Lecture 13

Applications of "fiber dimension"

Example 1 Lines on surfaces in \mathbb{P}^{3}.

Theorem A general surface in \mathbb{P}^{3} of degree ≥ 4 contains no lines.
Note: To say that a "general" surface" has some property means: look at space of deg d surfaces. This is parametrized by $\mathbb{P}^{\left({ }^{d+3}\right)-1}$. The set of ones that do not have the property is a finite union of proper subvarieties.

$$
U=\left\{\left.[F] \in \mathbb{P}^{\binom{d+3}{3}-1} \right\rvert\, V(F) \text { has property }\right\} \text { should be dense Zariski-open. }
$$

Proof Look at the incidence variety, $\mathcal{I}=\left\{(L, X) \in \mathbb{G}(1,3) \times \mathbb{P}^{\left({ }^{d+3}\right)-1}, L \subseteq X\right\}$.
Let p_{1} be the projection to $\mathbb{G}(1,3)$ and p_{2} to $\mathbb{P}^{(d+3)-1}$. First, we have to know that I is a projective variety.
$\mathbb{G}(1,3)$ is a union of affine spaces isomorphic to \mathbb{A}^{4}. Notice $\mathbb{G}(2,4) \cong \mathbb{G}(1,3)$. An open affine set in $\mathbb{G}(2,4)$ is given by subspaces of the form: span $\left(\left(\begin{array}{c}1 \\ 0 \\ a \\ b\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ c \\ d\end{array}\right)\right)$, where $a, b, c, d \in k$ for choice of basis in k^{4}. Can also define surface $X \subseteq \mathbb{P}^{3}$ of deg d with an equation $F\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0$. So then any point in L is $\left(\begin{array}{c}1+t \cdot \overline{0} \\ 0+t \cdot 1 \\ a+t \cdot c \\ b+t \cdot d\end{array}\right), t \in \mathbb{P}^{1}$.
$L \subseteq X \Leftrightarrow F(1, t, a+t c, b+t d)) \equiv 0$ in t. Expand, collect terms, coeffs at $1, t, t^{2}, \ldots, t^{5}$ give equations. This implies $I \cap\left(\mathbb{A}^{4} \times \mathbb{P}^{\binom{(+3}{3}-1}\right)$ is closed subvariety \Rightarrow $I \subseteq \mathbb{G}(1,3) \times \mathbb{P}^{\left({ }^{d+3}{ }_{3}\right)-1}$ is a closed subvariety.

What else can we say? Well, p_{1} is surjective.
Say $L \in \mathbb{G}(1,3)$ is defined by $L_{1}=L_{2}=0$. We can find polynomial F of $\operatorname{deg} d$ that contains L. Then $F=G_{1} L_{1}+G_{2} L_{2}$, where G_{1}, G_{2} are of deg $d-1$.
$I=\{(L, X) \mid L \subseteq X\} \xrightarrow{p_{2}} \mathbb{P}^{\left(d_{3}^{d+3}\right)-1}, \quad \xrightarrow{p_{1}} \mathbb{G}(1,3)$.

- Fiber of $p_{1}: \mathbb{P} G L(3)$ is transitive on lines, so we can move any line L to the one defined by $x_{0}=x_{1}=0$
Polynomials F of deg d s.t. $V(F) \supseteq V\left(x_{0}, x_{1}\right)$. $F=G x_{0}+H x_{1}, \operatorname{deg} G=d-1=\operatorname{deg} H$, count dimension of such F.
$2\binom{d-1+3}{3}-\binom{d-2+3}{3} \longleftarrow$ not to overcount cases when $G=x_{1} G^{\prime}, H=x_{0} H^{\prime}$.
$=2 \frac{(d+2)(d+1)}{6}-\frac{(d+1) d(d-1)}{6}=\frac{d(d+1)(d+5)}{6}$.
- Fiber of $p_{1}=\mathbb{P}^{\frac{d(d+1)(d+5)}{6}-1}$.
- Now use theorem of the fibers. Since $\mathbb{G}(1,3)$ is irreducible of dimension 4, by the theorem about fibers, I is irreducible of $\operatorname{dim} \frac{d(d+1)(d+5)}{6}+3$.
We want to show that p_{2} is not surjective if $d \geq 4$. Then $p_{2}(I)$ will be a proper closed irreducible subvariety, and we can take $U=\mathbb{P}^{\left({ }^{d+3}\right)-1}-p_{2}(I)$. To show it, just compare dimensions. We have $\operatorname{dim} \mathbb{P}^{\binom{d+3}{3}-1}=\binom{d+3}{3}-1=\frac{(d+3)(d+2)(d+1)}{6}-1$ and $\quad \operatorname{dim}$ $I=\frac{d(d+1)(d+5)}{6}+3$. We see

$$
\operatorname{dim} \mathbb{P}^{\binom{d+3}{3}-1}-\operatorname{dim} I=\frac{(d+3)(d+2)(d+1)}{6}-1-\frac{d(d+1)(d+5)}{6}-3=
$$

Since $d \geq 4$, $\operatorname{dim} I<\operatorname{dim} \mathbb{P}^{\left({ }_{3}^{d+3}\right)-1} \Rightarrow$ Theorem.

$$
\frac{(d+1)\left(d^{2}+5 d-6-d^{2}-5 d\right)}{6}-4=d+1-4=d-3 .
$$

Note: When $d \leq 3$, there are lines on any surface.
Case $d=1$: The surface is a plane, so $\operatorname{dim} I \geq 2$.
Case $d=2$: We have a quadric surface, so if it's smooth, we can write it as $x_{0} x_{1}=x_{2} x_{3}$. Then we could write for example a line ($\alpha t, t, \alpha t, t$) for α a line in X (infinite family).
Case $d=3$: We have a cubic surface, and in this case, the dimensions are equal. There are exactly 27 lines on any smooth cubic surface.

Example 2 Study the determinental variety. Let M be the space of $m \times n$ matrices up to scale (so this will be a proj space $\cong \mathbb{P}^{m n-1}$). Let M_{k} be the matrices in M with rank $\leq k$. Thm Want to show that $M_{k} \subseteq M$ is an irreducible variety of coimension $\overline{(m-r)}(n-r)$.
Proof Let $I \subseteq M \times \mathbb{G}(n-r, n)$ so that

$$
I=\{(A, \Lambda) \mid A \text { is a matrix of size } m \times n \text { and } \Lambda \subseteq \operatorname{ker} A\} .
$$

Exercise I is a projective variety, $I \xrightarrow{p_{1}} M$ and $I \xrightarrow{p_{2}} \mathbb{G}(n-r, n)$.
-study p_{2} : Fix subspace Λ of dimension $n-r$. If $\Lambda \subseteq$ ker A, get induced map.

$$
k^{n} / \Lambda \xrightarrow{\frac{\bar{A}}{\longrightarrow}} k^{m}
$$

- $\operatorname{Dim} n-(n-r)$
- Space of such $\cong k^{r m}$.
\Longrightarrow Fibers of p_{2} are $\cong \mathbb{P}^{r m-1}$.
$\Longrightarrow I$ is irreducible and $\operatorname{dim} I=(r m-1)+\operatorname{dim} \mathbb{G}(n-r, m)=(r m-1)+(n-r) r$.
- General "fiber" of p_{1} is a single $\mathrm{pt}(\mathrm{dim} 0)$.
(if rk $A=r$, then only $(A, \operatorname{ker} A) \in I$.
\Rightarrow image $p_{1}(I)$ is irreducible of $\operatorname{dim}=(r m-1)+(n-r) r$.
$\operatorname{codim}\left(p_{1}(I), M\right)=(m n-1)-\left(r m-1+r n-r^{2}\right)=m n-r-n r+r^{2}=$ $(m-r)(n-r)$.

Define M_{r} by vanishing of $(r+1) \times(r+1)$ minors.

Lecture 14

Grassmannians

Say we have V a vector space. Want to talk about $\bigwedge^{r} V$. Say e_{1}, \ldots, e_{n} is a basis of V. Then $\bigwedge^{r} V$ has as a basis: pick $i_{1}<\ldots<i_{s}$, then $e_{i_{1}} \wedge \ldots \wedge e_{i_{s}}$. If $\delta \in S_{r}$, then

$$
e_{i_{\delta_{(1)}}} \wedge e_{i_{\delta(2)}} \wedge \ldots \wedge e_{i_{\delta(r)}}=\operatorname{sign}(\delta) e_{i_{1}} \wedge \ldots \wedge e_{i_{s}}
$$

$\sum a_{1 i} e_{i} \wedge \sum a_{2 i} e_{i} \wedge \ldots \wedge \sum a_{r i} e_{i}=\operatorname{det}\left(a_{i j}\right) e_{i_{1}} \wedge \ldots \wedge e_{i_{s}}$.
Grassmannians: $G(r, n)=\left\{r\right.$-dim subspaces of $\left.V^{n}\right\}=\mathbb{G}(r-1, n-1)=$ space of \mathbb{P}^{r-1} in \mathbb{P}^{n-1}.

Plücker embedding

Want to put $\left.G(r, n) \hookrightarrow \mathbb{P}\left(\bigwedge^{r} V\right) \cong \mathbb{P}^{n}{ }_{r}^{n}\right)-1$. If V has dimension $n, \bigwedge^{r} V$ has dimension $\binom{r}{n}$. If $W^{r} \subset V$, choose basis for $W: v_{1}, \ldots, v_{r}$. Then send $w \mapsto v_{1} \wedge \ldots \wedge v_{r}$. Choosing a different basis leads to the same point in $\mathbb{P}\left(\bigwedge^{r} V\right)$ so the map is well defined.

Say we are looking at $e_{1} \wedge e_{2}+e_{3} \wedge e_{4}$ (in $\bigwedge^{2} V$). In general, you can not write it as $v_{1} \wedge v_{2}$.
Remark The Plücker embeding is injective and the image is characterized by those elements in $\bigwedge^{r} V$ that are completely decomposable.

Take $v \in \bigwedge^{r} V$ with $w \mid v(w \in V)$. If $w \wedge v=0$, then we can write $v=w \wedge v^{\prime}$, where $v^{\prime} \in \bigwedge^{r} V$. Take $u \in V^{*}$ (the dual). Then we can extend $\bigwedge^{r} V \stackrel{\perp}{\rightrightarrows} \bigwedge^{r-1} V$, with $u\left(e_{i_{1}} \wedge \ldots \wedge e_{i_{r}}\right)=\sum(-1)^{j-1} u\left(e_{i j}\right)=e_{i_{1}} \wedge \ldots \wedge e_{i_{(j-1)}} \wedge e_{i_{(j+1)}} \wedge \ldots \wedge e_{1_{r}}$. Then $u_{1} \perp\left(u_{2} \perp \ldots\left(u_{r-1} \perp x\right)\right) \wedge x=0 \Leftrightarrow x \in \bigwedge^{r} V$ is completely decomposable. So we get the Plücker relations with basis e_{1}, \ldots, e_{n} and dual basis $e_{1}^{*}, \ldots, e_{n}^{*}$, so we can choose $p_{i_{1}, ., i_{r}}$ to be the coefficient of $e_{i_{1}} \wedge \ldots \wedge e_{i_{r}}$. So then $\sum(-1)^{t}$ $p_{i_{1}, \ldots, i_{r-1}} p_{j_{1}, \ldots, j_{t-1}, j_{t+1}, \ldots, j_{r+1}}=0$. This has to be true for all $i_{1}, \ldots, i_{r-1}, j_{1}, \ldots, j_{r+1}$. Then if we look at $G(2,4) \equiv \mathbb{G}(1,3)$ (space of lines in \mathbb{P}^{3}). Then $p_{12} p_{34}-p_{13} p_{24}+p_{14} p_{24}=0$ so the Grassmanian of lines in $\mathbb{P}^{3}(G(2,4))$ is a quadric hypersurface in \mathbb{P}^{5}.

Example: Let $k=\mathbb{C}$ and choose a basis of V. Take $F_{i}=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$.

Schubert Varieties

Defined in $G(r, n)$. Pick a partition $n-r \geq \lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r} \geq 0$ and fix a flag $F=0 \subset F_{1} \subset \ldots \subset F_{n}=V$. Then

$$
\sum_{\lambda_{i}} F==\left\{W \in G(r, n) \mid \operatorname{dim}\left(W \cap F_{n-r+i-\lambda_{i}}\right) \geq i\right\} .
$$

Example Look at $\mathbb{G}(1,3)=G(2,4)$. Then
$\sum_{1,0}=\left\{W \in G(2,4) \mid \operatorname{dim} W \cap F_{2} \geq 1\right.$ and $\left.\operatorname{dim} W \cap F_{4} \geq 2\right\}$. Then
$F_{1} \subseteq F_{2} \subseteq F_{3} \subseteq F_{4}$ and we have a subvariety of lines that intersect a fixed line in space. $\sum_{2,0}=\left\{W \in G(2,4) \mid \operatorname{dim} W \cap F_{1} \geq 1\right.$ and $\left.\operatorname{dim} W \cap F_{4} \geq 2\right\}$ is the set of lines that pass through a fixed point in space.
$\sum_{1,1}=\left\{W \in G(2,4) \mid \operatorname{dim} W \cap F_{2} \geq 1\right.$ and $\left.\operatorname{dim} W \cap F_{3} \geq 2\right\}$ is the set of lines contained in a fixed plane.
$\sum_{2,1}=$?
Theorem (from topology) $H^{*}(G(r, n), \mathbb{Z})$ (cohomology). The Schubert classes given as an additive basis of this cohomology as λ varies over all the partitions
$n-r \geq \lambda_{1} \geq \ldots \geq \lambda_{r} \geq 0$.

