
Lecture 13

Applications of "fiber dimension"

Example 1   .Lines on surfaces in �$

Theorem  A general surface in  of degree 4 contains no lines.�$ �

Note: To say that a "general" surface" has some property means: look at space of deg .
surfaces. This is parametrized by  The set of ones that do not have the property�ˆ ‰.�$

$ �"Þ
is a finite union of proper subvarieties.

  has property  should be dense Zariski-open.Y œ J − Z Jœ c d � �º�ˆ ‰.�$
$ �"

Proof  Look at the incidence variety, .\ † �œ Pß\ − "ß $ ‚ ß P © \š ›� � � � ˆ ‰.�$
$ �"

Let  be the projection to  and  to . First, we have to know that is a: "ß $ : M" #
�"† �� � ˆ ‰.�$

$

projective variety.
† � † †� � � � � �"ß $ #ß % z "ß $ is a union of affine spaces isomorphic to . Notice . An open%

affine set in  is given by subspaces of the form: span , where†� �
Î ÑÐ ÓÐ Ó
Ï Ò

Î Ñ Î ÑÐ Ó Ð ÓÐ Ó Ð Ó
Ï Ò Ï Ò

#ß % ß

" !
! "
+ -
, .

+ß ,ß -ß . − 5 5 \ © . for choice of basis in . Can also define surface  of deg  with an% w $�

equation . So then any point in  is , .J B ß B ß B ß B œ ! P > −

" � > † !
! � > † "
+ � > † -
, � > † .

� �
Î ÑÐ ÓÐ Ó
Ï Ò

! " # $
"�

P © \ Í J "ß >ß + � >-ß , � >.Ñ ´ ! > "ß >ß > ß ÞÞÞß >� �  in . Expand, collect terms, coeffs at # &

give equations. This implies  is closed subvariety M ∩ ‚ ÊŠ ‹� �% �"ˆ ‰.�$
$

M © "ß $ ‚† �� � ˆ ‰.�$
$ �" is a closed subvariety.

What else can we say? Well,  is surjective.:"
Say  is defined by . We can find polynomial  of deg  thatP − "ß $ P œ P œ ! J .†� � " #

contains . Then , where  are of deg .P J œ K P �K P K ßK . � "" " # # " #

M œ Pß\ l P © \ "ß $
: :e f � �� � Ò � Ò †
# "�"ˆ ‰.�$

$ ,   .
- Fiber of :   is transitive on lines, so we can move any line  to the one: KP $ P" � � �
defined by B œ B œ !! "

Polynomials  of deg  s.t. .J . Z J ª Z B ß B� � � �! "

J œ KB �LB K œ . � " œ L J! ", deg deg , count dimension of such .

# � K œ B K L œ B Lˆ ‰ ˆ ‰.�"�$ .�#�$
$ $ " !

w w not to overcount cases when , .Ñ

œ # � œ� �� � � � � � � �� �.�# .�" .�" . .�" . .�" .�&
' ' ' .

- Fiber of .: œ"
�"�

. .�" .�&
'

� �� �



- Now use theorem of the fibers. Since  is irreducible of dimension , by the†� �"ß $ %

theorem about fibers,  is irreducible of dim .M � $. .�" .�&
'

� �� �
We want to show that  is not surjective if . Then  will be a proper closed: . � % :# #� �M
irreducible subvariety, and we can take . To show it, just compareY œ � : M�ˆ ‰.�$

$ �" #� �
dimensions. We have dim  and  dim�ˆ ‰ � �� �� �.�$

$ �" .�$
$ '

.�$ .�# .�"œ � " œ � "ˆ ‰
M œ � $. .�" .�&

'
� �� � . We see

dim dim �ˆ ‰ � �� �� � � �� �.�$
$ �"

.�$ .�# .�" . .�" .�&
' '� M œ � " � � $ œ

� �� �.�" . �&.�'�. �&.
'

# #

� % œ . � " � % œ . � $.

Since , dim dim Theorem. . � % M + Ê�ˆ ‰.�$
$ �" �

Note:  When , there . Ÿ $ are lines on any surface.
Case . œ ":  The surface is a plane, so dim 2.M �
Case . œ #:  We have a quadric surface, so if it's smooth, we can write it as .B B œ B B! " # $

Then we could write for example a line  for  a line in  (infinite family).� �α α α>ß >ß >ß > \
Case . œ $:  We have a cubic surface, and in this case, the dimensions are equal. There
are exactly  lines on any smooth cubic surface.#(

Example 2  Study the determinental variety. Let  be the space of  matrices up toQ 7‚ 8
scale (so this will be a proj space ). Let  be the matrices in  with rank .z Q Q Ÿ 5�78�" 5

Thm Want to show that  is an irreducible variety of coimensionQ © Q5� �� �7� < 8 � < .
Proof  Let  so thatM © Q ‚ 8 � <ß 8†� �

M œ Eß l E 7‚ 8 © Ee f� �A A is a matrix of size  and ker .

