matrix

$$\begin{pmatrix} \frac{\partial F}{\partial x_i} \\ \vdots \end{pmatrix} = \begin{pmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\delta F_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_n} \end{pmatrix}$$

The local ring of X at a point x, $\mathcal{O}_{X,x} \subset k(X)$. Then $\mathcal{O}_{X,x} :=$ the subring of the function field $f \in k(X)$ such that f is regular at $x \Leftrightarrow$ localization of k[x] at the maximal ideal of the point x. Recall that this maximal ideal is $m_X = \{$ the set of regular functions that vanish at x $\}$. e.g., If $A \supset p$ is a prime ideal, then $A_p := \{(f,g) \mid f, g \in A, g \notin p\}$ (think of it as $\left(\frac{f}{g}\right)$). But of course $\frac{f}{g} = \frac{f'}{g'}$ if $\exists h \notin p$ s.t. h(f'g - fg') = 0. Add and multiply:

$$(f,g) \cdot (f',g') = (ff',gg')$$
$$(f,g) + (f',g') = (fg' + gf',gg')$$

The latter comes from $\frac{f}{g} + \frac{f'}{g'} = \frac{fg' + gf'}{gg'}$.

Differential $d_x F = \sum_{i=1}^n \frac{\partial F}{\partial x_i}(t_i) (x_i - t_i)$. Usual properties exist: $d_x(F+G) = d_x F + d_x G$, and $d_x(FG) = Gd_x F + Fd_x G$. Then $T_x X = \{d_x F_1 = \dots = d_x F_m = 0\}$, with $\mathcal{I}(X) = \{F_1, \dots, F_m\}$.

Now suppose I have an arbitrary regular function $g \in k[x]$. Say G is a polynomial in $k[x_1, ..., x_n]$ such that $G|_x = g$. Then $d_xg = d_xG$. But this is not well-defined (because G is not uniquely determined, only up to $\mathcal{I}(X)$). Then

$$G + A_1F_1 + \dots + A_mF_m = d_xG + \sum (F_i d_xA_i + A_i d_xF_i)$$

Restrict this to the tangent space. Then $d_x g = d_x G|_{T_x X}$ is well-defined.

Note $d_x \alpha = 0$ ($\alpha \in k$). Hence if we change g by a constant value, then we do not change $d_x g$. Let's assume that $g \in m_x$. Then $d_x : m_{X,x} \to T_x^* X$.

Theorem. The map $d_x: m_{X,x}/m_{X,x}^2 \to T_x^*X$ is an isomorphism. [as in diff. manifolds!]

Proof. Surjectivity is clear, because any linear functional on the tangent space is. Now we just need ot look at the kernel. Any linear form on T_xX is induced by some linear functional:

$$d_x F = \sum_{i=1}^n \frac{\partial F}{\partial x_i}(t_i) (x_i - t_i)$$

The kernel $d_xg = 0$ for g induced by some G, $d_xG = \lambda_1 d_xF_1 + ... + \lambda_m d_xF_m$. Then define $G_1 = G - \sum \lambda_i F_i$, so that $G_1|_x = g$. Then Taylor expansion of G_1 has no constant (none in G) or linear terms (cancelled out by each $\lambda_i F_i$), so $G_1 \in (x_1, ..., x_n)^2$. So $g \in m^2_{X,x}$. Hence this is an isomorphism. \Box

Corollary. $T_x X$ is the space of linear functionals on m_x/m_x^2 .

Corollary. Under an isomorphism, the tangent spaces of the corresponding points are isomorphic.

When $X \subset \mathbb{P}^n$ is a quasiprojective variety, $x \subset X$ is a point. Choose affine neighborhood $x \in \mathbb{A}^n$. Do the same count. The closure in \mathbb{P}^n does not depend on choice of affine neighborhood.

Projective tangent space

$$\sum_{i=0}^{n} \frac{\partial F_{\alpha}}{\partial J_{i}}(x) J_{i} = 0. \qquad \qquad \mathbb{A}^{n} \times X \supseteq \{(a, x) \mid a \in T_{x}X\}.$$

Look at the second projection π_2 to X of $\mathbb{A}^n \times X$. By the theorem on the dimension of fibers, there is a minimal s such that all fibers of π_2 have dimension $\geq s$.

Definition. A point $x \in X$ is non-singular if dim $\pi_2^{-1}(x) = s$. Otherwise it's called singular.

Theorem. The dim $T_x X - \pi_2^{-1}(x) = \dim X$ if x is non-singular.

Lecture 19

Theorem. If X is a variety, the set of singular points in X is a proper closed subvariety (possibly empty). At a non-singular point $x \in X$, dim $T_x X = \dim X$. (in general, dim $T_x X = \dim X$)

Example. $\mathbb{A}^2 \times \mathbb{P}^1 \supset \{xv = uy\} \xrightarrow{\pi_1} \mathbb{A}^2 \ni 0$. If one of x or $y \neq 0$, this is a birational map (a regular map on a Zariski open set; birational because its inverse is rational).

If X and Y are varieties, $\varphi^* : k(Y) \to k(X)$ is birational if and only if $k(Y) \xrightarrow{\varphi} k(X)$.

Let X be a variety of dim n. Then tr deg(k(X)) = n. Then $k(x) = k(x_1, ..., x_n, x_{n+1})$, and x_{n+1} can written as a polynomial with coefficients in $k[x_1, ..., x_n]$.

Two isomorphic birational varieties have isomorphic Zariski open subsets.

Cusps have local equation $x^2 = y^3$; nodes have xy; tacnodes have $x^2 = y^4$; triple points have $x^3 - y^3$; m-fold points have $x^m - y^m$. We can associate a finer invariant:

Definition. Given F = 0, it is possible to write taylor series expansion $F = F_k + F_{k+1} + \dots$ for $k \ge 2$. Then set $F_k = 0$. This is called the <u>tangent cone</u>.

Definition. $u_1, ..., u_n \in \mathcal{O}_x$ are local parameters if $u_i \in m_x$ and $u_1, ..., u_n$ give a basis of m_x/m_x^2 .

Notice $du_1 = du_2 = ... = du_n = 0$. The onle solution of this set of equations is 0. $X_i = X \cap (u_i = 0)$, so $T_x X_i = T_x X \cap (du_1 = 0)$

Theorem. If $u_1, ..., u_n$ are local parameters at $x, X_i = X \cap (u_i = 0)$ is non-snigular at $x, \bigcup T_{\alpha} X_i = 0$.

Definition. $Y_1, ..., Y_r$ non-singular in X are transversal at $x \in \bigcup Y_i$ if

$$\operatorname{codim}_{T_xX}\left(\bigcup_{i=1}^r T_xY_i\right) = \sum_{i=1}^r \operatorname{codim}_X Y_i.$$

Definition. A formal power series Φ is called a Taylor series for $f \in \mathcal{O}_x$ if $f - S_k \Phi$ (the *k*th partial sum of $\Phi = F_0 + ... + F_k$) lies in m_x^{k+1} .

Theorem. Every $f \in \mathcal{O}_x$ has a Taylor expansion.

Theorem. If $x \in X$ is non-singular, then a function has a unique Taylor series.

Lecture 20

From last time, we have a local system of parameters, $u_1, ..., u_n \in m_x \subset \mathcal{O}_x$. Then there exists a formal power series expansion in the local parameters.

Theorem. If $x \in X$ is non-singular, then a function has a unique Taylor series.

Proof. It suffices to show f = 0 has the zero expansion $u_1, ..., u_n$ with local parameters at x. Then $F_k(u_1, ..., u_n) \in m_x^{k+1} \Longrightarrow F_k = 0$. Suppose it isn't 0. Then by a linear change, we can assume coefficient reference T_{nb}^k is non-zero. Then

$$F_k(T_1, ..., T_n) = \alpha T_n^k + G_1(T_1, ..., T_{k-1}) T_k^{k-1} + ... + G_k(T_1, ..., T_{k-1})$$

= $\alpha u_n^k + G_1(u_1, ..., u_{n-1}) u_n^{k-1} + ... + G_k(u_1, ..., u_{n-1}).$
 $F_k(u_1, ..., u_n) = \mu u_n^k + H_1(u_1, ..., u_{n-1}) u_n^{k-1} + ... + H_k(u_1, ..., u_{n-1}).$

This says any form in m_x^{k+1} can be written as a polynomial of degree k in $u_1, ..., u_n$ with coefficients in m_x . Then $(u - \alpha)^k u_n^k \in (u_1, ..., u_{n-1})$. We cannot have $\mu - \alpha \notin m_x$ so then $(\mu - \alpha)^{-1} \in \mathcal{O}_x$ so $u_n^k \in (u_1, ..., u_{n-1})$. Then notice $T_x X_n \supset T_x X_1 \cap ... \cap T_x X_{n-1}$ and $X_i = (u_i = 0) \cap X$. But that's a contradiction. Since $u_1, ..., u_n$ are local systems of parameters, $du_1 = ... = du_n = 0$ has only 0 as a solution. Then if X is a variety, x is a n-n singular point of x implies $\mathcal{O}_x \hookrightarrow k[[T_1, ..., T_n]]$ as an inclusion of unique Taylor series expansion. \Box

Corollary. If $x \in X$ is non-singular, then there exists a unique component of X passing through x.