Lecture 17

Take the homogeneous coordinate ring of a closed algebraic set in \mathbb{P}^{n},

$$
S(X)=k\left[x_{0}, \ldots, x_{n}\right] / \mathcal{I}(X)
$$

and define the Hilbert function $h_{X}(m)=\operatorname{dim} S(X)_{m}$ with $m \in \mathbb{N}$, that is, the codimension of the space of homogeneous polynomials of degree m vanishing on X.

Last time, $h_{X}(m)=d$ if X was d points in \mathbb{P}^{n} provided $m \geq d-1$.
Thm Let $X \subset \mathbb{P}^{n}$ be a closed algebraic set and let h_{X} be its Hilbert function. Then $\exists p_{X}$ a polynomial such that $h_{X}(m)=p_{X}(m)$ for $m \gg 0$ and $\operatorname{deg} p_{X}=\operatorname{dim} X$.

Bertini's Theorem

For X^{k} a general linear space, a set $Y=X \cap \Lambda$, and $\mathcal{I}(Y)=\overline{(\mathcal{I}(X), \mathcal{I}(\Lambda))}$ (saturation).
Definition Let $\mathcal{I} \subset k\left[x_{0}, \ldots, x_{n}\right]$. The saturation of of

$$
\overline{\mathcal{I}}=\left\{F \in k\left[x_{0}, \ldots, x_{n}\right] \mid F\left(z_{0}, \ldots, z_{n}\right)^{m} \subset \mathcal{I}\right\} .
$$

Notice $\overline{\mathcal{I}} / \mathcal{I}$ is Noetherian is equivalent to saying that \mathcal{I} and $\overline{\mathcal{I}}$ agree after a certain degree.

Proof. (of Bertini's) Let $X \cap \Lambda=Y$ where Y is a collection of points,

$$
\Lambda=\left\{L_{1}=\ldots=L_{k}=0\right\} .
$$

Then $\mathcal{I}^{0}=\mathcal{I}(X) \subset \mathcal{I}^{1}=\left(\mathcal{I}(X), L_{1}\right) \subset \mathcal{I}^{2}=\left(\mathcal{I}(X), L_{1}, L_{2}\right) \subset \ldots \subset I^{(k)}$. But then $h^{\alpha}(m)=\operatorname{dim}\left(S(X) / \mathcal{I}^{\alpha}\right)_{m}$ and $h^{k}(m)=$ constant if $m \gg 0$. We want to calculate $h_{X}^{0}(m)$. Consider the exact sequence $S_{(m-1)}^{\alpha-1} \xrightarrow{L_{\alpha}} S_{m}^{\alpha-1} \rightarrow S_{m}^{\alpha} \rightarrow 0$.

Then $h^{\alpha}(m)=h^{\alpha-1}(m)-h^{\alpha-1}(m-1)$. So then

$$
h^{\alpha-1}(m+k)=c+\sum_{i=m}^{m+k} h^{\alpha}(i) .
$$

Hence, by induction, it follows that $h_{X}^{0}(m)$ is a polynomial of degree k.
The leading coefficient of $p_{X}(m)$ will be very important for us. It will define the degree of the variety. In case X is a curve, $p_{X}(m)=c m+(1-g)$. Then g is called the genus of the curve c.

Example Let c be a plane curve of $\operatorname{deg} d$. Then it has f of degree d with $\mathcal{I}=(f)$ so then g is a homogeneous polynomial of degree m vanishing in $f \mid g$, and $\operatorname{dim} S(X)_{m}$ is the codimension of the space of deg m polynomials divisible by f. If $m \geq d, g=f h$ where h is homogeneous of degree $m-d$. Then the dimension of the space of homogeneous polynomials of degree $m-d$ is

$$
\begin{gathered}
\binom{m+2}{2}-\binom{m-d+2}{2}=[(m+2)(m+1)-(m-d+2)(m-d+1)] / 2= \\
\frac{(m+1)(m+2)-(m+2)(m+1)+d(m+2)+d(m+1)-d^{2}}{2}=\frac{d(2 m+3)-d^{2}}{2}=d m+\frac{-d^{2}+3 d}{2} .
\end{gathered}
$$

Then $1-g=\frac{-d^{2}+3 d}{2}$ so that $\frac{(d-1)(d-2)}{2}=g$ (this is called arithmetic genus). Notice $d=1,2$ implies $g=0$ and $d=3$ implies $g=1$, and $d=4$ means $g=3$.

If c is smooth over \mathbb{C}, then we can consider c as a complex manifold. Up to homeomorphism, any such complex manifold is a sphere with g handles (like a teacup).

Tangent spaces

Start with $X \subset \mathbb{A}^{n}$, want to define the tangent space at a point $x \in X$. As a first approximation, let $T_{x} X$ be the union of all the tangent lines to X at x.

Then take $\mathcal{I}(X)=\left(F_{1}, \ldots, F_{m}\right)$, say $x=(0,0, \ldots, 0)$. Any line passing through x,

$$
L_{a}=\frac{t\left(a_{1}, \ldots, a_{n}\right)}{\text { fixed }} t \in k .
$$

Then $F_{1}\left(t a_{1}, \ldots, t a_{n}\right)=F_{2}\left(t a_{1}, \ldots, t a_{n}\right)=\ldots=F_{m}\left(t a_{1}, \ldots, t a_{n}\right)=0$ describes. So each of these polynomials are polynomials of one variable, $F_{j}(t a)=c_{j} \prod_{n}\left(t-\alpha_{j}\right)^{i_{n}}$. $f_{a}(t)=\operatorname{hcf}\left(F_{1}(t a), \ldots, F_{m}(t a)\right)$.

Definition The multiplicity of intersection of L_{a} with X is the multiplicity with which $(t-a)$ divides $f_{a}(t)$. If $f_{a}(t) \equiv 0$, set this mult to $+\infty$.
L_{a} is tangent to X at x if the mult. of intersection of L_{a} with X at x is at least 2.
X is a hypersurface, have $F=0$. Then express $F=L+G$ where L is linear and order $G \geq 2$. Then $F(t a)=L(t a)+G(t a)=t L(a)+G(t a)$ (where $\operatorname{deg} t$ is at least 2 in $G(t a)$). The line $t a$ can be tangent to $f=0 \Leftrightarrow L(a)=0$.
$L=\sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}}(0) x_{i}$. The tangent space at a point to a hypersurface $L=0$.

Example If $F=y^{2}-x^{3}$ at $(0,0)$, then $\frac{\partial F}{\partial x}=3 x^{2}$ at $(0,0)$ both vanish, and at $\frac{\partial F}{\partial y}=2 y$.

Lecture 18

A line is given by $L_{\vec{a}}=t \vec{a}$. Then $f_{\vec{a}}(t)=\operatorname{hcf}(F(t \vec{a})) \Leftrightarrow \operatorname{hcf}\left(F_{1}(t \vec{a}), \ldots, F_{m}(t \vec{a})\right)$ where the F_{i} generate $\mathcal{I}(X), F \in \mathcal{I}(X)$. To say that $L_{\vec{a}}$ has contact of order ≥ 2 means t^{2} divides $f_{\vec{a}}(t)$. For F a hypersurface, the Taylor expansion

$$
\begin{aligned}
& F=L+F_{2}+\ldots \\
& F(t \vec{a})=L(t \vec{a})+F_{2}(t \vec{a})+\ldots=t L(\vec{a})+t^{2} F_{2}(\vec{a})+\ldots
\end{aligned}
$$

$L_{\vec{a}}=t \vec{a}$ has contact of order ≥ 2 if and only if $L(\vec{a})=0$.
$L=\sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}}(0) x_{i}$. In general, the tangent space $\vec{x}=\left(t_{1}, \ldots, t_{n}\right)$.
$\sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}}\left(t_{i}\right)\left(x_{i}-t_{i}\right)$.
If X is not a hhypersurface, the tangent space is the intersection fo all the linear spaces to a set of generators F_{1}, \ldots, F_{m} of $\mathcal{I}(X)$. The kernel of the matrix

$$
\binom{\frac{\partial F}{\partial x_{i}}}{\vdots}=\left(\begin{array}{ccc}
\frac{\partial F_{1}}{\partial x_{1}} & \cdots & \frac{\delta F_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial F_{m}}{\partial x_{1}} & \cdots & \frac{\partial F_{m}}{\partial x_{n}}
\end{array}\right)
$$

The local ring of X at a point $x, \mathcal{O}_{X, x} \subset k(X)$. Then $\mathcal{O}_{X, x}:=$ the subring of the function field $f \in k(X)$ such that f is regular at $x \Leftrightarrow$ localization of $k[x]$ at the maximal ideal of the point x. Recall that this maximal ideal is $m_{X}=\{$ the set of regular functions that vanish at $x\}$. e.g., If $A \supset p$ is a prime ideal, then $A_{p}:=\{(f, g) \mid f, g \in A, g \notin p\}$ (think of it as $\left(\frac{f}{g}\right)$). But of course $\frac{f}{g}=\frac{f^{\prime}}{g^{\prime}}$ if $\exists h \notin p$ s.t. $h\left(f^{\prime} g-f g^{\prime}\right)=0$. Add and multiply:

$$
\begin{gathered}
(f, g) \cdot\left(f^{\prime}, g^{\prime}\right)=\left(f f^{\prime}, g g^{\prime}\right) \\
(f, g)+\left(f^{\prime}, g^{\prime}\right)=\left(f g^{\prime}+g f^{\prime}, g g^{\prime}\right)
\end{gathered}
$$

The latter comes from $\frac{f}{g}+\frac{f^{\prime}}{g^{\prime}}=\frac{f g^{\prime}+g f^{\prime}}{g g^{\prime}}$.
Differential $\quad d_{x} F=\sum_{i=1}^{n} \frac{\partial F}{x_{i}}\left(t_{i}\right)\left(x_{i}-t_{i}\right)$. Usual properties exist: $\quad d_{x}(F+G)=$ $d_{x} F+d_{x} G$, and $d_{x}(F G)=G d_{x} F+F d_{x} G$. Then $T_{x} X=\left\{d_{x} F_{1}=\ldots=d_{x} F_{m}=0\right\}$, with $\mathcal{I}(X)=\left\{F_{1}, \ldots, F_{m}\right\}$.
Now suppose I have an arbitrary regular function $g \in k[x]$. Say G is a polynomial in $k\left[x_{1}, \ldots, x_{n}\right]$ such that $\left.G\right|_{x}=g$. Then $d_{x} g=d_{x} G$. But this is not well-defined (because G is not uniquely determined, only up to $\mathcal{I}(X)$). Then

$$
G+A_{1} F_{1}+\ldots+A_{m} F_{m}=d_{x} G+\sum\left(F_{i} d_{x} A_{i}+A_{i} d_{x} F_{i}\right)
$$

Restrict this to the tangent space. Then $d_{x} g=\left.d_{x} G\right|_{T_{x} X}$ is well-defined.
Note $d_{x} \alpha=0(\alpha \in k)$. Hence if we change g by a constant value, then we do not change $d_{x} g$. Let's assume that $g \in m_{x}$. Then $d_{x}: m_{X, x} \rightarrow T_{x}^{*} X$.

Theorem. The map $d_{x}: m_{X, x} / m_{X, x}^{2} \rightarrow T_{x}^{*} X$ is an isomorphism. [as in diff. manifolds!]
Proof. Surjectivity is clear, because any linear functional on the tangent space is. Now we just need ot look at the kernel. Any linear form on $T_{x} X$ is induced by some linear functional:

$$
d_{x} F=\sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}}\left(t_{i}\right)\left(x_{i}-t_{i}\right)
$$

The kernel $d_{x} g=0$ for g induced by some $G, d_{x} G=\lambda_{1} d_{x} F_{1}+\ldots+\lambda_{m} d_{x} F_{m}$. Then define $G_{1}=G-\sum \lambda_{i} F_{i}$, so that $\left.G_{1}\right|_{x}=g$. Then Taylor expansion of G_{1} has no constant (none in G) or linear terms (cancelled out by each $\lambda_{i} F_{i}$), so $G_{1} \in\left(x_{1}, \ldots, x_{n}\right)^{2}$. So $g \in m_{X, x}^{2}$. Hence this is an isomorphism.

Corollary. $T_{x} X$ is the space of linear functionals on m_{x} / m_{x}^{2}.
Corollary. Under an isomorphism, the tangent spaces of the corresponding points are isomorphic.

When $X \subset \mathbb{P}^{n}$ is a quasiprojective variety, $x \subset X$ is a point. Choose affine neighborhood $x \in \mathbb{A}^{n}$. Do the same count. The closure in \mathbb{P}^{n} does not depend on choice of affine neighborhood.