Exercise   is a projective variety,   and .M M Ä Q M Ä 8� <ß 8
: :" #

†� �
-study :  Fix subspace  of dimension . If ker , get induced map.: 8 � < © E# A A

5 Î 5
E8 7A Ò .

- Dim 8 � 8 � <� �
- Space of such .z 5<7

Ö � Fibers of  are .: z#
<7�"

Ö †M M œ <7 � " � 8 � <ß7 œ <7� " � 8 � < < is irreducible and dim dim .� � � � � � � �
- General "fiber" of  p  is a single pt (dim )." !
(if  rk , then only , ker .E œ < E E − M� �
Ê : M œ <7� " � 8 � < <image  is irreducible of dim ."� � � � � �

codim� � � � � �� �: M ßQ œ 78� " � <7� " � <8 � < œ 78 � < � 8< � < œ"
# #

� �� �7� < 8 � < . �

Define  by vanishing of  minors.Q < � " ‚ < � "< � � � �
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Grassmannians

Say we have  a vector space. Want to talk about  . Say  is a basis of .Z Z / ß ÞÞÞß / Z3< " 8

Then   has as a basis: pick , then . If , then3< " = 3 3 <Z 3 + ÞÞÞ + 3 / • ÞÞÞ • / − W
" =

$

/ • / • ÞÞÞ • / œ / • ÞÞÞ • /3 3 3 3 3$ $ $� � � � � �" # < " =
sign .� �$

� � � � �+ / • + / • ÞÞÞ • + / œ + / • ÞÞÞ • /"3 3 #3 3 <3 3 34 3 3det .
" =

Grassmannians: -dim subspaces of  space ofK <ß 8 œ < Z œ < � "ß 8 � " œ� � e f � �8 †
� �<�" 8�" in .

Plücker embedding
Want to put . If  has dimension ,   has dimensionK <ß 8 Z z Z 8 Z� � � �3 3ä � �< <�"ˆ ‰8

<ˆ ‰<
8

<
" < " <. If , choose basis for : . Then send . Choosing a[ § Z [ @ ß ÞÞÞß @ A È @ • ÞÞÞ • @

different basis leads to the same point in  so the map is well defined.�� �3< Z
Say we are looking at  (in ). In general, you can not write it as/ • / � / • / Z" # $ %

#3
@ • @" #.
Remark  The Plücker embeding is injective and the image is characterized by those
elements in  that are completely decomposable.3<Z
Take  with ( ). If , then we can write , where@ − Z A l @ A − Z A • @ œ ! @ œ A • @3< w

@ − Z ? − Z Z Ä Z
¼w ‡< < <�"3 3 3. Take (the dual). Then we can extend , with

? / • ÞÞÞ • / œ �" ? / œ / • ÞÞÞ • / • / • ÞÞÞÞ • /� � � � � ��3 3 34 3 3 3 "
4�"

" < " <4�" 4�"� � � � . Then
? ¼ ? ¼ ÞÞÞ ? ¼ B • B œ ! Í B − Z" # <�"

<� �� � 3  is completely decomposable. So we get
the Plücker relations with basis  and dual basis , so we can choose/ ß ÞÞÞß / / ß ÞÞÞß /" 8 " 8

‡ ‡

: / • ÞÞÞ • / �"3 ßÞÞß3 3 3
>

" < " <
 to be the coefficient of . So then �� �

: : œ ! 3 ß ÞÞÞß 3 ß 4 ß ÞÞÞß 43 ßÞÞÞß3 4 ßÞÞÞß4 ß4 ßÞÞÞß4 " <�" " <�"" <�" " >�" >�" <�"
. This has to be true for all . Then if

we look at  (space of lines in ). Then K #ß % ´ "ß $ : : � : : � : : œ !� � � �† �$ "# $% "$ #% "% #%

so the Grassmanian of lines in   is a quadric hypersurface in .� �$ &� �� �K #ß %