Reason: k[[T]] has no zero-divisors.

In other words, a smooth and connected algebraic set is irreducible. If $X^r \subset \mathbb{A}^n$ and $T_x X$ is a matrix of the form $(\partial f_i / \partial x_j)$, and x is smooth if this matrix has rank n - r.

Look at Sard/Bertini's Theorem.

Definition. $f_1, ..., f_n \in \mathcal{O}_x$ are <u>local equations</u> for $x \in Y \subset X$ such a neighborhood of x if there is an affine neighborhood X of x with $f_1, ..., f_m \in k[x']$ and $y' = y \cap x'$ and $I(y') = (f_1, ..., f_m)$ in k[x'].

Definition. An irreducible variety $Y \subset X^1$ of codim 1 has a local equation in a neighborhood of a nonsingular point of $x \in X$.

Lecture 21

Let $f_1, ..., f_m \in \mathcal{O}_{x,X}$. Having local equations for $Y \subset X$ means if \exists affine neighborhood $X' \subset X$ with $x \in X'$ s.t. $f_1, ..., f_m \in k[X']$ and $I(Y' = Y \cap X') = (f_1, ..., f_m)$ in k[x'].

Theorem. If $x \in X$ is nonsingular with $x \in Y \subset X$ an irreducible subvariety of codimension 1, then Y has a local equation at x.

Theorem. If X is nonsingular, and say $\varphi : X \to \mathbb{P}^n$ is a rational map. Then the set of points $\{x \in X \mid \varphi \text{ is not regular at } x\}$ has codimension ≥ 2 .

Proof. Let $\varphi : (f_0 : ... : f_n)$. Then this is not well defined when $f_0 = ... = f_n = 0$. If $g|f_i$ for all i then $f_i = gh_i$. Suppose there exists a codimension one component of the locus where $f_i = 0$ for all i. That codimension basis is defined by a local equation around any x. \Box

Corollary. Any rational map of a nonsingular curve to \mathbb{P}^n (projective space) is regular.

Corollary. If two *nonsingular* projective curves are birational, then they are isomorphic.

Remark. $\mathbb{A}^1 \to y^2 = x^3$ is birational but not an isomorphism because the latter is nonsingular ((0,0) is singular on $y^2 = x^3$).

Theorem. Let X be an affine variety and $x \in X$ a nonsingular point. Let $u_1, ..., u_n$ be regular functions on X that form a system of local parameters at x. Then for $m \le n$, the closed subset defined by $u_1 = ... = u_m = 0$ is nonsingular at x and $I_y = (u_1, ..., u_m)$ in some neighborhood of x. Moreover $u_{m+1}, ..., u_n$ give a system of local parameters at x for Y.

Proof. Induction on m. By previous theorem for m = 1, since Y has codimension 1, Y has a local equation. Say $I_y = (f)$ in a neighborhood of x. Write $u_1 = gf$ since u_1 vanishes on Y. Then $du_1 = g(x) d_x f$. So $u_1, ..., u_n$ is a system of local parameters at x for X. Note $g(x) \neq 0$. So if x is a nonsingular point on Y, $T_x = T_x X \cap d_x u_1 = 0$. For $T_x^*, du_1, ..., du_n$ give a basis and $du_2, ..., du_n$ give basis for $T_x Y$. \Box

Theorem. If X is a variety $Y^m \subset X^n$ a subvariety, and $x \in Y \subset X$ with x a nonsingular point of Y and X, then there is a local system of parameters $u_1, ..., u_m$ at x and an affine neighborhood $X \supset U \ni x$ such that $I_{Y \cap U} = (u_1 : ... : u_m)$ in U.

Resolution of singularities

Given X a singular variety, can we find a model of X which is nonsingular. Furthermore, \exists ? a nonsingular birational moprhism to X, etc. You can ask for more, for instance, φ to be an isomoprhism between $Y - \varphi^{-1}(X^{\text{sing}}) \to X - X^{\text{sing}}$. You can even reuqire that φ is a simple, easily understood birational morphism.

Theorem. (Hironaka '64) char k = 0. Wishes for the conditions in the previous paragraph to be realized.

Normal varieties

R is integrally closed if every element $v \in FF(R)$ (function field) which is integral over *R* is contained in *R*. An irreducible affine variety *X* is normal if k[X] is integrally closed. A quasiprojective variety is normal if every pt $x \in X$ has an affine neighborhood which is normal.

Example. We know $y^2 = x^3$ is not normal. We also know $(y/x)^2 - x = 0$ and y/x is integral $k[x, y]/(y^2 - x^3)$ but not in this ring.

Example. Quadric cone $x^2 + y^2 + z^2 \subset \mathbb{A}^3$ is singular at (0, 0, 0), but it is normal.

Lecture 22 (Chapter II.5 in Shafarevich)

R is integrally closed if every elements of its fraction field which is integral over R is contained in R. An affine variety X is normal if k[x] is integrally closed.

An affine variety X is normal if k[x] is integrally closed. A quasiprojective variety X is normal if every point has a normal affine neighborhood.

Notice $y^2 = x^3 + x^3 \subset \mathbb{A}^2$. This is <u>not normal</u> so $y/x \notin k[c]$ even though $x \in k[c]$. Notice $(y/x)^2 - (1+x) = 0$.

In \mathbb{A}^3 , we can look at $x^2 + y^2 = z^2$. This is certainly singular at (0, 0, 0). We can write every function in $k[\mathbb{Q}]$. Then we can write it as u + vz where $u, v \in k[x, y]$.

More generally, $\varphi \in k[\mathbb{Q}]$ means we can write $\varphi = u + vz$ with $u, v \in k(x, y)$. Suppose u + vz is integral over $k[\mathbb{Q}]$. Furthermore, suppose u + vz is also integral over k[x, y]. Then write the minimal polynomial $T^2 - 2uT + u^2 - (x^2 + y^2)v^2$. Then $2u \in k[x, y]$. Hence $u \in k[x, y]$. But then $(x^2 + y^2)v^2 \in k[x, y]$ since it means the T^0 term is in k[x, y]. Then we can write $(x + iy)(x - iy)v^2$. These are irreducible, so $v \in k[x, y]$. Hence $\varphi \in k[\mathbb{Q}]$.

Lemma. If X is normal, then the local ring \mathcal{O}_Y (localization of k[x] along I(Y)) at any irreducible variety $Y \subset X$ is integrally closed. In particular, \mathcal{O}_x is integrally closed $\forall x \in X$.

Proof. Let $\alpha \in k(X)$ which is integral over \mathcal{O}_Y . Then $\alpha^n + a\alpha^{n-1} + \ldots + a_n = 0$ where each $a_i \in \mathcal{O}_Y$. But the latter means we can write $a_i = b_i/c_i$ where $b_i, c_i \in k[x]$ but $c_i \notin I(Y)$. Then define $d = c_1c_2...c_n \in k[x]$ but not in I(Y) (because it's a prime ideal-can't have product be in I(Y) without one of the terms being in it). Then $d\alpha^n + d_1\alpha^{n-1} + \ldots + d_n = 0$ where $d_i = (d/c_i)b_i$. Then multiply by d^{n-1} :

$$(d\alpha)^{n} + d'_{1}(d\alpha)^{n-1} + \ldots + d'_{n} = 0.$$

So that $d\alpha$ is clearly integral over k[X]. Since k[X] is integrally closed, $d\alpha \in k[X]$. Consider the element $d\alpha/d$. Since $d\alpha, d \in k[X]$ but $d \notin I(Y)$, we have $d\alpha/d = \alpha \in \mathcal{O}_Y$ as desired. So \mathcal{O}_Y is integrally closed. \Box **Lemma.** If X is an irreducible affine variety and $\forall x \in X$ points, \mathcal{O}_x is integrally closed, then X is normal.

Proof. Let $\alpha \in k(X)$ which is integral over k[x]. In particular, α is integral over \mathcal{O}_x for all $x \in X$. So then $\alpha \in \bigcap_{x \in X} \mathcal{O}_x = k[X]$. Hence X is normal. \Box

Theorem. A non-singular variety is normal.

Proof. If $x \in X$ is non-singular, then \mathcal{O}_x is a UFD. UFD's are integrally closed[†]. But since \mathcal{O}_x is integrally closed for all $x \in X$, X itself must be normal.

Theorem. If X is normal and $Y \subset X$ is a codimension 1 subvarity, then \exists an affine subset $X' \subset X$ such that $X' \cap Y \neq \emptyset$ and $Y' = X' \cap Y$ and k[X'] is principal.

Proof. Can assume X is affine. It's enough to show that $m_Y = (u)$ with $u \in \mathcal{O}_Y$ (this is the maximal ideal of \mathcal{O}_Y , the localization of k[X] at I(Y)). Suppose $m_Y = (u)$ with $u = \frac{a}{b}$ and $a, b \in k[x]$ but $b \notin I(Y)$. Suppose $I(Y) = (v_1, ..., v_m)$. Then $I(Y) \subset m_Y$. So $v_i = uw_i$ with $w_i \in \mathcal{O}_Y$. Then $w_i = c_i/d_i$ with $c_i, d_i \in k[X]$ and $d_i \notin I(Y)$. Let $X' = X - (V(b) \cup V(d_1) \cup ... \cup V(d_n))$. Take $Y' = Y \cap X$. Then I(Y') = (u).