Projective tangent space

$\sum_{i=0}^{n} \frac{\partial F_{\alpha}}{\partial J_{i}}(x) J_{i}=0 . \quad \quad \mathbb{A}^{n} \times X \supseteq\left\{(a, x) \mid a \in T_{x} X\right\}$.
Look at the second projection π_{2} to X of $\mathbb{A}^{n} \times X$. By the theorem on the dimension of fibers, there is a minimal s such that all fibers of π_{2} have dimension $\geq s$.

Definition. A point $x \in X$ is non-singular if $\operatorname{dim} \pi_{2}^{-1}(x)=s$. Otherwise it's called singular.

Theorem. The $\operatorname{dim} T_{x} X-\pi_{2}^{-1}(x)=\operatorname{dim} X$ if x is non-singular.

Lecture 19

Theorem. If X is a variety, the set of singular points in X is a proper closed subvariety (possibly empty). At a non-singular point $x \in X, \operatorname{dim} T_{x} X=\operatorname{dim} \mathrm{X}$. (in general, $\left.\operatorname{dim} T_{x} X=\operatorname{dim} X\right)$

Example. $\quad \mathbb{A}^{2} \times \mathbb{P}^{1} \supset\{x v=u y\} \xrightarrow{\pi_{1}} \mathbb{A}^{2} \ni 0$. If one of x or $y \neq 0$, this is a binational map (a regular map on a Zariski open set; birational because its inverse is rational).

If X and Y are varieties, $\varphi^{*}: k(Y) \rightarrow k(X)$ is binational if and only if $k(Y) \stackrel{\varphi}{\rightarrow} k(X)$.

Let X be a variety of $\operatorname{dim} n$. Then $\operatorname{tr} \operatorname{deg}(k(X))=n$. Then $k(x)=$ $k\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)$, and x_{n+1} can written as a polynomial with coefficients in $k\left[x_{1}, \ldots, x_{n}\right]$.

Two isomorphic binational varieties have isomorphic Zariski open subsets.

Cusps have local equation $x^{2}=y^{3}$; nodes have $x y$; tacnode have $x^{2}=y^{4}$; triple points have $x^{3}-y^{3} ; \mathrm{m}$-fold points have $x^{m}-y^{m}$. We can associate a finer invariant:

Definition. Given $F=0$, it is possible to write taylor series expansion $F=F_{k}+F_{k+1}+\ldots$ for $k \geq 2$. Then set $F_{k}=0$. This is called the tangent cone.

Definition. $\quad u_{1}, \ldots, u_{n} \in \mathcal{O}_{x}$ are local parameters if $u_{i} \in m_{x}$ and u_{1}, \ldots, u_{n} give a basis of m_{x} / m_{x}^{2}.

Notice $d u_{1}=d u_{2}=\ldots=d u_{n}=0$. The orle solution of this set of equations is 0 . $X_{i}=X \cap\left(u_{i}=0\right)$, so $T_{x} X_{i}=T_{x} X \cap\left(d u_{1}=0\right)$

Theorem. If u_{1}, \ldots, u_{n} are local parameters at $x, X_{i}=X \cap\left(u_{i}=0\right)$ is non-snigular at $x, \bigcup T_{\alpha} X_{i}=0$.

Definition. Y_{1}, \ldots, Y_{r} non-singular in X are transversal at $x \in \bigcup Y_{i}$ if

$$
\operatorname{codim}_{T_{x} X}\left(\bigcup_{i=1}^{r} T_{x} Y_{i}\right)=\sum_{i=1}^{r} \operatorname{codim}_{X} Y_{i}
$$

Definition. A formal power series Φ is called a Taylor series for $f \in \mathcal{O}_{x}$ if $f-S_{k} \Phi$ (the k th partial sum of $\Phi=F_{0}+\ldots+F_{k}$) lies in m_{x}^{k+1}.

Theorem. Every $f \in \mathcal{O}_{x}$ has a Taylor expansion.

Theorem. If $x \in X$ is non-singular, then a function has a unique Taylor series.

Lecture 20

From last time, we have a local system of parameters, $u_{1}, \ldots, u_{n} \in m_{x} \subset \mathcal{O}_{x}$. Then there exists a formal power series expansion in the local parameters.

Theorem. If $x \in X$ is non-singular, then a function has a unique Taylor series.
Proof. It suffices to show $f=0$ has the zero expansion u_{1}, \ldots, u_{n} with local parameters at x. Then $F_{k}\left(u_{1}, \ldots, u_{n}\right) \in m_{x}^{k+1} \Longrightarrow F_{k}=0$. Suppose it isn't 0 . Then by a linear change, we can assume coefficient reference $T_{n b}^{k}$ is non-zero. Then

$$
\begin{gathered}
F_{k}\left(T_{1}, \ldots, T_{n}\right)=\alpha T_{n}^{k}+G_{1}\left(T_{1}, \ldots, T_{k-1}\right) T_{k}^{k-1}+\ldots+G_{k}\left(T_{1}, \ldots, T_{k-1}\right) \\
=\alpha u_{n}^{k}+G_{1}\left(u_{1}, \ldots, u_{n-1}\right) u_{n}^{k-1}+\ldots+G_{k}\left(u_{1}, \ldots, u_{n-1}\right) \\
F_{k}\left(u_{1}, \ldots, u_{n}\right)=\mu u_{n}^{k}+H_{1}\left(u_{1}, \ldots, u_{n-1}\right) u_{n}^{k-1}+\ldots+H_{k}\left(u_{1}, \ldots, u_{n-1}\right) .
\end{gathered}
$$

This says any form in m_{x}^{k+1} can be written as a polynomial of degree k in u_{1}, \ldots, u_{n} with coefficients in m_{x}. Then $(u-\alpha)^{k} u_{n}^{k} \in\left(u_{1}, \ldots, u_{n-1}\right)$. We cannot have $\mu-\alpha \notin m_{x}$ so then $(\mu-\alpha)^{-1} \in \mathcal{O}_{x}$ so $u_{n}^{k} \in\left(u_{1}, \ldots, u_{n-1}\right)$. Then notice $T_{x} X_{n} \supset T_{x} X_{1} \cap \ldots \cap T_{x} X_{n-1}$ and $X_{i}=\left(u_{i}=0\right) \cap X$. But that's a contradiction. Since u_{1}, \ldots, u_{n} are local systems of parameters, $d u_{1}=\ldots=d u_{n}=0$ has only 0 as a solution. Then if X is a variety, x is a nn singular point of x implies $\mathcal{O}_{x} \hookrightarrow k\left[\left[T_{1}, \ldots, T_{n}\right]\right]$ as an inclusion of unique Taylor series expansion.

Corollary. If $x \in X$ is non-singular, then there exists a unique component of X passing through x.

Reason: $k[[T]]$ has no zero-divisors.
In other words, a smooth and connected algebraic set is irreducible. If $X^{r} \subset \mathbb{A}^{n}$ and $T_{x} X$ is a matrix of the form $\left(\partial f_{i} / \partial x_{j}\right)$, and x is smooth if this matrix has rank $n-r$.

Look at Sard/Bertini's Theorem.

Definition. $f_{1}, \ldots, f_{n} \in \mathcal{O}_{x}$ are local equations for $x \in Y \subset X$ such a neighorhood of x if there is an affine neighborhood X of x with $f_{1}, \ldots, f_{m} \in k\left[x^{\prime}\right]$ and $y^{\prime}=y \cap x^{\prime}$ and $I\left(y^{\prime}\right)=\left(f_{1}, \ldots, f_{m}\right)$ in $k\left[x^{\prime}\right]$.

Definition. An irreducible variety $Y \subset X^{1}$ of codim 1 has a local equation in a neighborhood of a nonsingular point of $x \in X$.

Lecture 21

Let $f_{1}, \ldots, f_{m} \in \mathcal{O}_{x, X}$. Having local equations for $Y \subset X$ means if \exists affine neighborhood $X^{\prime} \subset X$ with $x \in X^{\prime}$ s.t. $f_{1}, \ldots, f_{m} \in k\left[X^{\prime}\right]$ and $I\left(Y^{\prime}=Y \cap X^{\prime}\right)=\left(f_{1}, \ldots, f_{m}\right)$ in $k\left[x^{\prime}\right]$.

Theorem. If $x \in X$ is nonsingular with $x \in Y \subset X$ an irreducible subvariety of codimension 1, then Y has a local equation at x.

Theorem. If X is nonsingular, and say $\varphi: X \rightarrow \mathbb{P}^{n}$ is a rational map. Then the set of points $\{x \in X \mid \varphi$ is not regular at $x\}$ has codimension ≥ 2.

Proof. Let $\varphi:\left(f_{0}: \ldots: f_{n}\right)$. Then this is not well defined when $f_{0}=\ldots=f_{n}=0$. If $g \mid f_{i}$ for all i then $f_{i}=g h_{i}$. Suppose there exists a codimension one component of the locus where $f_{i}=0$ for all i. That codimension basis is defined by a local equation around any x.

Corollary. Any rational map of a nonsingular curve to \mathbb{P}^{n} (projective space) is regular.
Corollary. If two nonsingular projective curves are birational, then they are isomorphic.

Remark. $\quad \mathbb{A}^{1} \rightarrow y^{2}=x^{3}$ is birational but not an isomorphism because the latter is nonsingular $\left((0,0)\right.$ is singular on $\left.y^{2}=x^{3}\right)$.

Theorem. Let X be an affine variety and $x \in X$ a nonsingular point. Let u_{1}, \ldots, u_{n} be regular functions on X that form a system of local parameters at x. Then for $m \leq n$, the closed subset defined by $u_{1}=\ldots=u_{m}=0$ is nonsingular at x and $I_{y}=\left(u_{1}, \ldots, u_{m}\right)$ in some neighborhood of x. Moreover u_{m+1}, \ldots, u_{n} give a system of local parameters at x for Y.

Proof. Induction on m. By previous theorem for $m=1$, since Y has codimension $1, Y$ has a local equation. Say $I_{y}=(f)$ in a neighborhood of x. Write $u_{1}=g f$ since u_{1} vanishes on Y. Then $d u_{1}=g(x) d_{x} f$. So u_{1}, \ldots, u_{n} is a system of local parameters at x for X. Note $g(x) \neq 0$. So if x is a nonsingular point on $Y, T_{x}=T_{x} X \cap d_{x} u_{1}=0$. For $T_{x}^{*}, d u_{1}, \ldots, d u_{n}$ give a basis and $d u_{2}, \ldots, d u_{n}$ give basis for $T_{x} Y$.

Theorem. If X is a variety $Y^{m} \subset X^{n}$ a subvariety, and $x \in Y \subset X$ with x a nonsingular point of Y and X, then there is a locla system of parameters u_{1}, \ldots, u_{m} at x and an affine neighborhood $X \supset U \ni x$ such that $I_{Y \cap U}=\left(u_{1}: \ldots: u_{m}\right)$ in U.

Resolution of singularities

Given X a singular variety, can we find a model of X which is nonsingular. Furthermore, \exists ? a nonsingular birational moprhism to X, etc. You can ask for more, for instance, φ to be an isomoprhism between $Y-\varphi^{-1}\left(X^{\text {sing }}\right) \rightarrow X-X^{\text {sing }}$. You can even reuqire that φ is a simple, easily understood birational morphism.

Theorem. (Hironaka '64) char $k=0$. Wishes for the conditions in the previous paragraph to be realized.

Normal varieties

R is integrally closed if every element $v \in F F(R)$ (function field) which is integral over R is contained in R. An irreducible affine variety X is normal if $k[X]$ is integrally closed. A quasiprojective variety is normal if every pt $x \in X$ has an affine neighborhood which is normal.

Example. We know $y^{2}=x^{3}$ is not normal. We also know $(y / x)^{2}-x=0$ and y / x is integral $k[x, y] /\left(y^{2}-x^{3}\right)$ but not in this ring.

Example. Quadric cone $x^{2}+y^{2}+z^{2} \subset \mathbb{A}^{3}$ is singular at $(0,0,0)$, but it is normal.

Lecture 22 (Chapter II. 5 in Shafarevich)

R is integrally closed if every elements of its fraction field which is integral over R is contained in R. An affine variety X is normal if $k[x]$ is integrally closed.

An affine variety X is normal if $k[x]$ is integrally closed. A quasiprojective variety X is normal if every point has a normal affine neighborhood.

Notice $y^{2}=x^{3}+x^{3} \subset \mathbb{A}^{2}$. This is not normal so $y / x \notin k[c]$ even though $x \in k[c]$. Notice $(y / x)^{2}-(1+x)=0$.

In \mathbb{A}^{3}, we can look at $x^{2}+y^{2}=z^{2}$. This is certainly singular at $(0,0,0)$. We can write every function in $k[\mathbb{Q}]$. Then we can write it as $u+v z$ where $u, v \in k[x, y]$.

More generally, $\varphi \in k[\mathbb{Q}]$ means we can write $\varphi=u+v z$ with $u, v \in k(x, y)$. Suppose $u+v z$ is integral over $k[\mathbb{Q}]$. Furthermore, suppose $u+v z$ is also integral over $k[x, y]$. Then write the minimal polynomial $T^{2}-2 u T+u^{2}-\left(x^{2}+y^{2}\right) v^{2}$. Then $2 u \in k[x, y]$. Hence $u \in k[x, y]$. But then $\left(x^{2}+y^{2}\right) v^{2} \in k[x, y]$ since it means the T^{0} term is in $k[x, y]$. Then we can write $(x+i y)(x-i y) v^{2}$. These are irreducible, so $v \in k[x, y]$. Hence $\varphi \in k[\mathbb{Q}]$.