Example: Let  and choose a basis of . Take span5 œ Z J œ / ß ÞÞÞß / Þ‚ 3 " 8e f
Schubert Varieties

Defined in . Pick a partition   and fix a flagK <ß 8 8 � < � � � ÞÞÞ � � !� � - - -" # <

J œ ! § J § ÞÞÞ § J œ Z" 8 . Then
� e f� � � �
-

-

3

3
J œ œ [ − K <ß 8 l [ ∩ J � 3dim .8�<�3�

Example  Look at . Then†� � � �"ß $ œ K #ß %



� e f� �"ß! # %œ [ − K #ß % l [ ∩ J � " [ ∩ J � #dim  and dim . Then
J © J © J © J" # $ % and we have a subvariety of lines that intersect a fixed line in space.� e f� �#ß! " %œ [ − K #ß % l [ ∩ J � " [ ∩ J � #dim  and dim  is the set of lines that
pass through a fixed point in space.� e f� �"ß" # $œ [ − K #ß % l [ ∩ J � " [ ∩ J � #dim  and dim  is the set of lines
contained in a fixed plane.�
#ß" œ ?

Theorem (from topology)   (cohomology). The Schubert classes given asL K <ß 8 ß‡� �� � ™
an additive basis of this cohomology as  varies over all the partitions-
8 � < � � ÞÞÞ � � !- -" < .
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Take the homogeneous coordinate ring of a closed algebraic set in ,�8

W \ œ 5 B ß ÞÞÞß B Î \� � c d � �! 8 \
and define the Hilbert function dim  with , that is, the2 7 œ W \ 7 −\ 7� � � � �

codimension of the space of homogeneous polynomials of degree  vanishing on .7 \

Last time,  if  was  points in  provided .2 7 œ . \ . 7 � . � "\
8� � �

Thm   Let  be a closed algebraic set and let  be its Hilbert function. Then \ § 2 b:�8 \ \

a polynomial such that  for  and deg dim .2 7 œ : 7 7 ¦ ! : œ \\ \ \� � � �
Bertini's Theorem

For  a general linear space, a set , and (saturation).\ ] œ \ ∩ ] œ \ ß5 A \ \ \ A� � � �� � � �
Definition   Let . The  of of\ § 5 B ß ÞÞÞß Bc d! 8 saturation

\ \œ J − 5 B ß ÞÞÞß B l J D ß ÞÞÞß D §e fc d � �! 8 ! 8
7 .

Notice  is Noetherian is equivalent to saying that  and  agree after a certain\ \ \ \Î
degree.

Proof.  (of Bertini's)  Let  where  is a collection of points,\ ∩ œ ] ]A
A œ P œ ÞÞÞ œ P œ !e f" 5 .

Then . But then\ \ \ \ \ \! " # 5
" " #œ \ § œ \ ßP § œ \ ßP ß P § ÞÞÞ § M� � � � � �� � � � � �

2 7 œ W \ Î 2 7 œ 7 ¦ !α α� � � � � �� �dim  and constant if . We want to calculate\ 7
5

2 7 W Ä W Ä W Ä !
P

\
! �" �"

7�" 7 7� �. Consider the exact sequence .α α αα

� �



Then . So then2 7 œ 2 7 � 2 7� "α α α� � � � � ��" �"

2 7� 5 œ - � 2 3α α�"

3œ7

7�5� � � �� .

Hence, by induction, it follows that  is a polynomial of degree .2 7 5\
! � �

The leading coefficient of  will be very important for us. It will define the degree: 7\� �
of the variety. In case  is a curve, . Then  is called the genus of\ : 7 œ -7� " � 1 1\� � � �
the curve .-

Example  Let  be a plane curve of deg . Then it has  of degree  with  so then- . 0 . œ 0\ � �
1 7 0 l 1 W \ is a homogeneous polynomial of degree vanishing in , and dim   is the� �7
codimension of the space of deg  polynomials divisible by . If ,  where7 0 7 � . 1 œ 02
2 7� . is homogeneous of degree . Then the dimension of the space of homogeneous
polynomials of degree  is7� .ˆ ‰ ˆ ‰ c d� �� � � �� �7�# 7�.�#

# #� œ 7� # 7� " � 7� . � # 7� . � " Î# œ
� �� � � �� � � � � � � �7�" 7�# � 7�# 7�" �. 7�# �. 7�" �. . #7�$ �.

# # #
�. �$.# # #

œ œ .7� .