Now we need to show that ... Take $0 \neq f \in k[X]$ and assume $f \in I(Y) \subset \mathcal{O}_Y$. But of course $f \in I(Y)$ means $Y \subset V(f)$ (the zero locus of f) since it vanishes at I(Y), i.e both are codimension 1). Then $V(f) = Y \cup Y'$ and $\varphi \notin Y'$ (???), then $X_1 = X - Y'$ and $Y \cap X_1 \neq \emptyset$. By restricting to X, we can assume Y = V(f). Using the Nullstelensatz, $I(Y)^k \subset (f)$ in k[X] and $m_Y^k \subset (f)$ in \mathcal{O}_Y . Let k be the minimal such integer. Then there exists $\alpha_1, ..., \alpha_{k-1} \in m_Y$ such that $\alpha_1, ..., \alpha_k \notin (f)$, and $\alpha ... \alpha_{k-1} m_Y \in (f)$. Set $g = \alpha_1 ... \alpha_{k-1}$. Then u = f/g. We have $u^{-1} \notin \mathcal{O}_Y$ but $u^{-1} m_Y \subset \mathcal{O}_Y$. Then X normal implies \mathcal{O}_Y is integrally closed so $u^{-1} m_Y \subset m_Y$. Since \mathcal{O}_Y is integrally closed. So $u^{-1} m_Y = \mathcal{O}_Y$ and so m_Y is generated by u. \Box

Some consequences of this theorem:

Theorem. The set of singular points of a normal variety has codimension ≥ 2 .

Corollary. Normal curves are non-singular.

Lecture 23

Last time, we did Theorem II.5.2 in Shafarevich. Two corollaries hold:

Corollary. The set of singular points of a normal variety has codimension ≥ 2 .

Proof. Suppose X is normal with dimension $n = \dim X$. Let $S \subset X^{\text{sing}}$ be a dimension n-1 locus in the singular locus. Then let $y \in S$ be a smooth point of S. Then let $S' = S \cap X'$ with X' as in the theorem. Then we can choose a local system of parameters S' at y with $\mathcal{O}_{S',y}$ the local ring of S' at y and u_1, \dots, u_{n-1} a system of parameters. Then

[†]Then $\alpha^n + u_1 \alpha^{n-1} + ... + u_n = 0$, where $\alpha = \frac{u}{v}$ where u, v have no common factors. Hence $u_n + u_1 v u^{n-1} + v^n = 0$ and $v \mid u^n$. Since v has no common factors it is a unit.

I(S') = (u), so that $\mathcal{O}_{X',y}/(u) = \mathcal{O}_{S',y}$. Notice $\mathfrak{m}_{X',y}$ is the inverse image of $\mathfrak{m}_{S',y}$ under the map natural map $\mathcal{O}_{X',y} \to \mathcal{O}_{S',y}$. So choose arbitrary images v_1, \dots, v_{n-1} of the local parameters. Then dim $\mathfrak{m}_{X',y}/m_{X',y}^2 \leq n$ so that y is a non-singular point of X.

Corollary. A normal curve is smooth.

Definition. A *normalization* of an irreducible variety X is an irreducible normal variety X^{ν} so that $\nu : X^{\nu} \to X$ is defined such that ν is regular, finite, and birational.

Theorem. An affine irreducible variety X has an affine normalization.

Proof. We know $k[X] \subset k(X)$. Take the integral closure $A = \overline{k[X]}$ in k(X). Then A is a finite module over k[X], i.e., a finitely generated k-algebra with no nilpotents. So let A = k[Y] for Y an affine variety. Then Y is normal and $k[X] \hookrightarrow A$ induces a morphism $Y \to X$. \Box

Theorem. (1) Suppose we have a map $g: Y \to X$ that is finite, regular, and birational (for X and Y affine varieties). Then there exists a regular map $h: X^{\nu} \to Y$ such that the diagram $X^{\nu} \xrightarrow{\nu} X \xleftarrow{g} Y \xleftarrow{h} X^{\nu}$ is commutative.

(2) If $g: Y \to X$ is regular, g(Y) is dense in X and Y is normal, then there is a regular $h: X^{\nu} \to Y$ such that the diagram $Y \xrightarrow{h} X^{\nu} \xrightarrow{\nu} X \xleftarrow{g} Y$ is commutative.

Corollary. The normalization of an affine variety is unique up to isomorphism.

Proof. Suppose we have two of them X^{ν_1}, X^{ν_2} .. Then we have the diagram

and it is commutative by the theorem so that $X^{\nu_1} \cong X^{\nu_2}$.

Proof. (of theorem) (1) We have the inclusions $k[X] \subset k[Y] \subset k(X) = k(Y)$ (since they are birational) with k[Y] integral over k[X]. Then consider $A = \overline{k[X]}$. Since k[Y] is integral over k[X], $k[Y] \subset A$, so each time you have a ring homomorphism $X^{\nu} \to Y$. This induces a map between the corresponding affine varieties.

(2) Let $u \in k[X^{\nu}]$ which is integral over k[X] and contained in $k(X) \subset k(Y)$. But since $k[X] \subset k[Y]$, it must be integral over k[Y]. But since Y is normal (so that k[Y] is

integrally closed) $u \in k[Y]$. Thus we have an inclusion $k[X^{\nu}] \to k[Y]$ which induces a morphism $Y \to X^{\nu}$. \Box

Theorem 1. A quasiprojective curve X has a normalization X^{ν} .

Proof. Let $X = \bigcup U_i$ be a finite, open affine cover of X. By the earlier theorem, let $f_i : U_i^{\nu} \to U_i$ be the normalization for each U_i . First, notice $\overline{U_i} = X$, and $\overline{U_i^{\nu}}$ is birational to X. Set $V_j = \overline{U_j^{\nu}}$. We have a rational map $U_i^{\nu} \to V_j$ for all i, j. Recall that U_i^{ν} is normal (in particular it is non-singular), so consider the map $U_i^{\nu} \to V_j$. Let $W = \prod_j V_j$ and let $\varphi_i = \prod \varphi_{ij} : U_i^{\nu} \to W$. Then $\varphi_i(u) = (\varphi_{i_1}(u), ...)$. Let $X' = \bigcup \varphi_i(U_i^{\nu}) \subset W$. We claim that X' is the normalization of X. Consider $U = \bigcap_{i=1}^n U_i$. Then U is a Zariski open dense subset of X. Then $\varphi(U^{\nu}) \subset \varphi_i(U_i^{\nu}) \subset \overline{\varphi(U^{\nu})}$. Notice that $\overline{\varphi(U^{\nu})} - X'$ consists of finitely many points. So then the map $X' \to X$ is finite and birational. But we need that X' is normal. First, notice $\varphi_i : U_i^{\nu} \to \varphi_i(U_i^{\nu})$. Then $(u_1, ..., u_n) \mapsto \varphi_{ii}^{-1}(u_i)$ has an inverse to φ_i . Since U_i^{ν} is normal, X' is normal. \Box

Theorem 2. The normalization of a projective curve is projective.

Corollary. Any projective curve is birational to a smooth projective curve.

Lecture 24 - Shafarevich §II.5-6

Proposition. [II.5.4.L] A finite map $f : X \to Y \subset \mathbb{P}^n$ is an isomorphic embedding if and only if f is bijective.

Proof. This follows from Nakayama's lemma. First, note it suffices to assume X and Y are affine. Then we have $f^* : A[Y] \to A[X]$. By Nullstelensatz, since f is a bijection between points, f^* is a bijection between maximal ideals. Since $T_x X = (n/n^2)$, $d_x f$ is injective, so then $m/m^2 \to n/n^2$ is surjective.

Corollary. A bijection between $f : X \to Y$ with injective differential everywhere is an isomorphism.

Theorem. [II.5.4.T1] Let X be a smooth, projective variety of dimension k. Then X admits an embedding to \mathbb{P}^{2k+1} .

Corollary. [II.5.4.C1] Let $X \subset \mathbb{P}^n$ be a variety with $p \in \mathbb{P}^n \setminus X$. Suppose every line passing through p either does not intersect X or intersects X at one point transversely. Then $\pi_p : X \to Y \subset \mathbb{P}^{n-1}$ is an isomorphism.

Bertini Theorems [II.6]

Theorem. If X is a quasiprojective variety over k with char k = 0, then $f : X \to \mathbb{P}^n$ is a regular map. Let H be a general hyperplane in \mathbb{P}^n . Set $Y = f^{-1}(H)$. Then $Y_{\text{sing}} = X_{\text{sing}} \cap f^{-1}(H)$.

Example. For (x, y, z, w, u), note $xy + zw - u^2 \subset \mathbb{P}^4$ with char k = 2.