Lemma. If X is normal, then the local ring \mathcal{O}_{Y} (localization of $k[x]$ along $I(Y)$) at any irreducible variety $Y \subset X$ is integrally closed. In particular, \mathcal{O}_{x} is integrally closed $\forall x \in X$.

Proof. Let $\alpha \in k(X)$ which is integral over \mathcal{O}_{Y}. Then $\alpha^{n}+a \alpha^{n-1}+\ldots+a_{n}=0$ where each $a_{i} \in \mathcal{O}_{Y}$. But the latter means we can write $a_{i}=b_{i} / c_{i}$ where $b_{i}, c_{i} \in k[x]$ but $c_{i} \notin I(Y)$. Then define $d=c_{1} c_{2} \ldots c_{n} \in k[x]$ but not in $I(Y)$ (because it's a prime ideal-can't have product be in $I(Y)$ without one of the terms being in it). Then $d \alpha^{n}+d_{1} \alpha^{n-1}+\ldots+d_{n}=0$ where $d_{i}=\left(d / c_{i}\right) b_{i}$. Then multiply by d^{n-1} :

$$
(d \alpha)^{n}+d_{1}^{\prime}(d \alpha)^{n-1}+\ldots+d_{n}^{\prime}=0
$$

So that $d \alpha$ is clearly integral over $\mathrm{k}[X]$. Since $k[X]$ is integrally closed, $d \alpha \in k[X]$. Consider the element $d \alpha / d$. Since $d \alpha, d \in k[X]$ but $d \notin I(Y)$, we have $d \alpha / d=\alpha \in \mathcal{O}_{Y}$ as desired. So \mathcal{O}_{Y} is integrally closed.

Lemma. If X is an irreducible affine variety and $\forall x \in X$ points, \mathcal{O}_{x} is integrally closed, then X is normal.

Proof. Let $\alpha \in k(X)$ which is integral over $k[x]$. In particular, α is integral over \mathcal{O}_{x} for all $x \in X$. So then $\alpha \in \bigcap_{x \in X} \mathcal{O}_{x}=k[X]$. Hence X is normal.

Theorem. A non-singular variety is normal.
Proof. If $x \in X$ is non-singular, then \mathcal{O}_{x} is a UFD. UFD's are integrally closed ${ }^{\dagger}$. But since \mathcal{O}_{x} is integrally closed for all $x \in X, X$ itself must be normal.

Theorem. If X is normal and $Y \subset X$ is a codimension 1 subvarity, then \exists an affine subset $X^{\prime} \subset X$ such that $X^{\prime} \cap Y \neq \emptyset$ and $Y^{\prime}=X^{\prime} \cap Y$ and $k\left[X^{\prime}\right]$ is principal.

Proof. Can assume X is affine. It's enough to show that $m_{Y}=(u)$ with $u \in \mathcal{O}_{Y}$ (this is the maximal ideal of \mathcal{O}_{Y}, the localization of $k[X]$ at $I(Y)$). Suppose $m_{Y}=(u)$ with $u=\frac{a}{b}$ and $a, b \in k[x]$ but $b \notin I(Y)$. Suppose $I(Y)=\left(v_{1}, \ldots, v_{m}\right)$. Then $I(Y) \subset m_{Y}$. So $v_{i}=u w_{i}$ with $w_{i} \in \mathcal{O}_{Y}$. Then $w_{i}=c_{i} / d_{i}$ with $c_{i}, d_{i} \in k[X]$ and $d_{i} \notin I(Y)$. Let $X^{\prime}=X-\left(V(b) \cup V\left(d_{1}\right) \cup \ldots \cup V\left(d_{n}\right)\right)$. Take $Y^{\prime}=Y \cap X$. Then $I\left(Y^{\prime}\right)=(u)$.

Now we need to show that ... Take $0 \neq f \in k[X]$ and assume $f \in I(Y) \subset \mathcal{O}_{Y}$. But of course $f \in I(Y)$ means $Y \subset V(f)$ (the zero locus of f) since it vanishes at $I(Y)$, i.e both are codimension 1). Then $V(f)=Y \cup Y^{\prime}$ and $\varphi \nsubseteq Y^{\prime}$ (???), then $X_{1}=X-Y^{\prime}$ and $Y \cap X_{1} \neq \emptyset$. By restricting to X, we can assume $Y=V(f)$. Using the Nullstelensatz, $I(Y)^{k} \subset(f)$ in $k[X]$ and $m_{Y}^{k} \subset(f)$ in \mathcal{O}_{Y}. Let k be the minimal such integer. Then there exists $\alpha_{1}, \ldots, \alpha_{k-1} \in m_{Y}$ such that $\alpha_{1}, \ldots, \alpha_{k} \notin(f)$, and $\alpha \ldots \alpha_{k-1} m_{Y} \in(f)$. Set $g=\alpha_{1} \ldots \alpha_{k-1}$. Then $u=f / g$. We have $u^{-1} \notin \mathcal{O}_{Y}$ but $u^{-1} m_{Y} \subset \mathcal{O}_{Y}$. Then X normal implies \mathcal{O}_{Y} is integrally closed so $u^{-1} m_{Y} \subset m_{Y}$. Since \mathcal{O}_{Y} is integrally closed. So $u^{-1} m_{Y}=\mathcal{O}_{Y}$ and so m_{Y} is generated by u.

Some consequences of this theorem:
Theorem. The set of singular points of a normal variety has codimension ≥ 2.
Corollary. Normal curves are non-singular.

Lecture 23

Last time, we did Theorem II.5.2 in Shafarevich. Two corollaries hold:
Corollary. The set of singular points of a normal variety has codimension ≥ 2.
Proof. Suppose X is normal with dimension $n=\operatorname{dim} X$. Let $S \subset X^{\text {sing }}$ be a dimension $n-1$ locus in the singular locus. Then let $y \in S$ be a smooth point of S. Then let $S^{\prime}=S \cap X^{\prime}$ with X^{\prime} as in the theorem. Then we can choose a local system of parameters S^{\prime} at y with $\mathcal{O}_{S^{\prime}, y}$ the local ring of S^{\prime} at y and u_{1}, \ldots, u_{n-1} a system of parameters. Then
${ }^{\dagger}$ Then $\alpha^{n}+u_{1} \alpha^{n-1}+\ldots+u_{n}=0$, where $\alpha=\frac{u}{v}$ where u, v have no common factors. Hence $u_{n}+u_{1} v u^{n-1}+v^{n}=0$ and $v \mid u^{n}$. Since v has no common factors it is a unit.
$I\left(S^{\prime}\right)=(u)$, so that $\mathcal{O}_{X^{\prime}, y} /(u)=\mathcal{O}_{S^{\prime}, y}$. Notice $\mathfrak{m}_{X^{\prime}, y}$ is the inverse image of $\mathfrak{m}_{S^{\prime}, y}$ under the map natural map $\mathcal{O}_{X^{\prime}, y} \rightarrow \mathcal{O}_{S^{\prime}, y}$. So choose arbitrary images v_{1}, \ldots, v_{n-1} of the local parameters. Then $\operatorname{dim} \mathfrak{m}_{X^{\prime}, y} / m_{X^{\prime}, y}^{2} \leq n$ so that y is a non-singular point of X.

Corollary. A normal curve is smooth.
Definition. A normalization of an irreducible variety X is an irreducible normal variety X^{ν} so that $\nu: X^{\nu} \rightarrow X$ is defined such that ν is regular, finite, and birational.

Theorem. An affine irreducible variety X has an affine normalization.
Proof. We know $k[X] \subset k(X)$. Take the integral closure $A=\overline{k[X]}$ in $k(X)$. Then A is a finite module over $k[X]$, i.e., a finitely generated k-algebra with no nilpotents. So let $A=k[Y]$ for Y an affine variety.Then Y is normal and $k[X] \hookrightarrow A$ induces a morhphism $Y \rightarrow X$.

Theorem. (1) Suppose we have a map $g: Y \rightarrow X$ that is finite, regular, and birational (for X and Y affine varieties). Then there exists a regular map $h: X^{\nu} \rightarrow Y$ such that the diagram $X^{\nu} \xrightarrow{\nu} X \stackrel{g}{\leftarrow} Y \stackrel{h}{\leftarrow} X^{\nu}$ is commutative.
(2) If $g: Y \rightarrow X$ is regular, $g(Y)$ is dense in X and Y is normal, then there is a regular $h: X^{\nu} \rightarrow Y$ such that the diagram $Y \xrightarrow{h} X^{\nu} \xrightarrow{\nu} X \stackrel{g}{\leftarrow} Y$ is commutative.

Corollary. The normalization of an affine variety is unique up to isomorphism.
Proof. Suppose we have two of them $X^{\nu_{1}}, X^{\nu_{2}}$.. Then we have the diagram

and it is commutative by the theorem so that $X^{\nu_{1}} \cong X^{\nu_{2}}$.
Proof. (of theorem) (1) We have the inclusions $k[X] \subset k[Y] \subset k(X)=k(Y)$ (since they are birational) with $k[Y]$ integral over $k[X]$. Then consider $A=\overline{k[X]}$. Since $k[Y]$ is integral over $k[X], k[Y] \subset A$, so each time you have a ring homomorphism $X^{\nu} \rightarrow Y$. This induces a map between the corresponding affine varieties.
(2) Let $u \in k\left[X^{\nu}\right]$ which is integral over $k[X]$ and contained in $k(X) \subset k(Y)$. But since $k[X] \subset k[Y]$, it must be integral over $k[Y]$. But since Y is normal (so that $k[Y]$ is
integrally closed) $u \in k[Y]$. Thus we have an inclusion $k\left[X^{\nu}\right] \rightarrow k[Y]$ which induces a morphism $Y \rightarrow X^{\nu}$.

Theorem 1. A quasiprojective curve X has a normalization X^{ν}.
Proof. Let $X=\bigcup U_{i}$ be a finite, open affine cover of X. By the earlier theorem, let $f_{i}: U_{i}^{\nu} \rightarrow U_{i}$ be the normalization for each U_{i}. First, notice $\overline{U_{i}}=X$, and $\overline{U_{i}^{\nu}}$ is birational to X. Set $V_{j}=\overline{U_{j}^{\nu}}$. We have a rational map $U_{i}^{\nu} \rightarrow V_{j}$ for all i, j. Recall that U_{i}^{ν} is normal (in particular it is non-singular), so consider the map $U_{i}^{\nu} \rightarrow V_{j}$. Let $W=\prod_{j} V_{j}$ and let $\varphi_{i}=\prod \varphi_{i j}: U_{i}^{\nu} \rightarrow W$. Then $\varphi_{i}(u)=\left(\varphi_{i_{1}}(u), \ldots\right)$. Let $X^{\prime}=\bigcup \varphi_{i}\left(U_{i}^{\nu}\right) \subset W$. We claim that X^{\prime} is the normalization of X. Consider $U=\bigcap_{i=1}^{n} U_{i}$. Then U is a Zariski open dense subset of X. Then $\varphi\left(U^{\nu}\right) \subset \varphi_{i}\left(U_{i}^{\nu}\right) \subset \overline{\varphi\left(U^{\nu}\right)}$. Notice that $\overline{\varphi\left(U^{\nu}\right)}-X^{\prime}$ consists of finitely many points. So then the map $X^{\prime} \rightarrow X$ is finite and birational. But we need that X^{\prime} is normal. First, notice $\varphi_{i}: U_{i}^{\nu} \rightarrow \varphi_{i}\left(U_{i}^{\nu}\right)$. Then $\left(u_{1}, \ldots, u_{n}\right) \mapsto \varphi_{i i}^{-1}\left(u_{i}\right)$ has an inverse to φ_{i}. Since U_{i}^{ν} is normal, X^{\prime} is normal.

Theorem 2. The normalization of a projective curve is projective.
Corollary. Any projective curve is birational to a smooth projective curve.

Lecture 24 - Shafarevich §II.5-6

Proposition. [II.5.4.L] A finite map $f: X \rightarrow Y \subset \mathbb{P}^{n}$ is an isomorphic embedding if and only if f is bijective.

Proof. This follows from Nakayama's lemma. First, note it suffices to assume X and Y are affine. Then we have $f^{*}: A[Y] \rightarrow A[X]$. By Nullstelensatz, since f is a bijection between points, f^{*} is a bijection between maximal ideals. Since $T_{x} X=\left(n / n^{2}\right), d_{x} f$ is injective, so then $m / m^{2} \rightarrow n / n^{2}$ is surjective.

Corollary. A bijection between $f: X \rightarrow Y$ with injective differential everywhere is an isomorphism.

Theorem. [II.5.4.T1] Let X be a smooth, projective variety of dimension k. Then X admits an embedding to $\mathbb{P}^{2 k+1}$.

Corollary. [II.5.4.C1] Let $X \subset \mathbb{P}^{n}$ be a variety with $p \in \mathbb{P}^{n} \backslash X$. Suppose every line passing through p either does not intersect X or intersects X at one point transversely. Then $\pi_{p}: X \rightarrow Y \subset \mathbb{P}^{n-1}$ is an isomorphism.