Then  so that  (this is called arithmetic genus). Notice" � 1 œ œ 1�. �$.
# #

.�" .�## � �� �
. œ "ß # 1 œ ! . œ $ 1 œ " . œ % 1 œ $ implies  and  implies , and  means .�

If  is smooth over , then we can consider  as a complex manifold. Up to- -‚
homeomorphism, any such complex manifold is a sphere with  handles (like a teacup).1

Tangent spaces

Start with , want to define the tangent space at a point . As a first\ § B − \�8

approximation, let  be the union of all the tangent lines to  at .X \ \ BB

Then take say . Any line passing through ,\ � � � � � �\ œ J ß ÞÞÞß J ß B œ !ß !ß ÞÞÞß ! B" 7

P œ > − 5Þ+
> + ßÞÞÞß+� �" 8

fixed  
Then  describes. So eachJ >+ ß ÞÞÞß >+ œ J >+ ß ÞÞÞß >+ œ ÞÞÞ œ J >+ ß ÞÞÞß >+ œ !" " 8 # " 8 7 " 8� � � � � �
of these polynomials are polynomials of one variable, .J >+ œ - > �4 4 48

3� � � �# α 8

0 > œ J >+ ß ÞÞÞß J >++ " 7� � � �� � � �hcf .

Definition  The  of  with  is the multiplicity with whichmultiplicity of intersection P \+� � � � � �> � + 0 > 0 > ´ ß �∞ divides . If 0 set this mult to .+ +

P \ B P \ B #+ + is tangent to  at  if the mult. of intersection of  with  at  is at least .

\ J œ ! J œ P �K P is a hypersurface, have . Then express  where  is linear and
order . Then  (where deg  is at least K � # J >+ œ P >+ � K >+ œ >P + � K >+ > #� � � � � � � � � �
in ). The line  can be tangent to  .K >+ >+ 0 œ ! Í P + œ !� � � �
P œ ! B P œ !� � �

3œ"

8
`J
`B 3
3

. The tangent space at a point to a hypersurface .



Example  If  at , then  at  both vanish, and at .J œ C � B !ß ! œ $B !ß ! œ #C# $ #`J `J
`B `C� � � �
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A line is given by . Then hcf hcf  whereP œ >+ 0 > œ J >+ Í J >+ ß ÞÞÞß J >+t t t t+ +t t " 7� � � � � �� � � � � �
the  generate , . To say that  has contact of order  means J \ J − \ P � # >3 +t

#\ \� � � �
divides . For  a hypersurface, the Taylor expansion0 > J+t� �
 J œ P � J � ÞÞÞ#

 J >+ œ P >+ � J >+ � ÞÞÞ œ >P + � > J + � ÞÞÞt t t t t� � � � � � � � � �# #
#

P œ >+ � P + œ !t t+t  has contact of order 2 if and only if .� �
P œ ! B B œ > ß ÞÞÞß > Þt� � � � �

3œ"

8
`J
`B 3 " 8
3

. In general, the tangent space 

� � � � �
3œ"

8
`J
`B 3 3 3
3
> B � > .

If  is not a hhypersurface, the tangent space is the intersection fo all the linear spaces to\
a set of generators  of . The kernel of the matrixJ ß ÞÞÞß J \" 7 \ � �

Î Ñ
Ï Ò

Î ÑÐ Ó
Ï Ò

`J
`B

`J J
`B `B

`J `J
`B `B

3

" "

" 8

7 7

" 8

ã œ

ÞÞÞ

ã ã

ÞÞÞ

$

The local ring of  at a point , . Then the subring of the function\ B § 5 \ ³b b\ßB \ßB� �
field  such that  is regular at localization of  at the maximal ideal of0 − 5 \ 0 B Í 5 B� � c d
the point . Recall that this maximal ideal is the set of regular functions thatB 7 œ Ö\

vanish at . e.g., If  is a prime ideal, then  (thinkB× E ¨ : E ³ 0ß 1 l 0 ß 1 − Eß 1 Â :: e f� �
of it as ). But of course  if  s.t. . Add and multiply:Š ‹ � �0 0 0

1 1 1
w wœ b2 Â : 2 0 1 � 01 œ !

w

w

� � � � � �0ß 1 † 0 ß 1 œ 00 ß 11w w w w

� � � � � �0ß 1 � 0 ß 1 œ 01 � 10 ß 11w w w w w

The latter comes from .0 0 01 �10
1 1 11� œ

w w w

w w

Differential . Usual properties exist: . J œ > B � > . J � K œB 3 3 3 B
3œ"