Proof. (of theorem) Consider the universal hyperplane section

 $\Gamma = \{ (p, H) \mid f(p) \in H \} \subset X \times (\mathbb{P}^n)^*$

This is irreducible of dimension dim X + n - 1. Let $p \in X - X_{sing}$ (a smooth point of X). Choose a coordinate such that p = (0, 0, ..., 0, 1) and $H = (Z_0 = 0)$. We can write f locally, $[f_0(x), f_1(x), ..., f_{n-1}(x), 1]$. We can write a hyperplane close to H as $Z_0 + \alpha_1 Z_1 + ... + \alpha_n Z_n = 0$. This is the equation of Γ . Then $f_0 + \alpha_1 f_1 + ... + \alpha_n = 0$. Since $\partial F / \partial \alpha_n \neq 0$, Γ is smooth at a point whose projection is a smooth point of x. But $(\mathbb{P}^n)^* \stackrel{\pi_2}{\leftarrow} \Gamma_{smooth} \subset \Gamma$. By Sard's Theorem, the general fiber of π_2 is smooth. This concludes the proof.

Corollary. Let $F_1, ..., F_k$ be general polynomials of degree $d_1, ..., d_k$ in n + 1 variables. The corresponding hypersurfaces $F_1 = ... = F_k = 0$ intersect transversely. The variety defined by $F_1 = ... = F_k = 0$ is nonsingular of dimension n - k.

Furthermore, $I(X) = (F_1, ..., F_k)$, and X is called a complete intersection.

Corollary. Let X be a smooth projective variety of dimension k. Let $L_1, ..., L_k$ be general linear forms. Then $Y = X \cap \{L_1 = ... = L_k = 0\}$ is smooth and the ideal of Y is generated by $(I(X), L_1, ..., L_k)$.

Remark. This still holds in characteristic *p*.

Lecture 25

Degree [Shafarevich pg 143–]

Unlike dimension, smoothness, etc. degree is extrinsic not intrinsic.

Suppose you have a finite map $f: X^n \to X^y$ with $k(Y) \hookrightarrow k(X)$ a finite field extension. Then you can define deg f = [k(X) : k(Y)]. A notion over \mathbb{C} of degree of a map $X^n \xrightarrow{f} Y^n$ count # of inverse images $f^{-1}(y)$.

Theorem. If $f: X \to Y$ is a finite map between irreducible varieties, and Y is normal, then the number of points $\# f^{-1}(y) \le \deg f$.

Proof. If X, Y are affine, then k[X] is an integral extension of k[Y], and Y is normal so that k[Y] is integrally closed. Let $f^{-1} = \{x_1, ..., x_m\}$. Take $a \in k[X]$ to be such that $a(x_i) = 0 \forall i = 1, ..., m$. Then write the minimal polynomial of a over k[Y]. If $F = F^N - \alpha_1 T^{N-1} + ... + \alpha_N$, then $\#m \leq N$.

Ramification f is unramified over y is $#f^{-1}(y) = \deg f$. Otherwise, f is ramified at y.

Theorem. The set of ramification points of a map f is open and non-empty if $f^*(k(Y)) \hookrightarrow k(X)$ is separable.

Proof. Take a generating element and look at its minimal polynomial F. Let deg f = n. Then $T^n + \alpha_{n-1}T^{n-1} + ... + \alpha_0$ has the property that at each point y you get a polynomial. So then $p = T^n + \alpha_{n-1}T^{n-1} + ... + \alpha_0$. To say f is unramified means p evaluated at y has no double roots. $D(p) = 0 \Leftrightarrow$ ramification points. \Box

Remark: Since $X \subset \mathbb{P}^n$ is a hypersurface, X is defined by a single polynomial, so we can think of deg $X = \deg F$.

Degree: Let $X \subset \mathbb{P}^n$ be an irreducible (possibly quasiprojective) variety of dimension k. Then the degree of X is defined by any of the following ways:

(1) The projection from a general linear space of dimension n - k - 1 gives a finite surjective map $\pi : X \to \mathbb{P}^k$ with $\deg(X) = \deg \pi = \deg[k(X) : k(\mathbb{P}^n)]$.

(2) The general projection from $X \to \mathbb{P}^{k+1}$ gives a birational map from X to the image in \mathbb{P}^{k+1} , $\pi: X \to Y \subset \mathbb{P}^{k+1}$ with deg $X = \deg Y = \deg$ of the polynomial defining Y.

(3) A general linear space of dimension n - k will intersect X in finitely many points by the Bertini Theorem, so we can define deg X = # pts in $X \cap \Lambda$ where Λ is a general linear space of dim n - k.

(4) Consider the Hilbert polynomial $p_X(m)$ of X. Then deg X = k!, the leading coefficient of $p_X(m)$.

[...rest of lecture not understandable, didn't bother taking notes...]

Lecture 26

For a projective variety $X^k \subset \mathbb{P}^k$

(1) $X \xrightarrow{\pi} \mathbb{P}^k$ of deg π (2) $x \xrightarrow{\pi} \mathbb{P}^{k+1}$ of deg hypersurface

(3) General n - k - 1 plane, # of int points $X \cap \Lambda$

(4) Hilbert polynomial of deg k!, the leading coeff

Examples. (1) <u>Veronese varieties</u> Take $v_d(\mathbb{P}^n) \hookrightarrow \mathbb{P}^{\binom{n+d}{d}-1}$. Then deg $v_d(\mathbb{P}^n) = ?$

(2) <u>Hilbert polynomial</u> Consider a polynomial of deg m in $\binom{n+d}{d}$ variables. If we restrict $v_d(\mathbb{P}^n)$ to a polynomial in n+1 variables of deg md, we have Hilbert polynomial $\binom{md+n}{n} = (md+n)...(md+1) / n! = \frac{d^n m^d}{n!} + 1.0.t.$ in (m). Then degree $= d^n$.

Remarks: In particular, rational normal curve of degree d has really degree d. The Veronese surface $v_2(\mathbb{P}^2) \subset \mathbb{P}^5$ has degree 4.

Then the $\binom{n+d}{d} - 1 - n$ -plane $L_1 = \dots = L_{\binom{n+d}{d}-1-n} = 0$ for $L_i \cap v_d(\mathbb{P}^n)$ gives a hypersurface of degree d in \mathbb{P}^n . In how many points do n general hypersurfaces of deg d intersect? d^n . For each of the hypersurfaces of deg d you can take $L_{i1} = \dots = L_{id} = 0$ (product of linear forms).

Examples. (1) Segre varieties Have $\mathbb{P}^n \times \mathbb{P}^m \hookrightarrow \mathbb{P}^{(n+1)(m+1)-1}$, what is the degree? Have a Hilbert polynomial. A polynomial of deg m in (n+1)(m+1) variables induces a homogeneous polynomial of bidegree (k, k) in (n+1) and (m+1) variables. Then the Hilbert polynomial is given by $p_x(k) = \binom{k+n}{n}\binom{k+m}{m} = \frac{(k+n)\dots(k+1)}{n!} \frac{(k+m)\dots(k+1)}{m!} = \frac{k^{n+m}}{n!m!} + 1.0.t.(k)$. Then degree $\frac{(n+m)!}{n!m!} = \binom{n+m}{n}$. If n = m = 1, then we have indeed a quadric surface in \mathbb{P}^3 . **Bezout's Theorem.** Let X, Y be closed sets of \mathbb{P}^n of pure dimension k and l (with $k + l \ge n$). Then X and Y intersect naturally: deg $X \cap Y = \text{deg } X \cdot \text{deg } Y$. In particular, k + l = n means X and Y intersect at deg $X \cdot \text{deg } Y$ points. \Box

Suppose X and Y intersect properly (dim $X \cap Y = k + l - n$). Given an irreducible component $Z \subset X \cap Y$, one can associate an intersection multiplicity $m_Z(X, Y)$ of X and Y along Z.

Bezout's Theorem (general). If X and Y are closed subsets of pure dimension intersecting properly, then $\deg(X) \cdot \deg(Y) = \sum_{Z \subset X, Y \text{ irred}} m_Z(X, Y) \cdot \deg(Z)$.

Properties of $m_Z(X,Y)$: (1) $m_Z(X,Y) = m_Z(Y,X)$, (2) $\mathbb{Z} \ni m_Z(X,Y) \ge 1 \Leftrightarrow$ $Z \subset X \cap Y$, (3) $m_Z(X,Y) = 1$ if X and Y intersect transversely at general points of \mathbb{Z} . (4) $m_Z(X \cup X',Y) = m_Z(X,Y) + m_Z(X',Y)$ if X and X' have no common components, and $X \cup X'$ include Y properly.

Corollary. If X and Y are closed subsets of \mathbb{P}^n intersecting properly of pure dimension intersecting properly, then the deg $X \cap Y \leq \deg X \cdot \deg Y$.

Corollary. Suppose $X, Y \subset \mathbb{P}^n$ are subvarieties intersecting properly and deg $X \cap Y = \deg X \cdot \deg Y$. Then X and Y are smooth at general points of $X \cap Y$.

Corollary. Suppose $X^k \subset \mathbb{P}^n$ is a variety of degree 1. Then X is a linear space of dimension k.