Bertini Theorems [II.6]

Theorem. If X is a quasiprojective variety over k with char $k=0$, then $f: X \rightarrow \mathbb{P}^{n}$ is a regular map. Let H be a general hyperplane in \mathbb{P}^{n}. Set $Y=f^{-1}(H)$. Then $Y_{\text {sing }}=X_{\text {sing }} \cap f^{-1}(H)$.
Example. For (x, y, z, w, u), note $x y+z w-u^{2} \subset \mathbb{P}^{4}$ with char $k=2$.
Proof. (of theorem) Consider the universal hyperplane section

$$
\Gamma=\{(p, H) \mid f(p) \in H\} \subset X \times\left(\mathbb{P}^{n}\right)^{*}
$$

This is irreducible of dimension $\operatorname{dim} X+n-1$. Let $p \in X-X_{\text {sing }}$ (a smooth point of $X)$. Choose a coordinate such that $p=(0,0, \ldots, 0,1)$ and $H=\left(Z_{0}=0\right)$. We can write f locally, $\left[f_{0}(x), f_{1}(x), \ldots, f_{n-1}(x), 1\right]$. We can write a hyperplane close to H as $Z_{0}+\alpha_{1} Z_{1}+\ldots+\alpha_{n} Z_{n}=0$. This is the equation of Γ. Then $f_{0}+\alpha_{1} f_{1}+\ldots+\alpha_{n}=0$. Since $\partial F / \partial \alpha_{n} \neq 0, \Gamma$ is smooth at a point whose projection is a smooth point of x. But $\left(\mathbb{P}^{n}\right)^{*} \stackrel{\pi_{2}}{\leftarrow} \Gamma_{\text {smooth }} \subset \Gamma$. By Sard's Theorem, the general fiber of π_{2} is smooth. This concludes the proof.

Corollary. Let F_{1}, \ldots, F_{k} be general polynomials of degree d_{1}, \ldots, d_{k} in $n+1$ variables. The corresponding hypersurfaces $F_{1}=\ldots=F_{k}=0$ intersect transversely. The variety defined by $F_{1}=\ldots=F_{k}=0$ is nonsingular of dimension $n-k$.

Furthermore, $I(X)=\left(F_{1}, \ldots, F_{k}\right)$, and X is called a complete intersection.
Corollary. Let X be a smooth projective variety of dimension k. Let L_{1}, \ldots, L_{k} be general linear forms. Then $Y=X \cap\left\{L_{1}=\ldots=L_{k}=0\right\}$ is smooth and the ideal of Y is generated by $\left(I(X), L_{1}, \ldots, L_{k}\right)$.
Remark. This still holds in characteristic p.

Lecture 25

Degree [Shafarevich pg 143-]

Unlike dimension, smoothness, etc. degree is extrinsic not intrinsic.
Suppose you have a finite map $f: X^{n} \rightarrow X^{y}$ with $k(Y) \hookrightarrow k(X)$ a finite field extension. Then you can define $\operatorname{deg} f=[k(X): k(Y)]$. A notion over \mathbb{C} of degree of a map $X^{n} \xrightarrow{f} Y^{n}$ count \# of inverse images $f^{-1}(y)$.

Theorem. If $f: X \rightarrow Y$ is a finite map between irreducible varieties, and Y is normal, then the number of points $\# f^{-1}(y) \leq \operatorname{deg} f$.

Proof. If X, Y are affine, then $k[X]$ is an integral extension of $k[Y]$, and Y is normal so that $k[Y]$ is integrally closed. Let $f^{-1}=\left\{x_{1}, \ldots, x_{m}\right\}$. Take $a \in k[X]$ to be such that $a\left(x_{i}\right)=0 \forall i=1, \ldots, m$. Then write the minimal polynomial of a over $k[Y]$. If $F=F^{N}-\alpha_{1} T^{N-1}+\ldots+\alpha_{N}$, then $\# m \leq N$.
Ramification f is unramified over y is $\# f^{-1}(y)=\operatorname{deg} f$. Otherwise, f is ramified at y.
Theorem. The set of ramification points of a map f is open and non-empty if $f^{*}(k(Y)) \hookrightarrow k(X)$ is separable.

Proof. Take a generating element and look at its minimal polynomial F. Let $\operatorname{deg} f=n$. Then $T^{n}+\alpha_{n-1} T^{n-1}+. .+\alpha_{0}$ has the property that at each point y you get a polynomial. So then $p=T^{n}+\alpha_{n-1} T^{n-1}+. .+\alpha_{0}$. To say f is unramified means p evaluated at y has no double roots. $D(p)=0 \Leftrightarrow$ ramification points.
Remark: Since $X \subset \mathbb{P}^{n}$ is a hypersurface, X is defined by a single polynomial, so we can think of $\operatorname{deg} X=\operatorname{deg} F$.

Degree: Let $X \subset \mathbb{P}^{n}$ be an irreducible (possibly quasiprojective) variety of dimension k. Then the degree of X is defined by any of the following ways:
(1) The projection from a general linear space of dimension $n-k-1$ gives a finite surjective map $\pi: X \rightarrow \mathbb{P}^{k}$ with $\operatorname{deg}(X)=\operatorname{deg} \pi=\operatorname{deg}\left[k(X): k\left(\mathbb{P}^{n}\right)\right]$.
(2) The general projection from $X \rightarrow \mathbb{P}^{k+1}$ gives a birational map from X to the image in $\mathbb{P}^{k+1}, \pi: X \rightarrow Y \subset \mathbb{P}^{k+1}$ with $\operatorname{deg} X=\operatorname{deg} Y=\operatorname{deg}$ of the polynomial defining Y.
(3) A general linear space of dimension $n-k$ will intersect X in finitely many points by the Bertini Theorem, so we can define deg $X=\#$ pts in $X \cap \Lambda$ where Λ is a general linear space of $\operatorname{dim} n-k$.
(4) Consider the Hilbert polynomial $p_{X}(m)$ of X. Then $\operatorname{deg} X=k$!, the leading coefficient of $p_{X}(m)$.
[...rest of lecture not understandable, didn't bother taking notes...]

Lecture 26

For a projective variety $X^{k} \subset \mathbb{P}^{k}$
(1) $X \xrightarrow{\pi} \mathbb{P}^{k}$ of $\operatorname{deg} \pi$
(2) $x \xrightarrow{\pi} \mathbb{P}^{k+1}$ of deg hypersurface
(3) General $n-k-1$ plane, \# of int points $X \cap \Lambda$
(4) Hilbert polynomial of deg k !, the leading coeff

Examples. (1) Veronese varieties Take $v_{d}\left(\mathbb{P}^{n}\right) \hookrightarrow \mathbb{P}^{\binom{n+d}{d}-1}$. Then $\operatorname{deg} v_{d}\left(\mathbb{P}^{n}\right)=$?
(2) Hilbert polynomial Consider a polynomial of $\operatorname{deg} m$ in $\binom{n+d}{d}$ variables. If we restrict $v_{d}\left(\mathbb{P}^{n}\right)$ to a polynomial in $n+1$ variables of deg $m d$, we have Hilbert polynomial $\binom{m d+n}{n}=(m d+n) \ldots(m d+1) / n!=\frac{d^{n} m^{d}}{n!}+$ l.o.t. in (m). Then degree $=d^{n}$.
Remarks: In particular, rational normal curve of degree d has really degree d. The Veronese surface $v_{2}\left(\mathbb{P}^{2}\right) \subset \mathbb{P}^{5}$ has degree 4 .

Then the $\left(\binom{n+d}{d}-1-n\right)$-plane $L_{1}=\ldots=L_{\binom{n+d}{d}-1-n}=0$ for $L_{i} \cap v_{d}\left(\mathbb{P}^{n}\right)$ gives a hypersurface of degree d in \mathbb{P}^{n}. In how many points do n general hypersurfaces of $\operatorname{deg} d$ intersect? d^{n}. For each of the hypersurfaces of deg d you can take $L_{i 1}=\ldots=L_{i d}=0$ (product of linear forms).

Examples. (1) Segre varieties Have $\mathbb{P}^{n} \times \mathbb{P}^{m} \hookrightarrow \mathbb{P}^{(n+1)(m+1)-1}$, what is the degree? Have a Hilbert polynomial. A polynomial of deg m in $(n+1)(m+1)$ variables induces a homogeneous polynomial of bidegree (k, k) in $(n+1)$ and $(m+1)$ variables. Then the Hilbert polynomial is given by $p_{x}(k)=\binom{k+n}{n}\binom{k+m}{m}=\frac{(k+n) \ldots(k+1)}{n!} \frac{(k+m) \ldots(k+1)}{m!}=$ $\frac{k^{n+m}}{n!m!}+$ l.o.t. (k). Then degree $\frac{(n+m)!}{n!m!}=\binom{n+m}{n}$. If $n=m=1$, then we have indeed a quadric surface in \mathbb{P}^{3}.

Bezout's Theorem. Let X, Y be closed sets of \mathbb{P}^{n} of pure dimension k and l (with $k+l \geq n$). Then X and Y intersect naturally: $\operatorname{deg} X \cap Y=\operatorname{deg} X \cdot \operatorname{deg} Y$. In particular, $k+l=n$ means X and Y intersect at $\operatorname{deg} X \cdot \operatorname{deg} Y$ points.

Suppose X and Y intersect properly ($\operatorname{dim} X \cap Y=k+l-n$). Given an irreducible component $Z \subset X \cap Y$, one can associate an intersection multiplicity $m_{Z}(X, Y)$ of X and Y along Z.

Bezout's Theorem (general). If X and Y are closed subsets of pure dimension intersecting properly, then $\operatorname{deg}(X) \cdot \operatorname{deg}(Y)=\sum_{Z \subset X, Y \text { irred }} m_{Z}(X, Y) \cdot \operatorname{deg}(Z)$.

Properties of $m_{Z}(X, Y)$: (1) $\quad m_{Z}(X, Y)=m_{Z}(Y, X)$, (2) $\mathbb{Z} \ni m_{Z}(X, Y) \geq 1 \Leftrightarrow$ $Z \subset X \cap Y$, (3) $m_{Z}(X, Y)=1$ if X and Y intersect transverselly at general points of \mathbb{Z}. (4) $m_{Z}\left(X \cup X^{\prime}, Y\right)=m_{Z}(X, Y)+m_{Z}\left(X^{\prime}, Y\right)$ if X and X^{\prime} have no common components, and $X \cup X^{\prime}$ include Y properly.

Corollary. If X and Y are closed subsets of \mathbb{P}^{n} intersecting properly of pure dimension intersecting properly, then the $\operatorname{deg} X \cap Y \leq \operatorname{deg} X \cdot \operatorname{deg} Y$.

Corollary. Suppose $X, Y \subset \mathbb{P}^{n}$ are subvarieties intersecting properly and deg $X \cap Y=\operatorname{deg} X \cdot \operatorname{deg} Y$. Then X and Y are smooth at general points of $X \cap Y$.

Corollary. Suppose $X^{k} \subset \mathbb{P}^{n}$ is a variety of degree 1 . Then X is a linear space of dimension k.

Proof. (sketch) We can do this by induction on k. If $k=1$, pick two points $p_{1}, p_{2} \in X$ and look at all the hyperplanes containing p_{1}, p_{2} then the int cannot be proper, so every $H \ni p_{1}, p_{2}$ has to contain X. But the hyperplanes containing p_{1}, p_{2} generate the ideal of the line containing p_{1} and $p_{2} . X$ is the line spanned by p_{1} and p_{2}. Keep going for $k=2$. Pick three points on X that are not collinear. Consider hyperplanes containing p_{1}, p_{2}, p_{3}. By the case $k=1$, the int $H \cap X$ cannot be proper to $X \subset H$. Etc.

The Picard Group

Let X be an irreducible variety. A prime divisor on X is an irreducible codimension 1 subvariety of X. Then the divisor of $X, \operatorname{Div}(X)$, is the free abelian group generated by prime divisors $D \in \operatorname{Div}(X)$. Then $D=\sum_{i=1}^{k} c_{i} D_{i}$ where c_{i} and D_{i} are prime divisors on X. Let $f \in k(X)$. Take D to be a prime divisor. Each prime divisor D determines a valuation on $k(X)$ provided X is nonsingular in codimension 1. Assumption: $\quad X$ is nonsingular in codimension 1.

The valuation is the order of the zero or pole of f along D. Pick open set $U \subset X$ such that $X-X^{\text {sing }}$ and $D \cap U \neq \emptyset$. Since U consists of nonsingular points, D is defined by a local equation around each point $x \in U$. Let π be the local equation of D. Then $f \in k[X]$. So $\exists k$ such that $f \in\left(\pi^{k}\right)$, but $f \notin\left(\pi^{k+1}\right)$ so $v_{D}(f)=k$.

Lecture 27

X irreducible variety nonsingular in codimension 1

A prime divisor D is an irreducible codimension 1 subvariety of X.
Div X - free abelian group generated on prime divisor
$D=\sum_{i=1}^{N} k_{i} D_{i}$ for $k_{i} \in \mathbb{Z}$.
Let $f \in k(X)(f \neq 0)$ and let D be a prime divisor. Then we can define (a valuation) $v_{D}(f)$ ("the order of zero or pole of f along D "). Take U open intersecting D and consisting only of nonsingular points of X. Possibly after shrinking U, we can say D has a local equation in U with $\pi=0$. First assume $f \in k[X]$. Then there exists say m such that $f \in\left(\pi^{m}\right)$ (π divides f) but $f \notin\left(\pi^{m+1}\right)$. Then define $v_{D}(f)=m$.