Proof. (sketch) We can do this by induction on k. If k = 1, pick two points $p_1, p_2 \in X$ and look at all the hyperplanes containing p_1, p_2 then the int cannot be proper, so every $H \ni p_1, p_2$ has to contain X. But the hyperplanes containing p_1, p_2 generate the ideal of the line containing p_1 and p_2 . X is the line spanned by p_1 and p_2 . Keep going for k = 2. Pick three points on X that are not collinear. Consider hyperplanes containing p_1, p_2, p_3 . By the case k = 1, the int $H \cap X$ cannot be proper to $X \subset H$. Etc. \Box

The Picard Group

Let X be an irreducible variety. A prime divisor on X is an irreducible codimension 1 subvariety of X. Then the divisor of X, Div(X), is the free abelian group generated by prime divisors $D \in Div(X)$. Then $D = \sum_{i=1}^{k} c_i D_i$ where c_i and D_i are prime divisors on X. Let $f \in k(X)$. Take D to be a prime divisor. Each prime divisor D determines a valuation on k(X) provided X is nonsingular in codimension 1. Assumption: X is nonsingular in codimension 1.

The valuation is the order of the zero or pole of f along D. Pick open set $U \subset X$ such that $X - X^{\text{sing}}$ and $D \cap U \neq \emptyset$. Since U consists of nonsingular points, D is defined by a local equation around each point $x \in U$. Let π be the local equation of D. Then $f \in k[X]$. So $\exists k$ such that $f \in (\pi^k)$, but $f \notin (\pi^{k+1})$ so $v_D(f) = k$.

Lecture 27

X irreducible variety nonsingular in codimension 1

A prime divisor D is an irreducible codimension 1 subvariety of X.

Div X - free abelian group generated on prime divisor

$$D = \sum_{i=1}^{N} k_i D_i$$
 for $k_i \in \mathbb{Z}$.

Let $f \in k(X)$ $(f \neq 0)$ and let D be a prime divisor. Then we can define (a valuation) $v_D(f)$ ("the order of zero or pole of f along D"). Take U open intersecting D and consisting only of nonsingular points of X. Possibly after shrinking U, we can say D has a local equation in U with $\pi = 0$. First assume $f \in k[X]$. Then there exists say m such that $f \in (\pi^m)$ (π divides f) but $f \notin (\pi^{m+1})$. Then define $v_D(f) = m$.

Observe that $v_D(f_1f_2) = v_D(f_1) + v_D(f_2)$ with $v_D(f_1 + f_2) \ge \min\{v_D(f_1), v_D(f_2)\}$, assuming of course $f_1 + f_2 \ne 0$. So now suppose that $f \in k(X)$. Then write f = g/hwhere $g, h \in k[X]$. Then we can define $v_D(f) = v_D(g) - v_D(h)$. Then

(1) H does not depend on the representation of f,

(2) It does not depend on the choice of U: if $V \subset U$ is open then π is a local equation of D also in V. Take $W \cap V$ and again that it's well-defined.

Notice it does not make sense to talk about $v_D(f)$ at a point, only at a divisor.

Terminology If $v_D(f) = k > 0$, we say that f has a zero of order k along D. Similarly, if $v_D(f) = -k < 0$, then we say f has a pole of order k along D.

It's important to note these only make sense for codimension 1 subvarieties.

Given $f \in k(X)$, there are finitely many prime divisors D such that $v_D(f) \neq 0$. If X is affine and $f \in k[X]$, then if D is not a component of V(f), then $v_D(f) = 0$. But there are only finitely many components of V. If $f \in k(X)$, express f = g/h with $g, h \in k[X]$. Then $v_D(f) = 0$ unless D is a component of V(g) or V(h).

If X is a quasiprojective cover X by finitely many affines, then since in each piece there exist finitely many D with $v_D(f) \neq 0$, it follows \exists finitely many D such that $v_D(f) \neq 0$. So given a rational function $f \neq 0 \in k(X)$, we can associate a divisor to it,

div
$$f = \sum_{D} v_D(f)D$$

Definition. The divisor of $f \neq 0 \in k(X)$ is called a principal divisor.

div
$$f = \sum k_i Di$$
. The divisor of zeroes of f , div₀ $f = \sum_{k_i > 0} k_i D_i$. The divisor of poles of f , div_∞ $(f) = \sum_{k < 0} k_i D_i$.
(1) div $(f_1 \cdot f_2) = \text{div}(f_1) + \text{div}(f_2)$. If $f \in k$, div $(f) = 0$. If $f \in k[X]$, div $(f) \ge 0$ (the divisor is effective).

Definition. A divisor $\sum k_i D_i$ is called *effective* if $k_i \ge 0 \forall i$. We write $D \ge 0$ to mean that D is effective.

Proposition. Suppose X is irreducible and nonsingular. If $f \neq 0 \in k(X)$ and if $\operatorname{div}(f) \geq 0$, then $f \in k[X]$. In particular, if in addition X is projective and div $f \geq 0$, then $f \in k$.

Proof. Suppose f is not regular at a point $x \in X$. Express f = g/h where $g, h \in \mathcal{O}_x$. Since X is nonsingular, \mathcal{O}_x is a UFD. We can assume that g, h have no common factor. Suppose π is irreducible, $\pi \mid h$ but $\pi \nmid g$. In some neighborhood, $V(\pi)$ is irreducible and of codimension 1, say D, so $v_D(f) < 0$. Hence div (f) is not effective. \Box

Corollary. In a nonsingular projective variety, a rational function f is determined up to a constant by its divisor.

If div $f = \operatorname{div} g$, then div f/g = 0, so by proposition $f/g = c \in k$.

Principal divisors form a subgroup of Div(X). The quotient is the class group Cl(X) = Div(X)/P(X) (divisors modded out by principal divisors). This is an important invariant of a variety.

Two divisors are called linearly equivalent if $\text{Div}(D_1) - \text{Div}(D_2) = \text{div}(f)$ (is prinicipal).

Example 1. Start with \mathbb{A}^n . What is the class group of \mathbb{A}^n , $Cl(\mathbb{A}^n)$? It is 0 because on \mathbb{A}^n every codimension 1 subvariety is defined by a single equation and so is a principal divisor:

For
$$\sum_{i=1}^{m} k_i D_i$$
, say $D_i = (F_i = 0)$, $D = \text{div} (F_1^k \dots F_m^k)$.

Example 2. $\operatorname{Cl}(\mathbb{P}^n) = \mathbb{Z}$. Given a prime divisor D, we can define D as the zero locus of a single homogeneous equation: f = F/G with F, G homogenous of the same degree. Define a homomorphism deg : $(\operatorname{Div}(\mathbb{P}^n)) \to \mathbb{Z}$ where $\sum k_i D_i \mapsto \sum k_i \deg D_i$. This is certainly onto. $kH \mapsto k$ (for H a hyperplane), so the kernel is precisely the principal divisors. The kernel is precisely the principal divisors $\sum k_i \deg D_i = 0$ with $D = \sum k_i D_i$. Split it into 2 pieces, so

$$D_0 = \sum_{k_i > 0} k_i D_i$$
 and $D_\infty = \sum_{k_i < 0} k_i D_i$.

Each D_i is defined by homogenous polynomials of degree D_i , so we have

$$\prod_{i\in D_0} F_i^{k_i} / \prod_{i\in D_\infty} F_i^{k_i}$$

where the numerator and denominator have the same degree, and are in $k(\mathbb{P}^n)$.

Example 3. $\operatorname{Cl}(\mathbb{P}^{n_1} \times ... \times \mathbb{P}^{n_r}) \cong \mathbb{Z}^r$ by a similar argument.

Lecture 28

Locally principal divisors

If X is a nonsingular variety, then every prime divisor $D \subset X$ around any point $x \in D$ can be defined by a local equation.

If $U \ni x$, D is generated by one function. Suppose you have U_i and U_j , and we define U_i by f_i and U_j by f_j . Then we have $\operatorname{div}(f_i) = \operatorname{div}(f_j)$. What this means is if I look at f_i/f_j , then is regular on $U_i \cap U_j$ and it is everywhere non-zero.

Definition. Let $\{U_i\}$ be an open cover of X, and let $\{f_i\}$ be a *compatible system* of functions corresponding to the open covering $\{U_i\}$. Then f_i/f_j is a regular function on $U_i \cap U_j$ which is nowhere zero.

Any compatible system of funcitons defines a divisor $\sum k_i D_i$. Take an open set U_i such that $U_i \cap D_i \neq \emptyset$. Then $k_i = v_{D_i}(f_i)$. This is well defined if $U_j \cap D_i \neq \emptyset$.

Two systems of compatible functions $\{f_i, U_i\}$ and $\{g_j, V_j\}$ define the same divisor if and only if f_i/g_j is regular and nowhere zero.

Now let $\varphi : X \to Y$ be a regular map of nonsingular varieties Let $D \subset Y$ be a prime divisoysteIri4 12 T3536(a)320.5177(w)0.621304(e)3.15789()-20.(r)22[(o)-0.957028(n)-0.957028(l)-2.53567)]

$$\operatorname{Pic}(X) = \frac{\operatorname{Cartier divisors}}{\operatorname{Principal divisors.}}$$

Remark: Suppose X is nonsingular. Then $\operatorname{Pic}(X) \cong \operatorname{Cl}(X)$ with $v_D(fg) = v_D(f) + v_D(g)$. Also, $\operatorname{Pic}(\mathbb{P}^n) = \mathbb{Z}$ and $\operatorname{Pic}(\mathbb{P}^{n_1} \times \ldots \times \mathbb{P}^{n_r}) \cong \mathbb{Z}^r$. How do you think about $\operatorname{Pic}(\mathbb{P}^n)$? If L_1 and L_2 are both linear forms, $f = L_1/L_2$.

Suppose X is a project variety. Then if $\mathbb{P}^1 \to X \subset \mathbb{P}^3 \supset L$ with

$$(u,t) \mapsto (t^4, t^3u, u^3t, u^4)$$

then $L \cap X$ is a divisor.

Two divisors are linearly equivalent if they differ by a principal divisor.

Definition. The *Riemann-Roch space* of a divisor D is $\{f \in k(X)\}$ such that

 $D + \dim(f) \ge 0.$

This is a vector space.

Lecture 29

Riemann-Roch Spaces

For \mathbb{P}^1 , how does one characteristic polynomial of degree d, for $f \in k(\mathbb{P}^1)$ such that

 $\dim f + dx_{\infty} \ge 0.$

If X is a nonsingular variety, fix a divisor D so that $f \in k(X)$ with div $f + D \ge 0$.

Definition. The *Riemann-Roch space* of *D* is the space of functions

$$\mathcal{L}(D) = H^0(X, \mathcal{O}_x(D))$$

is the sub-vector space of k(X) such that div $f + D \ge 0$.

This is an important concept in algebraic geometry, and a fundamental problem since the 19th century is:

Problem. Given a divisor D, determine $\mathcal{L}(D)$ (determine the dimension of $\mathcal{L}(D)$).

Remark: If D_1 and D_2 are linearly equivalent then $\ell(D_1) = \ell(D_2)$.

$$D_1 \sim D_2 \Longrightarrow D_1 - D_2 = \operatorname{div} g.$$

If $f \in \mathcal{L}(D_1)$, div $(fg) + D_2 = \operatorname{div}(f) + \operatorname{div}(g) + D_2 \ge 0$, so $g\mathcal{L}(D_1) \subset \mathcal{L}(D_2)$. So multiplication by g gives an isomorphism between the two. You can associate a dimension $\ell(D)$ for any $D \in \operatorname{Cl}(X)$.

Suppose φ is a rational map $\varphi : X \to \mathbb{P}^n$ (assume image of X, $\overline{\varphi(x)}$ is nondegenerate). Consider $(f_0, ..., f_n)$ with $f_i \in k(X)$. Let $D_1, ..., D_m$ be finitely many divisors such that

 $D_i = \sum h_j F_{ij}$ with F_{ij} prime divisors.

Then the highest common divisor $hcd(D_1, ..., D_m) = \sum_{i,j} \ell_j F_{ij}$ where $\ell_j = \min_i \{k_{ij}\}$.

Set $D = hcd(div(f_0), ..., div(f_n))$ with $D'_i = div(f_i) - D$.

A rational map φ fails to be regular precisely at the points $\bigcap_i \operatorname{supp}(D'_i)$ (the base locus).

Consider the vector space generated by D'_i . Say $X \subset \mathbb{P}^n$ is non-degenerate with $X \hookrightarrow \mathbb{P}^n$. Take the hyperplane H with $X \cap H \subset X$ a divisor. Consider the effective divisors on X, linearly equivalent to $X \cap H = D$. Then there is always a maximal linear algebra called the *complete linear system* |D|. All effective divisors are linearly equivalent to $X \cap H$. If $M \subset |D|$, then $\varphi : X \to \mathbb{P}(|D|)$ and $\varphi_m : X \to \mathbb{P}M$. Choose a basis for M, say $f_{D_1}, ..., f_M$. Complete to a basis of |D|. Every rational map $X \to \mathbb{P}^n$ is given by the map given by the complete linear followed by a projection.

Example. Consider $\mathbb{P}^n \xrightarrow{\varphi} \mathbb{P}^m$ with $\operatorname{Cl}(\mathbb{P}^n) \cong \mathbb{Z}$. The linear systems on \mathbb{P}^n are determined by specfiying the degree of the polynomials. So the complete linear system of deg *d*. We then get the Veronese map $\varphi_{|\mathcal{O}_{\mathbb{P}^n}(d)|} : \mathbb{P}^n \to \mathbb{P}(|\mathcal{O}_{\mathbb{P}^n}(d)|)$. Hence every rational map (non-degenerate) is obtain by a projection of a Veronese variety.

Consider $\mathbb{P}^1 \to X \subset \mathbb{P}^3$ with $(u, t) \mapsto (t^4, u^3t, t^3u, u^4)$. We get the map $\mathbb{P}^1 \to \mathbb{P}^4$ that is a rational normal curve of deg 4 and projection (0, 0, 1, 0, 0). \Box

A divisor is *very ample* if it is the hyperplane section of X under an embedding of $X \to \mathbb{P}^n$ for some n. A divisor is called *ample* if some positive multiple is very ample.

Let X be a compact complex manifold. When is X a projectivery variety? As an example, $\wp'^2 = c\wp^2 = a\wp + b$ where \wp is the Weierstrass \wp -function.

Remark. In higher dimensions, tyou cannot always embed X into \mathbb{P}^n .

Example. (*Hopf surface*) Look at $\mathbb{C}^2 \setminus \{0\}$ and place the equivalence relation $(x_1, y_1) \sim (x_2, y_2)$ if $\exists n \in \mathbb{Z}$ such that $(x_2, y_2) = (x_1^n, y_1^n)$.

Divisors on curves

Let X be a nonsingular projective curve. Then $D = \sum k_i p_i$ where p_i are points on X with $\deg(D) = \sum k_i$.

Theorem. Let $f: X - \gg Y$ be a map between non-singular projective curves. Then

$$\deg(f) = [k(X):k(Y)] \text{ and } \deg(f) = \deg(f^*(y))$$

for any point $y \in Y$.

Corollary. The degree of a principal divisor on any non-singular projective curve is C. Then $f \in k(X)$ defines a map $f: X \to \mathbb{P}^1$ with $\operatorname{div}(f) = \operatorname{div}_0(f) - \operatorname{div}_\infty(f)$, and $\operatorname{deg}(\operatorname{div}(f)) = \operatorname{deg}(k^*(f(D))) - \operatorname{deg} f^*(\infty) = 0$.

Lecture 30 [Shafarevich pg. 168 - 171]

Divisors on curves

Let X be a nonsingular curve. Then $D = \sum k_i p_i$ with deg $D = \sum k_i$.

Theorem. If $f: X \to Y$ is a regular surjective morphism of nonsingular projective curves, then deg $f = [k(X) : k(Y)] = \deg(f^*(y))$ with $k(Y) \hookrightarrow k(X)$, for any point $y \in Y$.

Corollary. The degree of a principal divisor on a nonsingular projective curve is 0.

Proof. If $f \in k(X)$, then f gives a regular non-constant map, with $f: X \to \mathbb{P}^1$. Then deg $(\operatorname{div}(f)) = \operatorname{deg}(\operatorname{div}_0(f)) - \operatorname{deg}(\operatorname{div}_\infty(f)) = \operatorname{deg} f - \operatorname{deg} f = 0$. \Box

Under the hypothesis, $f^*: k(Y) \to k(X)$, identify k(Y) with a subfield of k(X). Given finitely many points, $x_1, ..., x_r \in X$, let $\widetilde{\mathcal{O}}_{x_1,...,x_r} = \bigcap_{i=1}^r \mathcal{O}_{x_i}$. If $y \in Y$ and $f^{-1}(y) = \{x_1, ..., x_r\}$, let $\widetilde{\mathcal{O}}_{x_1,...,x_r}$. Note we can identify \mathcal{O}_y as a subring of $\widehat{\mathcal{O}}$.

Theorem A. $\widetilde{\mathcal{O}}$ is a principal ideal domain with finitely many prime ideals. There exists elements $t_i \in \widetilde{\mathcal{O}}$ such that $v_{x_j}(t_i) = \delta_{ij}$. Moreover, if $u \in \widetilde{\mathcal{O}}$, then $u = t_1^{k_1} \dots t_r^{k_r}$ such that $v_{x_i}(u) = k_i$ and v is invertible in $\widetilde{\mathcal{O}}$.