Observe that $v_{D}\left(f_{1} f_{2}\right)=v_{D}\left(f_{1}\right)+v_{D}\left(f_{2}\right)$ with $v_{D}\left(f_{1}+f_{2}\right) \geq \min \left\{v_{D}\left(f_{1}\right), v_{D}\left(f_{2}\right)\right\}$, assuming of course $f_{1}+f_{2} \neq 0$. So now suppose that $f \in k(X)$. Then write $f=g / h$ where $g, h \in k[X]$. Then we can define $v_{D}(f)=v_{D}(g)-v_{D}(h)$. Then
(1) H does not depend on the representation of f,
(2) It does not depend on the choice of U : if $V \subset U$ is open then π is a local equation of D also in V. Take $W \cap V$ and again that it's well-defined.
Notice it does not make sense to talk about $v_{D}(f)$ at a point, only at a divisor.
Terminology If $v_{D}(f)=k>0$, we say that f has a zero of order k along D. Similarly, if $v_{D}(f)=-k<0$, then we say f has a pole of order k along D.

It's important to note these only make sense for codimension 1 subvarieties.

Given $f \in k(X)$, there are finitely many prime divisors D such that $v_{D}(f) \neq 0$. If X is affine and $f \in k[X]$, then if D is not a component of $V(f)$, then $v_{D}(f)=0$. But there are only finitely many components of V. If $f \in k(X)$, express $f=g / h$ with $g, h \in k[X]$. Then $v_{D}(f)=0$ unless D is a component of $V(g)$ or $V(h)$.
If X is a quasiprojective cover X by finitely many affines, then since in each piece there exist finitely many D with $v_{D}(f) \neq 0$, it follows \exists finitely many D such that $v_{D}(f) \neq 0$. So given a rational function $f \neq 0 \in k(X)$, we can associate a divisor to it,

$$
\operatorname{div} f=\sum_{D} v_{D}(f) D
$$

Definition. The divisor of $f \neq 0 \in k(X)$ is called a principal divisor.
$\operatorname{div} f=\sum k_{i} D i$. The divisor of zeroes of $f, \operatorname{div}_{0} f=\sum_{k_{i}>0} k_{i} D_{i}$. The divisor of poles of $f, \operatorname{div}_{\infty}(f)=\sum_{k<0} k_{i} D_{i}$.
(1) $\operatorname{div}\left(f_{1} \cdot f_{2}\right)=\operatorname{div}\left(f_{1}\right)+\operatorname{div}\left(f_{2}\right)$. If $f \in k, \operatorname{div}(f)=0$. If $f \in k[X]$, $\operatorname{div}(f) \geq 0$ (the divisor is effective).
Definition. A divisor $\sum k_{i} D_{i}$ is called effective if $k_{i} \geq 0 \forall i$. We write $D \geq 0$ to mean that D is effective.

Proposition. Suppose X is irreducible and nonsingular. If $f \neq 0 \in k(X)$ and if $\operatorname{div}(f) \geq 0$, then $f \in k[X]$. In particular, if in addition X is projective and $\operatorname{div} f \geq 0$, then $f \in k$.

Proof. Suppose f is not regular at a point $x \in X$. Express $f=g / h$ where $g, h \in \mathcal{O}_{x}$. Since X is nonsingular, \mathcal{O}_{x} is a UFD. We can assume that g, h have no common factor. Suppose π is irreducible, $\pi \mid h$ but $\pi \nmid g$. In some neighborhood, $V(\pi)$ is irreducible and of codimension 1 , say D, so $v_{D}(f)<0$. Hence $\operatorname{div}(f)$ is not effective.

Corollary. In a nonsingular projective variety, a rational function f is determined up to a constant by its divisor.
If $\operatorname{div} f=\operatorname{div} g$, then $\operatorname{div} f / g=0$, so by proposition $f / g=c \in k$.
Principal divisors form a subgroup of $\operatorname{Div}(X)$. The quotient is the class group $\mathrm{Cl}(X)=\operatorname{Div}(X) / P(X)$ (divisors modded out by principal divisors). This is an important invariant of a variety.
Two divisors are called linearly equivalent if $\operatorname{Div}\left(D_{1}\right)-\operatorname{Div}\left(D_{2}\right)=\operatorname{div}(f)$ (is prinicipal).
Example 1. Start with \mathbb{A}^{n}. What is the class group of $\mathbb{A}^{n}, \operatorname{Cl}\left(\mathbb{A}^{n}\right)$? It is 0 because on \mathbb{A}^{n} every codimension 1 subvariety is defined by a single equation and so is a principal divisor:

For $\sum_{i=1}^{m} k_{i} D_{i}$, say $D_{i}=\left(F_{i}=0\right), D=\operatorname{div}\left(F_{1}^{k} \ldots F_{m}^{k}\right)$.
Example 2. $\quad \mathrm{Cl}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$. Given a prime divisor D, we can define D as the zero locus of a single homogeneous equation: $f=F / G$ with F, G homogenous of the same degree. Define a homomorphism deg : $\left(\operatorname{Div}\left(\mathbb{P}^{n}\right)\right) \rightarrow \mathbb{Z}$ where $\sum k_{i} D_{i} \mapsto \sum k_{i} \operatorname{deg} D_{i}$. This is certainly onto. $k H \mapsto k$ (for H a hyperplane), so the kernel is precisely the principal divisors. The kernel is precisely the prinicipal divisors $\sum k_{i} \operatorname{deg} D_{i}=0$ with $D=$ $\sum k_{i} D_{i}$. Split it into 2 pieces, so

$$
D_{0}=\sum_{k_{i}>0} k_{i} D_{i} \text { and } D_{\infty}=\sum_{k_{i}<0} k_{i} D_{i} .
$$

Each D_{i} is defined by homogenous polynomials of degree D_{i}, so we have

$$
\prod_{i \in D_{0}} F_{i}^{k_{i}} / \prod_{i \in D_{\infty}} F_{i}^{k_{i}}
$$

where the numerator and denominator have the same degree, and are in $k\left(\mathbb{P}^{n}\right)$.
Example 3. $\mathrm{Cl}\left(\mathbb{P}^{n_{1}} \times \ldots \times \mathbb{P}^{n_{r}}\right) \cong \mathbb{Z}^{r}$ by a similar argument.

Lecture 28

Locally principal divisors

If X is a nonsingular variety, then every prime divisor $D \subset X$ around any point $x \in D$ can be defined by a local equation.
If $U \ni x, D$ is generated by one function. Suppose you have U_{i} and U_{j}, and we define U_{i} by f_{i} and U_{j} by f_{j}. Then we have $\operatorname{div}\left(f_{i}\right)=\operatorname{div}\left(f_{j}\right)$. What this means is if I look at f_{i} / f_{j}, then is regular on $U_{i} \cap U_{j}$ and it is everywhere non-zero.
Definition. Let $\left\{U_{i}\right\}$ be an open cover of X, and let $\left\{f_{i}\right\}$ be a compatible system of functions corresponding to the open covering $\left\{U_{i}\right\}$. Then f_{i} / f_{j} is a regular function on $U_{i} \cap U_{j}$ which is nowhere zero.
Any compatible system of funcitons defines a divisor $\sum k_{i} D_{i}$. Take an open set U_{i} such that $U_{i} \cap D_{i} \neq \emptyset$. Then $k_{i}=v_{D_{i}}\left(f_{i}\right)$. This is well defined if $U_{j} \cap D_{i} \neq \emptyset$.
Two systems of compatible functions $\left\{f_{i}, U_{i}\right\}$ and $\left\{g_{j}, V_{j}\right\}$ define the same divisor if and only if f_{i} / g_{j} is regular and nowhere zero.

Now let $\varphi: X \rightarrow Y$ be a regular map of nonsingular varieties Let $D \subset Y$ be a prime

$$
\operatorname{Pic}(X)=\frac{\text { Cartier divisors }}{\text { Principal divisors. }}
$$

Remark: \quad Suppose X is nonsingular. Then $\operatorname{Pic}(X) \cong \mathrm{Cl}(X)$ with $v_{D}(f g)=v_{D}(f)+$ $v_{D}(g)$. Also, $\operatorname{Pic}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$ and $\operatorname{Pic}\left(\mathbb{P}^{n_{1}} \times \ldots \times \mathbb{P}^{n_{r}}\right) \cong \mathbb{Z}^{r}$. How do you think about $\operatorname{Pic}\left(\mathbb{P}^{n}\right)$? If L_{1} and L_{2} are both linear forms, $f=L_{1} / L_{2}$.
Suppose X is a project variety. Then if $\mathbb{P}^{1} \rightarrow X \subset \mathbb{P}^{3} \supset L$ with

$$
(u, t) \mapsto\left(t^{4}, t^{3} u, u^{3} t, u^{4}\right)
$$

then $L \cap X$ is a divisor.
Two divisors are linearly equivalent if they differ by a principal divisor.
Definition. The Riemann-Roch space of a divisor D is $\{f \in k(X)\}$ such that

$$
D+\operatorname{dim}(f) \geq 0
$$

This is a vector space.

Lecture 29

Riemann-Roch Spaces

For \mathbb{P}^{1}, how does one characteristic polynomial of degree d, for $f \in k\left(\mathbb{P}^{1}\right)$ such that

$$
\operatorname{dim} f+d x_{\infty} \geq 0
$$

If X is a nonsingular variety, fix a divisor D so that $f \in k(X)$ with $\operatorname{div} f+D \geq 0$.
Definition. The Riemann-Roch space of D is the space of functions

$$
\mathcal{L}(D)=H^{0}\left(X, \mathcal{O}_{x}(D)\right)
$$

is the sub-vector space of $k(X)$ such that div $f+D \geq 0$.
This is an important concept in algebraic geometry, and a fundamental problem since the 19th century is:

Problem. Given a divisor D, determine $\mathcal{L}(D)$ (determine the dimension of $\mathcal{L}(D)$).
Remark: If D_{1} and D_{2} are linearly equivalent then $\ell\left(D_{1}\right)=\ell\left(D_{2}\right)$.

$$
D_{1} \sim D_{2} \Longrightarrow D_{1}-D_{2}=\operatorname{div} g
$$

If $f \in \mathcal{L}\left(D_{1}\right)$, $\operatorname{div}(f g)+D_{2}=\operatorname{div}(f)+\operatorname{div}(g)+D_{2} \geq 0$, so $g \mathcal{L}\left(D_{1}\right) \subset \mathcal{L}\left(D_{2}\right)$. So multiplication by g gives an isomorphism between the two. You can associate a dimension $\ell(D)$ for any $D \in \operatorname{Cl}(X)$.

Suppose φ is a rational map $\varphi: X \rightarrow \mathbb{P}^{n}$ (assume image of $X, \overline{\varphi(x)}$ is nondegenerate). Consider $\left(f_{0}, \ldots, f_{n}\right)$ with $f_{i} \in k(X)$. Let D_{1}, \ldots, D_{m} be finitely many divisors such that

$$
D_{i}=\sum h_{j} F_{i j} \text { with } F_{i j} \text { prime divisors. }
$$

Then the highest common divisor $\operatorname{hcd}\left(D_{1}, \ldots, D_{m}\right)=\sum_{i, j} \ell_{j} F_{i j}$ where $\ell_{j}=\min _{i}\left\{k_{i j}\right\}$.

Set $D=\operatorname{hcd}\left(\operatorname{div}\left(f_{0}\right), \ldots, \operatorname{div}\left(f_{n}\right)\right)$ with $D_{i}^{\prime}=\operatorname{div}\left(f_{i}\right)-D$.
A rational map φ fails to be regular precisely at the points $\bigcap_{i} \operatorname{supp}\left(D_{i}^{\prime}\right)$ (the base locus).
Consider the vector space generated by D_{i}^{\prime}. Say $X \subset \mathbb{P}^{n}$ is non-degenerate with $X \hookrightarrow \mathbb{P}^{n}$. Take the hyperplane H with $X \cap H \subset X$ a divisor. Consider the effective divisors on X, linearly equivalent to $X \cap H=D$. Then there is always a maximal linear algebra called the complete linear system $|D|$. All effective divisors are linearly equivalent to $X \cap H$. If $M \subset|D|$, then $\varphi: X \rightarrow \mathbb{P}(|D|)$ and $\varphi_{m}: X \rightarrow \mathbb{P} M$. Choose a basis for M, say $f_{D_{1}}, \ldots, f_{M}$. Complete to a basis of $|D|$. Every rational map $X \rightarrow \mathbb{P}^{n}$ is given by the map given by the complete linear followed by a projection.
Example. Consider $\mathbb{P}^{n} \xrightarrow{\varphi} \mathbb{P}^{m}$ with $\mathrm{Cl}\left(\mathbb{P}^{n}\right) \cong \mathbb{Z}$. The linear systems on \mathbb{P}^{n} are determined by specfiying the degree of the polynomials. So the complete linear system of deg d. We then get the Veronese map $\varphi_{\left|\mathcal{O}_{\mathbb{p}}(d)\right|}: \mathbb{P}^{n} \rightarrow \mathbb{P}\left(\left|\mathcal{O}_{\mathbb{P} n}(d)\right|\right)$. Hence every rational map (non-degenerate) is obtain by a projection of a Veronese variety.
Consider $\mathbb{P}^{1} \rightarrow X \subset \mathbb{P}^{3}$ with $(u, t) \mapsto\left(t^{4}, u^{3} t, t^{3} u, u^{4}\right)$. We get the map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{4}$ that is a rational normal curve of deg 4 and projection ($0,0,1,0,0$).

A divisor is very ample if it is the hyperplane section of X under an embedding of $X \rightarrow \mathbb{P}^{n}$ for some n. A divisor is called ample if some positive multiple is very ample.

Let X be a compact complex manifold. When is X a projectivery variety? As an example, $\wp^{\prime 2}=c \wp^{2}=a \wp+b$ where \wp is the Weierstrass \wp-function.
Remark. In higher dimensions, tyou cannot always embed X into \mathbb{P}^{n}.
Example. (Hopf surface) Look at $\mathbb{C}^{2} \backslash\{0\}$ and place the equivalence relation $\left(x_{1}, y_{1}\right) \sim$ $\left(x_{2}, y_{2}\right)$ if $\exists n \in \mathbb{Z}$ such that $\left(x_{2}, y_{2}\right)=\left(x_{1}^{n}, y_{1}^{n}\right)$.

Divisors on curves

Let X be a nonsingular projective curve. Then $D=\sum k_{i} p_{i}$ where p_{i} are points on X with $\operatorname{deg}(D)=\sum k_{i}$.

Theorem. Let $f: X-\gg Y$ be a map between non-singular projective curves. Then

$$
\operatorname{deg}(f)=[k(X): k(Y)] \text { and } \operatorname{deg}(f)=\operatorname{deg}\left(f^{*}(y)\right)
$$

for any point $y \in Y$.
Corollary. The degree of a principal divisor on any non-singular projective curve is C. Then $f \in k(X)$ defines a map $f: X \rightarrow \mathbb{P}^{1}$ with $\operatorname{div}(f)=\operatorname{div}_{0}(f)-\operatorname{div}_{\infty}(f)$, and $\operatorname{deg}(\operatorname{div}(f))=\operatorname{deg}\left(k^{*}(f(D))\right)-\operatorname{deg} f^{*}(\infty)=0$.

Lecture 30 [Shafarevich pg. 168-171]

Divisors on curves

Let X be a nonsingular curve. Then $D=\sum k_{i} p_{i}$ with $\operatorname{deg} D=\sum k_{i}$.

Theorem. If $f: X \rightarrow Y$ is a regular surjective morphism of nonsingular projective curves, then $\operatorname{deg} f=[k(X): k(Y)]=\operatorname{deg}\left(f^{*}(y)\right)$ with $k(Y) \hookrightarrow k(X)$, for any point $y \in Y$.

Corollary. The degree of a principal divisor on a nonsingular projective curve is 0 .
Proof. If $f \in k(X)$, then f gives a regular non-constant map, with $f: X \rightarrow \mathbb{P}^{1}$. Then $\operatorname{deg}(\operatorname{div}(f))=\operatorname{deg}\left(\operatorname{div}_{0}(f)\right)-\operatorname{deg}\left(\operatorname{div}_{\infty}(f)\right)=\operatorname{deg} f-\operatorname{deg} f=0$.
Under the hypothesis, $f^{*}: k(Y) \rightarrow k(X)$, identify $k(Y)$ with a subfield of $k(X)$. Given finitely many points, $x_{1}, \ldots, x_{r} \in X$, let $\widetilde{\mathcal{O}}_{x_{1}, \ldots, x_{r}}=\bigcap_{i=1}^{r} \mathcal{O}_{x_{i}}$. If $y \in Y$ and $f^{-1}(y)=\left\{x_{1}, \ldots, x_{r}\right\}$, let $\widetilde{\mathcal{O}}=\widetilde{\mathcal{O}}_{x_{1}, \ldots, x_{r}}$. Note we can identify \mathcal{O}_{y} as a subring of $\widehat{\mathcal{O}}$.
Theorem A. $\widetilde{\mathcal{O}}$ is a principal ideal domain with finitely many prime ideals. There exists elements $t_{i} \in \widetilde{\mathcal{O}}$ such that $v_{x_{j}}\left(t_{i}\right)=\delta_{i j}$. Moreover, if $u \in \widetilde{\mathcal{O}}$, then $u=t_{1}^{k_{1}} \ldots t_{r}^{k_{r}}$ such that $v_{x_{i}}(u)=k_{i}$ and v is invertible in $\widetilde{\mathcal{O}}$.
Theorem B. If $\left\{x_{1}, \ldots, x_{r}\right\}=f^{-1}(y)$, then $\widetilde{\mathcal{O}}$ is a free \mathcal{O}_{y}-module of rank $=\operatorname{deg} f=n$
Proof. (Theorem $\mathrm{A}+\mathrm{B} \Longrightarrow$ main Theorem) Let t be a local parameter at $y \in Y$. Then $t=t_{1}^{k_{1}} \ldots t_{r}^{k_{r}}, v$ where $v_{x_{i}}(t)=k_{i}$ and invertible. Then $\operatorname{deg}\left(f^{*}(y)\right)=\sum k_{i}$ since $f^{*}(y)=\sum k_{i} x_{i}$. Then t_{1}, \ldots, t_{r} are relatively prime so that $\widetilde{\mathcal{O}} /(t) \cong \bigoplus_{i=1}^{r} \widetilde{\mathcal{O}} /\left(t_{i}^{k_{i}}\right)$. Compare the dimensions as $\mathcal{O}_{y} /(t)$-modules. Then $n=\operatorname{deg} f=\sum k_{i}$. So $\operatorname{deg}\left(f^{*}(y)\right)=\operatorname{deg} f$. Observe that if D is a divisor on a nonsingular variety X and $x \in X$, then $\exists D^{\prime} \sim D$ such that $x \notin \operatorname{Supp} D^{\prime}$. (Exercise) \square
Proof. (of Theorem A) Choose local parameters u_{i} at x_{i}. Then $\operatorname{div}(u)=x_{i}+D$. If we change by linear equivalence, we can assume that $\operatorname{supp} D \nexists\left\{x_{1}, \ldots, x_{r}\right\}$. Once we choose our u_{i} as such, $v_{x_{i}}\left(u_{1}\right)=1, v_{x_{j}}\left(u_{u}\right)=0$. Set $t_{i}=u_{i}$ chosen as such. Let $u \in \widetilde{\mathcal{O}}$. Let $u \in \widetilde{\mathcal{O}}, v_{x_{i}}(u)=k_{i}$ and $w=t_{1}^{-k_{1}} \ldots t_{r}^{-k_{r}} u$. Then $v_{x_{i}}(w)=0 \forall x_{i}$ by choice of the k_{i}. Both v and v^{-1} are regular at x_{i}, with $w, w^{-1} \in \widetilde{\mathcal{O}}$. Then $u=t_{1}^{k_{1}} \ldots t_{r}^{k_{r}} w$. Finally, to check $\widetilde{\mathcal{O}}$ is a PID, let $a \in \widetilde{\mathcal{O}}$ be an ideal. Set $k_{i}=\inf _{u \in a} v_{x_{i}}(u)$. Let $\alpha=t_{1}^{k_{1}} \ldots t_{r}^{k_{r}}$. We want to say $a=\langle\alpha\rangle$. Then $u \alpha^{-1} \in \widetilde{\mathcal{O}}$ for any $u \in a$, with $a \subset\langle\alpha\rangle$. Let α^{\prime} be the set of functions $u \alpha^{-1}$ for $u \in a$. Then $\min _{u \in a^{\prime}} v_{x_{i}}(u)=0$ with $\beta=\sum u_{j} t_{i}^{k_{1}} \ldots t_{j-1}^{k_{j-1}} t_{j+1}^{k_{j+1}} \ldots t_{r}^{k_{r}}$. Then $v_{x_{i}}(\beta)=0 \forall i$. So $\beta \alpha^{-1} \in \mathcal{O}$. So $\alpha \in a$.
Proof. (of Theorem B) If $f: X \rightarrow Y$ is a finite map of curves and X is nonsingular, then X is nonsingular is given by $f^{-1}(y)=\left\{x_{1}, \ldots, x_{r}\right\}$, with $\widetilde{\mathcal{O}}=\bigcap \mathcal{O}_{x_{i}}$, where $\widetilde{\mathcal{O}}$ is a finite \mathcal{O}_{j}-module. We can assume X and Y are affine. If $A=k[X]$ and $B=k[Y]$, then since this is a finite map and A is integral over B, A is a finite B-module. We want to prove the generators of A over B give you generators of $\widetilde{\mathcal{O}}$ over \mathcal{O}. Here, $\widetilde{\mathcal{O}}=k[X] \mathcal{O}_{y}$. So let a function $\varphi \in \widetilde{\mathcal{O}}$. Take z_{i} to be the poles of φ. Then $f\left(z_{i}\right)=y_{i} \neq y$. Then $\exists h \in k[Y]$ such that $h(y) \neq 0$ and $h\left(y_{i}\right)=0$, and $\varphi h \in \mathcal{O}_{z_{i}}$. Hence, $\varphi h \in k[X]$. By construction, $h^{-1} \in \mathcal{O}_{y}$. In other words, $\varphi \in k[X] \mathcal{O}_{y}$. Hence, generators of A over B generate $\widetilde{\mathcal{O}}$ over \mathcal{O}_{y}. So then $\widetilde{\mathcal{O}}$ is a finitely generated module, so it is a direct sum of a free module \mathcal{O}_{j} and a torsion module (by the structure theorem for finitely generated
modules over a PID). The torsion module has to be zero, so $\widetilde{\mathcal{O}}$ is a free-module, say $\widetilde{\mathcal{O}} \cong\left(\mathcal{O}_{y}\right)^{m}$. Then $[k(X): k(Y)]=n=\operatorname{deg} f$ with $m \leq n$. Pick n elements that give a basis of $k(X)$ over $k(Y)$, say $\alpha_{1}, \ldots, \alpha_{n}$. We can multiply by appropriate powers of t_{i} 's to make these regular. But since they are independent over $k(Y)$, the degree has to be the dgree of the field extension.

Theorem. A nonsingular projective curve is rational $\Leftrightarrow \mathrm{Cl}^{0}(X)=0$.
Pr Ø) $32923-9()-900.42$ ß(b65(1602.258 0 Td[()321(2641 2 Tf9 .99()--1266 T6()-()-793.586()388.672]TJ/R12

Theorem. Let X be a smooth projective curve with D a divisor on X. Then

$$
\operatorname{dim} \mathcal{L}(D)=\ell(D) \leq \mathrm{g}(D)-\mathrm{g}(X)+1
$$

Theorem. $\mathcal{L}(D)$ is a finite dimensional vector space for any effective divisor D on the nonsingular projective curve X.

Prooj. If $D=D_{1}-D_{2}$ where both D_{1} and D_{2} are effective, then $\mathcal{L}(D) \subseteq \mathcal{L}\left(D_{1}\right)$, with $f \in \mathcal{L}(D)$ implying $\operatorname{div}(f)+D \geq 0$ so that $\operatorname{div}(f)+D_{1} \geq 0$. Take $D \geq 0$. Then if x is a point with multiplicity $r, \widetilde{D}=(r-1) x+(D-r x)$. Notice that $\operatorname{deg} \widetilde{D}=\operatorname{deg} D-1$ and $\widetilde{D} \geq 0$. Let t be a local parameter at x. Then for any $f \in \mathcal{L}(D), \lambda(f)=t^{r} f(x)$ is a linear function on $\mathcal{L}(D)$. What is the kernel of λ ? Well, it must be precisely $\mathcal{L}(\widetilde{D})$, fhose functions for which the order of $t^{r} f$ at $x \geq 1$. In particular, $\ell(D) \leq \ell(\widetilde{D})+1$. We can keep going so that $\ell(D) \leq \ell(0)+\operatorname{deg} D$, with $\ell(0)=1$ and $f \in k(X)$ such that $\operatorname{div}(f) \geq 0$. Thus f is regular, but all regular for a projective ariety means constant, so that $\mathcal{L}(0) \cong k$. Then $\operatorname{dim}(\mathcal{L}(D))=\ell(D) \leq \operatorname{deg} D+1$. If $X \nRightarrow P^{n}$, then in fact $\ell(D)<\operatorname{deg} D+1$. Suppose there exists D of degree 1 , then $\ell(D)=\operatorname{deg} D+1=2$. In other words, \exists a non-constant map $f \in k(X)$ with $\operatorname{div}(f)+0 \geq 0$ and $f: X \rightarrow \mathbb{P}^{1}$ with $\operatorname{deg}(f)=1$ so that both are nonsingular, proj, so $X \cong \mathbb{P}^{1}$.