Theorem B. If $\{x_1, ..., x_r\} = f^{-1}(y)$, then $\widetilde{\mathcal{O}}$ is a free \mathcal{O}_y -module of rank = deg f = n *Proof.* (Theorem A + B \Longrightarrow main Theorem) Let t be a local parameter at $y \in Y$. Then $t = t_1^{k_1} ... t_r^{k_r}$, v where $v_{x_i}(t) = k_i$ and invertible. Then $\deg(f^*(y)) = \sum k_i$ since $f^*(y) = \sum k_i x_i$. Then $t_1, ..., t_r$ are relatively prime so that $\widetilde{\mathcal{O}}/(t) \cong \bigoplus_{i=1}^r \widetilde{\mathcal{O}}/(t_i^{k_i})$. Compare the dimensions as $\mathcal{O}_y/(t)$ -modules. Then $n = \deg f = \sum k_i$. So $\deg(f^*(y)) = \deg f$. Observe that if D is a divisor on a nonsingular variety X and $x \in X$, then $\exists D' \sim D$ such that $x \notin \operatorname{Supp} D'$. (Exercise) \Box

Proof. (of Theorem A) Choose local parameters u_i at x_i . Then $\operatorname{div}(u) = x_i + D$. If we change by linear equivalence, we can assume that $\operatorname{supp} D \not\supseteq \{x_1, ..., x_r\}$. Once we choose our u_i as such, $v_{x_i}(u_1) = 1$, $v_{x_j}(u_u) = 0$. Set $t_i = u_i$ chosen as such. Let $u \in \widetilde{\mathcal{O}}$. Let $u \in \widetilde{\mathcal{O}}$, $v_{x_i}(u) = k_i$ and $w = t_1^{-k_1} \dots t_r^{-k_r} u$. Then $v_{x_i}(w) = 0 \forall x_i$ by choice of the k_i . Both v and v^{-1} are regular at x_i , with $w, w^{-1} \in \widetilde{\mathcal{O}}$. Then $u = t_1^{k_1} \dots t_r^{k_r} w$. Finally, to check $\widetilde{\mathcal{O}}$ is a PID, let $a \in \widetilde{\mathcal{O}}$ be an ideal. Set $k_i = \inf_{u \in a} v_{x_i}(u)$. Let $\alpha = t_1^{k_1} \dots t_r^{k_r}$. We want to say $a = \langle \alpha \rangle$. Then $u \in a$. Then $\min_{u \in a'} v_{x_i}(u) = 0$ with $\beta = \sum u_j t_i^{k_1} \dots t_{j-1}^{k_{j+1}} \dots t_r^{k_r}$. Then $v_{x_i}(\beta) = 0 \forall i$. So $\beta \alpha^{-1} \in \mathcal{O}$. So $\alpha \in a$. \Box

Proof. (of Theorem B) If $f: X \to Y$ is a finite map of curves and X is nonsingular, then X is nonsingular is given by $f^{-1}(y) = \{x_1, ..., x_r\}$, with $\widetilde{\mathcal{O}} = \bigcap \mathcal{O}_{x_i}$, where $\widetilde{\mathcal{O}}$ is a finite \mathcal{O}_j -module. We can assume X and Y are affine. If A = k[X] and B = k[Y], then since this is a finite map and A is integral over B, A is a finite B-module. We want to prove the generators of A over B give you generators of $\widetilde{\mathcal{O}}$ over \mathcal{O} . Here, $\widetilde{\mathcal{O}} = k[X]\mathcal{O}_y$. So let a function $\varphi \in \widetilde{\mathcal{O}}$. Take z_i to be the poles of φ . Then $f(z_i) = y_i \neq y$. Then $\exists h \in k[Y]$ such that $h(y) \neq 0$ and $h(y_i) = 0$, and $\varphi h \in \mathcal{O}_{z_i}$. Hence, $\varphi h \in k[X]$. By construction, $h^{-1} \in \mathcal{O}_y$. In other words, $\varphi \in k[X]\mathcal{O}_y$. Hence, generators of A over B generate $\widetilde{\mathcal{O}}$ over \mathcal{O}_y . So then $\widetilde{\mathcal{O}}$ is a finitely generated module, so it is a direct sum of a free module \mathcal{O}_j and a torsion module (by the structure theorem for finitely generated modules over a PID). The torsion module has to be zero, so $\widetilde{\mathcal{O}}$ is a free-module, say $\widetilde{\mathcal{O}} \cong (\mathcal{O}_y)^m$. Then $[k(X) : k(Y)] = n = \deg f$ with $m \leq n$. Pick *n* elements that give a basis of k(X) over k(Y), say $\alpha_1, ..., \alpha_n$. We can multiply by appropriate powers of t_i 's to make these regular. But since they are independent over k(Y), the degree has to be the dgree of the field extension. \Box

Theorem. A nonsingular projective curve is rational $\Leftrightarrow \operatorname{Cl}^0(X) = 0$.

Proof. If then Cl em y

jectiv(r)2.3678()-22662 7(o)-0.

Theorem. Let X be a smooth projective curve with D a divisor on X. Then

$$\dim \mathcal{L}(D) = \ell(D) \le g(D) - g(X) + 1.$$

Theorem. $\mathcal{L}(D)$ is a finite dimensional vector space for any effective divisor D on the nonsingular projective curve X.

Prooj. If $D = D_1 - D_2$ where both D_1 and D_2 are effective, then $\mathcal{L}(D) \subseteq \mathcal{L}(D_1)$, with $f \in \mathcal{L}(D)$ implying $\operatorname{div}(f) + D \ge 0$ so that $\operatorname{div}(f) + D_1 \ge 0$. Take $D \ge 0$. Then if x is a point with multiplicity r, $\widetilde{D} = (r-1)x + (D-rx)$. Notice that $\operatorname{deg} \widetilde{D} = \operatorname{deg} D - 1$ and $\widetilde{D} \ge 0$. Let t be a local parameter at x. Then for any $f \in \mathcal{L}(D)$, $\lambda(f) = t^r f(x)$ is a linear function on $\mathcal{L}(D)$. What is the kernel of λ ? Well, it must be precisely $\mathcal{L}\left(\widetilde{D}\right)$, fhose functions for which the order of $t^r f$ at $x \ge 1$. In particular, $\ell(D) \le \ell\left(\widetilde{D}\right) + 1$. We can keep going so that $\ell(D) \le \ell(0) + \operatorname{deg} D$, with $\ell(0) = 1$ and $f \in k(X)$ such that $\operatorname{div}(f) \ge 0$. Thus f is regular, but all regular for a projective ariety means constant, so that $\mathcal{L}(0) \cong k$. Then $\operatorname{dim}(\mathcal{L}(D)) = \ell(D) \le \operatorname{deg} D + 1$. If $X \not\cong P^n$, then in fact $\ell(D) < \operatorname{deg} D + 1$. Suppose there exists D of degree 1, then $\ell(D) = \operatorname{deg} D + 1 = 2$. In other words, \exists a non-constant map $f \in k(X)$ with $\operatorname{div}(f) + 0 \ge 0$ and $f : X \to \mathbb{P}^1$ with $\operatorname{deg}(f) = 1$ so that both are nonsingular, proj, so $X \cong \mathbb{P}^1$.

Theorem. Let $\alpha_0 \in X$ be a point on a non-singular cubic curve $X \subset \mathbb{P}^2$.

Exercises. (1) For $X : zy^2 = x^3 + axz^2 + bz^3$, X is non-singular if and only if the discriminant $4a^3 - 27b^2 \neq 0$.

(2) Given any non-singular cubic, you can make a change of variables so that it has this form (dehomogeonize): $f = f_1(xy) + f_2(x, y) + f_3(x, y)$. Make substitution y = tx so that $f = x[f_1(1,t) + xf_2(1,t) + x^2f_3(1mt)]$. Then complete the square, $s^2 = p(t)$. Then send one of the roots of p(t) to ∞ , with $y^2 = x^3 + ax^2 + bx + c$. Then $\alpha \mapsto [\alpha - \alpha_0] \in Cl^0(X)$ defines a 1-1 correspondence between Y and $Cl^0(X)$. In particular, any nonsingular cubic in the plane inherits a group structure via this correlation.

Lecture 32

Nonsingular plane cubics

Theorem. Let X be a nonsingular plane cubic $(y^2 = x^3 + ax + b \text{ with } 4a^2 - 27b^3 \neq 0$ and char $(k) \neq 2, 3$). Then we can get a map $X \xrightarrow{\varphi} Cl^0(X)$. Fix a point α_0 (e.g., $(0, 1, 0) = \alpha_0$). Then $\alpha \mapsto [\alpha - \alpha_0]$ defines a 1-1 correspondence between X and $Cl^0(X)$. In particular, X inherits a group structure via this map.

Proof. Observe that $X : zy^2 = x^3 + axz^2 + bz^3$ is not rational as follows. Then X has an automorphism (termed the elliptic/hyperelliptic involution). Then the map

$$(x,y,z) \stackrel{\sigma}{\mapsto} (x,-y,z)$$

is an obvious automorphism (since $y^2 = (-y)^2$). What are the fixed points of σ ? Well, either y = 0, or the point (0, 1, 0). If p is a fixed point of σ , then either p = (0, 1, 0) or

y = 0, z = 0, and x is a root of $f(x) = x^3 + ax + b$. The polynomial f has 3 distinct roots, so σ has 4 fixed points. If $X \cong \mathbb{P}^1$, then the automorphisms are given by $\mathbb{P}GL(2)$. So then any automorphism of \mathbb{P}^1 that has more than two fixed points is the identity (since a matrix can only have two eigenvalues). So σ has four points. Then $\alpha - \alpha_0 \sim \beta - \alpha_0$ means $\alpha \sim \beta$ so that $\alpha - \beta$ is principal but this is only true if and only if $\alpha = \beta$. We know the curve is not rational, because otherwise $\operatorname{div}(f) = \alpha - \beta$ with $f : X \to \mathbb{P}^1$ noncontinuous of degree 1. But since X is not rational this is not possible. So $\varphi : X \to \mathbb{C}l^0(X)$ is injective.