Theorem. Let $\alpha_{0} \in X$ be a point on a non-singular cubic curve $X \subset \mathbb{P}^{2}$.
Exercises. (1) For $X: z y^{2}=x^{3}+a x z^{2}+b z^{3}, X$ is non-singular if and only if the discriminant $4 a^{3}-27 b^{2} \neq 0$.
(2) Given any non-singular cubic, you can make a change of variables so that it has this form (dehomogeonize): $f=f_{1}(x y)+f_{2}(x, y)+f_{3}(x, y)$. Make substitution $y=t x$ so that $f=x\left[f_{1}(1, t)+x f_{2}(1, t)+x^{2} f_{3}(1 m t)\right]$. Then complete the square, $s^{2}=p(t)$. Then send one of the roots of $p(t)$ to ∞, with $y^{2}=x^{3}+a x^{2}+b x+c$. Then $\alpha \mapsto\left[\alpha-\alpha_{0}\right] \in$ $\mathrm{Cl}^{0}(X)$ defines a 1-1 correspondence between Y and $\mathrm{Cl}^{0}(X)$. In particular, any nonsingular cubic in the plane inherits a group structure via this correlation.

Lecture 32

Nonsingular plane cubics

Theorem. Let X be a nonsingular plane cubic $\left(y^{2}=x^{3}+a x+b\right.$ with $4 a^{2}-27 b^{3} \neq 0$ and $\operatorname{char}(k) \neq 2,3$). Then we can get a map $X \xrightarrow{\varphi} \mathrm{Cl}^{0}(X)$. Fix a point α_{0} (e.g., $\left.(0,1,0)=\alpha_{0}\right)$. Then $\alpha \mapsto\left[\alpha-\alpha_{0}\right]$ defines a 1-1 correspondence between X and $\mathrm{Cl}^{0}(X)$. In particular, X inherits a group structure via this map.
Proof. Observe that $X: z y^{2}=x^{3}+a x z^{2}+b z^{3}$ is not rational as follows. Then X has an automorphism (termed the elliptic/hyperelliptic involution). Then the map

$$
(x, y, z) \stackrel{\sigma}{\mapsto}(x,-y, z)
$$

is an obvious automorphism (since $\left.y^{2}=(-y)^{2}\right)$. What are the fixed points of σ ? Well, either $y=0$, or the point $(0,1,0)$. If p is a fixed point of σ, then either $p=(0,1,0)$ or
$y=0, z=0$, and x is a root of $f(x)=x^{3}+a x+b$. The polynomial f has 3 distinct roots, so σ has 4 fixed points. If $X \cong \mathbb{P}^{1}$, then the automorphisms are given by $\mathbb{P G L}(2)$. So then any automorphism of \mathbb{P}^{1} that has more than two fixed points is the identity (since a matrix can only have two eigenvalues). So σ has four points. Then $\alpha-\alpha_{0} \sim \beta-\alpha_{0}$ means $\alpha \sim \beta$ so that $\alpha-\beta$ is principal but this is only true if and only if $\alpha=\beta$. We know the curve is not rational, because otherwise $\operatorname{div}(f)=\alpha-\beta$ with $f: X \rightarrow \mathbb{P}^{1}$ noncontinuous of degree 1 . But since X is not rational this is not possible. So $\varphi: X \rightarrow$ $\mathrm{Cl}^{0}(X)$ is injective.

Now we show surjectivity. Suppose D is an effective divisor on X, then $D \sim \alpha+k \alpha_{0}$ where $\alpha \in X$ is a point. If $\operatorname{deg} D=1$, then $k=0$ works. So we can assume $\operatorname{deg} D>1$. Using induction, assume we can do it up to $\operatorname{deg} D-1$. Then $D=$ $D^{\prime}+\beta$ gives $D \sim \alpha+\beta+k \alpha_{0}$, and it's enough to show that $\alpha+\beta \sim \gamma+\alpha_{0}$.

Then if $\delta \in L_{\alpha \beta} \cap X, f=L_{\alpha \beta} / L_{\delta \alpha_{0}}$ is a rational function on X. Also, $\alpha+\beta+\delta \sim$ $\alpha_{0}+\gamma+\delta$ where $\gamma \in L_{\delta \alpha_{0}} \cap X$. If $\alpha=\beta$, let $L_{\alpha \beta}$ be the tangent line to X at α. Let $D \in \mathrm{Cl}^{0}(X)$. Then $D=D_{1}-D_{2}$ where D_{1}, D_{2} are efficient, with $D \sim \alpha-\beta$. By what we proved, $\alpha+\alpha_{0} \sim \gamma+\beta$ (is the same thing as). Then use the result that for any effective divisor $\alpha+\alpha_{0}$ and any point, there exists a point γ such that $\alpha-\beta \sim \gamma-\alpha_{0}$.

Theorem. If D is an effective divisor on X nonsingular $\left(y^{2}=x^{3}+a x+b, 4 a^{3}-\right.$ $27 b^{2} \neq 0$), then $\ell(D)=\operatorname{deg}(D)$. Conversely, let X be a nonsingular curve such that for any effective divisor $D, \ell(D)=\operatorname{deg}(D)$. Then X can be realized as a smooth cubic in \mathbb{P}^{2}.

Proof. For two linear equivalent divisors $D \sim D^{\prime}, \ell(D)=\ell\left(D^{\prime}\right)$, we can assume $D=\alpha+k \alpha_{0}$. Since we know X is not rational, $\ell(D) \leq \operatorname{deg}(D)$. If $k=0, \ell(D)$ consists only of constants. If $k=1$, then $\ell(D)$ has a non-constant for $f(D)=2=\operatorname{deg} D$. Let $k>1$. Then it suffices to find a function $f_{k}: \mathcal{L}\left(k \alpha_{0}\right)$ such that $\operatorname{div}_{\infty} f_{k}=k \alpha_{0}$. Furthermore, $\mathcal{L}\left(k \alpha_{0}\right) \subseteq \mathcal{L}\left(\alpha+k \alpha_{0}\right)$, with $f_{k} \notin \mathcal{L}\left(\alpha-(k-1) \alpha_{0}\right)$. In other words, the
vector space $\mathcal{L}\left(\alpha+k \alpha_{0}\right)$ has dimension $\ell\left(\alpha+(k-1) \alpha_{0}\right)+1$. $=$ Pick $p X$. Then $\ell(p)=1$ constants, and $\ell(2 p)=2$ so \exists nonconstant funcitons f_{x}, and $\ell(3 p)=3$, so \exists another function with a pole of order exactly $3 p$, saya y. Then $\ell(4 p)=4$ has x^{2} as a pole. Then $\ell(5 p)=5$ has $x y$ and $\ell(6 p)=6$ has x^{3}, y^{2} as poles. So there has to be a linear relation among these functions, since we found seven functions in a seven dimensional vector space, say $\alpha y^{2}+\beta x y+\delta y=a x^{3}+b x^{2}+c x+d$. You can complete the square for y to get $y^{2}=x+a x^{2}+b x+c$.

Lecture 33

We can put a group law on $y^{2}=x^{3}+a x+b$ with disc $\neq 0$. Fix a point α_{0} with

$$
x \mapsto \mathrm{Cl}^{0}(X) \quad \text { and } \quad \alpha \mapsto\left[\alpha-\alpha_{0}\right] .
$$

To write down formulas, one lets α_{0} be the point at ∞. This means if we projectivize the curve $\left(z y^{2}=x^{3}+z^{2} a x+b z^{3}\right)$ we can write down the formule where one lets α_{0} be the point at $\infty,(0,1,0)=\alpha_{0}$. This is an inflection point of X.

Now we notice $\left[\alpha-\alpha_{0}\right]+\left[\beta-\alpha_{0}\right] \sim\left[\gamma-\alpha_{0}\right]$. Look at the line drawn between α and β on the circular component, and then it hits some δ, so draw the line between α_{0} (at infinity) and δ (this will be a vertical intersection of δ), so that we cross the curve at another point δ. But then $\alpha+\beta \sim \gamma+\alpha_{0}$ with $f=L_{\alpha \beta} / L_{\gamma \delta_{0}}$. Then

$$
\alpha \in\left(x_{1}, y_{1}\right) \in X \text { and } \beta \in\left(x_{2}, y_{2}\right) \in X,
$$

so the line $y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$ or $y=y_{1}+m\left(x-x_{1}\right)$ combined with the equation of the curve $y^{2}=x^{3}+a x+b$ give

$$
\begin{gathered}
\left(y_{1}+m\left(x-x_{1}\right)\right)^{2}=x^{2}+a x+b \\
y_{1}^{2}+m^{2}\left(x-x_{1}\right)^{2}+2 y_{1} m\left(x-x_{1}\right)=x^{3}+a x+b
\end{gathered}
$$

The coefficient of x^{2} is m^{2}, so if we plug in $x=x_{1}$ and $x=x_{2}$ we see these are roots of the equations. Then $x_{3}=m^{2}-x_{1}-x_{2}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)-x_{1}-x_{2}$. And y_{3} is determined by the euquation of the line. Since the origin $0=(0,1,0)=\alpha_{0}$, if $\alpha=\beta$, then $L_{\alpha \alpha}$ is the tangent line to X at α. Then the slope is given by $3 x^{2}+a$ (since $y^{2}=x^{3}+a x+b$) so the tangent line $y-y_{1}=\left(\frac{3 x_{1}+a}{2 y_{1}}\right)\left(x-x_{1}\right)$. Then $x_{2 p}=-\frac{\left(3 x_{1}^{2}+a\right)^{2}}{4\left(x_{1}^{3}+a x_{1}+b\right)}-2 x_{1}$. Then $p=(x, y) \mapsto(x,-y)=-p$. Notice then that addition and inversion are regular maps on $X . X$ is called a group variety.

Definition. If X is a variety together with maps $X \xrightarrow{(-1)} X$ inverse and $X \times X \rightarrow X$ multiplicative which are regular maps; these maps should satisfy the axioms of a group: \exists point $e \in X$ s.t. $e \times X \rightarrow X$ is id, $X \times e \rightarrow X$ is id, and associativity, and $X \times X \rightarrow X$ means $\left(x, x^{-1}\right) \mapsto e$. If we look at the matrix groups $G L(n), S L(n)$, $S O(n)$, etc. Then the group just defined, E, is compact, and we can see it is an abelian group. Then if X is projective and the group structure is abelian, we call X an abelian variety.

If we call the elliptic curve $E: y^{2}=x^{3}+a x+b$. Let k be a number field. Suppose E is defined over k. Then we can look at the $E(k)$ points whose coordinates $(x, y) \in E$ are in k. So $E(k)$ is a subgroup of $E(\mathbb{C})$.
If $x^{2}+y^{2}=z^{2}$ there are infinitely many rational solutions to this equation. So now consider this for $E: y^{2}=x^{3}+a x+b$. We ask the question: can you find finitely many points on E such that you can generate all points on $E(\mathbb{Q})$ by the secant and tangent method? Since E has a group structure, we can ask the same in "modern day" language: is $E(k)$ a finitely generated abelian group?

Theorem. (Mordell) $E(k)$ is finitely generated.
$E(k) \cong \mathbb{Z}^{r} \oplus$ Torsion \quad where r is the rank of the elliptic curve over K. For $k=\mathbb{Q}$, the Torsion part is fairly well understood.

Differential forms and vector bundles

Suppose f is a regular function on a variety X. Then we can form the different $d_{x} f$ at any point. We saw how to do this. What kind of object is this thing? Well, if we let $d_{x} f$ be the diff form at every $x \in X$, then $d_{x} f \in T_{x} X$. Now we introduce vector bundles to make discussion of these gadgets simpler. Let M be a differentiable manifold. Then for a C^{∞} complex vector bundle, at each point there will be an associated vector space, and these should vary differentially. So a C^{∞}-complex vector bundle is a collection of complex vector spaces for every point in M, i.e., $\left\{E_{x}\right\}_{x \in M}$, together with a C^{∞} manifold structure on $\quad E=\bigcup_{x \in M} E_{x}$. Then we have a natural projection map $\pi: E \rightarrow M$ given by $E_{x} \mapsto x$. Then (1) π is a C^{∞}-map. (2) For every $x \in M$ there is a neighborhood, $U \ni x$, and a diffeomorphism $\varphi_{U}: \pi^{-1}(U) \rightarrow U \times \mathbb{C}^{r}$ such that the map is linear on the fibers. If this is the case, then we call E a vector bundle of rank r (each of the component vector spaces has dimension r). Then φ_{U} is called a trivialization of E along $U . E_{x}$ is called the fiber of E over x.

Then on $\quad U \cap V, \quad \varphi_{U}: \pi^{-1}(U \cap V) \xrightarrow{\sim}(U \cap V) \times \mathbb{C}^{r}, \quad$ and $\quad \varphi_{V}: \pi^{-1}(U \cap V) \xrightarrow{\sim}$ $(U \cap V) \times \mathbb{C}^{r}$. Then we have what's called a transition function $g_{U V}=\varphi_{V}=\varphi_{U}^{-1}$ is a map from $U \cap V \rightarrow G L(r)$. Then $g_{U V} g_{V U}=I$ on $U \cap V$, and $g_{U V} g_{V W} g_{W U}=I$ on $U \cap V \cap W$.

Variations

Suppose M is a complex manifold. Then we can define holomorphic vector bundles on M by requiring E to be a complex manifold, π to be holomorphic, and $\varphi_{U V}$ to be holomorphic. Similarly, you can ask M to be a variety, E to be a variety, π to be a regular map, the cover to be by Zariski opens, and then we get an algebraic vector bundle of $g_{U V}$ regular maps, etc.