Now we show surjectivity. Suppose D is an effective divisor on X, then $D \sim \alpha + k\alpha_0$ where $\alpha \in X$ is a point. If deg D = 1, then k = 0 works. So we can assume deg D > 1. Using induction, assume we can do it up to deg D - 1. Then $D = D' + \beta$ gives $D \sim \alpha + \beta + k\alpha_0$, and it's enough to show that $\alpha + \beta \sim \gamma + \alpha_0$.

Then if $\delta \in L_{\alpha\beta} \cap X$, $f = L_{\alpha\beta}/L_{\delta\alpha_0}$ is a rational function on X. Also, $\alpha + \beta + \delta \sim \alpha_0 + \gamma + \delta$ where $\gamma \in L_{\delta\alpha_0} \cap X$. If $\alpha = \beta$, let $L_{\alpha\beta}$ be the tangent line to X at α . Let $D \in Cl^0(X)$. Then $D = D_1 - D_2$ where D_1, D_2 are efficient, with $D \sim \alpha - \beta$. By what we proved, $\alpha + \alpha_0 \sim \gamma + \beta$ (is the same thing as). Then use the result that for any effective divisor $\alpha + \alpha_0$ and any point, there exists a point γ such that $\alpha - \beta \sim \gamma - \alpha_0$. \Box

Theorem. If D is an effective divisor on X nonsingular $(y^2 = x^3 + ax + b, 4a^3 - 27b^2 \neq 0)$, then $\ell(D) = \deg(D)$. Conversely, let X be a nonsingular curve such that for any effective divisor D, $\ell(D) = \deg(D)$. Then X can be realized as a smooth cubic in \mathbb{P}^2 .

Proof. For two linear equivalent divisors $D \sim D'$, $\ell(D) = \ell(D')$, we can assume $D = \alpha + k\alpha_0$. Since we know X is not rational, $\ell(D) \leq \deg(D)$. If k = 0, $\ell(D)$ consists only of constants. If k = 1, then $\ell(D)$ has a non-constant for $f(D) = 2 = \deg D$. Let k > 1. Then it suffices to find a function $f_k : \mathcal{L}(k\alpha_0)$ such that $\operatorname{div}_{\infty} f_k = k\alpha_0$. Furthermore, $\mathcal{L}(k\alpha_0) \subseteq \mathcal{L}(\alpha + k\alpha_0)$, with $f_k \notin \mathcal{L}(\alpha - (k - 1)\alpha_0)$. In other words, the

vector space $\mathcal{L}(\alpha + k\alpha_0)$ has dimension $\ell(\alpha + (k-1)\alpha_0) + 1$. =Pick pX. Then $\ell(p) = 1$ constants, and $\ell(2p) = 2$ so \exists nonconstant functions f_x , and $\ell(3p) = 3$, so \exists another function with a pole of order exactly 3p, saya y. Then $\ell(4p) = 4$ has x^2 as a pole. Then $\ell(5p) = 5$ has xy and $\ell(6p) = 6$ has x^3, y^2 as poles. So there has to be a linear relation among these functions, since we found seven functions in a seven dimensional vector space, say $\alpha y^2 + \beta xy + \delta y = ax^3 + bx^2 + cx + d$. You can complete the square for y to get $y^2 = x + ax^2 + bx + c$. \Box

Lecture 33

We can put a group law on $y^2 = x^3 + ax + b$ with disc $\neq 0$. Fix a point α_0 with

 $x \mapsto \operatorname{Cl}^0(X)$ and $\alpha \mapsto [\alpha - \alpha_0]$.

To write down formulas, one lets α_0 be the point at ∞ . This means if we projectivize the curve $(zy^2 = x^3 + z^2ax + bz^3)$ we can write down the formule where one lets α_0 be the point at ∞ , $(0, 1, 0) = \alpha_0$. This is an inflection point of X.

Now we notice $[\alpha - \alpha_0] + [\beta - \alpha_0] \sim [\gamma - \alpha_0]$. Look at the line drawn between α and β on the circular component, and then it hits some δ , so draw the line between α_0 (at infinity) and δ (this will be a vertical intersection of δ), so that we cross the curve at another point δ . But then $\alpha + \beta \sim \gamma + \alpha_0$ with $f = L_{\alpha\beta}/L_{\gamma\delta_0}$. Then

$$\alpha \in (x_1, y_1) \in X$$
 and $\beta \in (x_2, y_2) \in X$,

so the line $y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$ or $y = y_1 + m(x - x_1)$ combined with the equation of the curve $y^2 = x^3 + ax + b$ give

$$(y_1 + m(x - x_1))^2 = x^2 + ax + b$$

$$y_1^2 + m^2(x - x_1)^2 + 2y_1m(x - x_1) = x^3 + ax + b.$$

The coefficient of x^2 is m^2 , so if we plug in $x = x_1$ and $x = x_2$ we see these are roots of the equations. Then $x_3 = m^2 - x_1 - x_2 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right) - x_1 - x_2$. And y_3 is determined by the euquation of the line. Since the origin $0 = (0, 1, 0) = \alpha_0$, if $\alpha = \beta$, then $L_{\alpha\alpha}$ is the tangent line to X at α . Then the slope is given by $3x^2 + a$ (since $y^2 = x^3 + ax + b$) so the tangent line $y - y_1 = \left(\frac{3x_1 + a}{2y_1}\right)(x - x_1)$. Then $x_{2p} = -\frac{(3x_1^2 + a)^2}{4(x_1^3 + ax_1 + b)} - 2x_1$. Then $p = (x, y) \mapsto (x, -y) = -p$. Notice then that addition and inversion are regular maps on X. X is called a group variety.

Definition. If X is a variety together with maps $X \xrightarrow{(-1)} X$ inverse and $X \times X \xrightarrow{\to} X$ multiplicative which are regular maps; these maps should satisfy the axioms of a group: \exists point $e \in X$ s.t. $e \times X \xrightarrow{\to} X$ is id, $X \times e \xrightarrow{\to} X$ is id, and associativity, and $X \times X \xrightarrow{\to} X$ means $(x, x^{-1}) \mapsto e$. If we look at the matrix groups GL(n), SL(n), SO(n), etc. Then the group just defined, E, is compact, and we can see it is an abelian group. Then if X is projective and the group structure is abelian, we call X an *abelian variety*. If we call the elliptic curve $E: y^2 = x^3 + ax + b$. Let k be a number field. Suppose E is defined over k. Then we can look at the E(k) points whose coordinates $(x, y) \in E$ are in k. So E(k) is a subgroup of $E(\mathbb{C})$.

If $x^2 + y^2 = z^2$ there are infinitely many rational solutions to this equation. So now consider this for $E: y^2 = x^3 + ax + b$. We ask the question: *can you find finitely many points on* E such that you can generate all points on $E(\mathbb{Q})$ by the secant and tangent *method?* Since E has a group structure, we can ask the same in "modern day" language: is E(k) a finitely generated abelian group?

Theorem. (*Mordell*) E(k) is finitely generated.

 $E(k) \cong \mathbb{Z}^r \oplus \text{Torsion}$ where r is the rank of the elliptic curve over K. For $k = \mathbb{Q}$, the Torsion part is fairly well understood.

Differential forms and vector bundles

Suppose f is a regular function on a variety X. Then we can form the different $d_x f$ at any point. We saw how to do this. What kind of object is this thing? Well, if we let $d_x f$ be the diff form at every $x \in X$, then $d_x f \in T_x X$. Now we introduce vector bundles to make discussion of these gadgets simpler. Let M be a differentiable manifold. Then for a C^{∞} complex vector bundle, at each point there will be an associated vector space, and these should vary differentially. So a C^{∞} -complex vector bundle is a collection of complex vector spaces for every point in M, i.e., $\{E_x\}_{x\in M}$, together with a C^{∞} manifold structure on $E = \bigcup_{x \in M} E_x$. Then we have a natural projection map $\pi : E \to M$ given by $E_x \mapsto x$. Then (1) π is a C^{∞} -map. (2) For every $x \in M$ there is a neighborhood, $U \ni x$, and a diffeomorphism $\varphi_U : \pi^{-1}(U) \to U \times \mathbb{C}^r$ such that the map is linear on the fibers. If this is the case, then we call E a vector bundle of rank r (each of the component vector spaces has dimension r). Then φ_U is called a *trivialization* of E along U. E_x is called the fiber

Then on $U \cap V$, $\varphi_U : \pi^{-1}(U \cap V) \cong (U \cap V) \times \mathbb{C}^r$, and $\varphi_V : \pi^{-1}(U \cap V) \cong (U \cap V) \times \mathbb{C}^r$. Then we have what's called a *transition function* $g_{UV} = \varphi_V = \varphi_U^{-1}$ is a map from $U \cap V \to GL(r)$. Then $g_{UV}g_{VU} = I$ on $U \cap V$, and $g_{UV}g_{VW}g_{WU} = I$ on $U \cap V \cap W$.

Variations

of E over x.

Suppose M is a complex manifold. Then we can define holomorphic vector bundles on M by requiring E to be a complex manifold, π to be holomorphic, and φ_{UV} to be holomorphic. Similarly, you can ask M to be a variety, E to be a variety, π to be a regular map, the cover to be by Zariski opens, and then we get an algebraic vector bundle of g_{UV} regular maps, etc.