8
`J
`B

� � � � � � �
3

. J � . K . JK œ K. J � J. K X \ œ . J œ ÞÞÞ œ . J œ !B B B B B B B " B 7, and . Then ,� � e f
with .\ � � e f\ œ J ß ÞÞÞß J" 7

Now suppose I have an arbitrary regular function . Say  is a polynomial in1 − 5 B Kc d
5 B ß ÞÞÞß B Kl œ 1 . 1 œ . K Kc d" 8 B B B such that . Then . But this is not well-defined (because 
is not uniquely determined, only up to ). Then\ � �\

K �E J � ÞÞÞ � E J œ . K � J . E � E . J" " 7 7 B 3 B 3 3 B 3�� �.



Restrict this to the tangent space. Then  is well-defined.. 1 œ . KlB B X \B

Note  ( . Hence if we change  by a constant value, then we do not change. œ ! − 5Ñ 1Bα α
. 1 1 − 7 . À 7 Ä X \B B B \ßB B

‡. Let's assume that . Then .

Theorem.  The map  is an isomorphism. [as in diff. manifolds!]. À 7 Î7 Ä X \B \ßB \ßB
# ‡

B

Proof.   Surjectivity is clear, because any linear functional on the tangent space is. Now
we just need ot look at the kernel. Any linear form on  is induced by some linearX \B
functional:

 . J œB � � � � �
3œ"

8
`J
`B 3 3 3
3
> B � >

The kernel  for  induced by some , . Then. 1 œ ! 1 K . K œ . J � ÞÞÞ � . JB B " B " 7 B 7- -
define , so that . Then Taylor expansion of  has noK œ K � J K l œ 1 K" 3 3 " B "� -

constant (none in ) or linear terms (cancelled out by each ) , so .K J K − B ß ÞÞÞß B-3 3 " " 8
#� �

So . Hence this is an isomorphism. 1 − 7\ßB
# �

Corollary.    is the space of linear functionals on .X \ 7 Î7B B B
#

Corollary.   Under an isomorphism, the tangent spaces of the corresponding points are
isomorphic.

When  is a quasiprojective variety  is a point. Choose affine\ § ß B § \�8

neighborhood . Do the same count. The closure in  does not depend on choiceB − � �8 8

of affine neighborhood.

Projective tangent space

� � � e f� �
3œ!

8
`J
`N 3 B

8α

3
B N œ ! ‚\ ª +ß B l + − X \.  .�

Look at the second projection  to  of . By the theorem on the dimension of1 �#
8\ ‚\

fibers, there is a minimal  such that all fibers of  have dimension .= � =1#

Definition.   A point  is non-singular if dim . Otherwise it's calledB − \ B œ =1#
�"� �

singular.

Theorem.  The dim dim  if  is non-singular. X \ � B œ \ BB #
�"1 � �
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Theorem.  If  is a variety, the set of singular points in  is a proper closed subvariety\ \
(possibly empty). At a non-singular point , dim dim X (in general,B − \ X \ œ ÞB

dim dim )X \ œ \B



Example.  . If one of  or  , this is a birational� � �
1# " #"

‚ ¨ B@ œ ?C Ä ® ! B C Á !e f
map (a regular map on a Zariski open set; birational because its inverse is rational).

If  and  are varieties,  is birational if and only if\ ] À 5 ] Ä 5 \:‡ � � � �
5 ] Ä 5 \µ� � � �:

.

Let  be a variety of dim . Then tr deg . Then \ 8 5 \ œ 8 5 B œ� � � �� �
5 B ß ÞÞÞß B ß B B� �" 8 8�" 8�", and  can written as a polynomial with coefficients in
5 B ß ÞÞÞß Bc d" 8 .

Two isomorphic birational varieties have isomorphic Zariski open subsets.

Cusps have local equation ; nodes have ; tacnodes have ; triple pointsB œ C BC B œ C# $ # %

have ; m-fold points have . We can associate a finer invariant:B � C B � C$ $ 7 7

Definition.   Given , it is possible to write taylor series expansionJ œ !
J œ J � J � ÞÞÞ 5 � # J œ !5 5�" 5 for . Then set . This is called the tangent cone.

Definition.     are local parameters if  and ? ß ÞÞÞß ? − ? − 7 ? ß ÞÞÞ" 8 B 3 B "b ß ?8 give a basis
of .7 Î7B B

#

Notice . The onle solution of this set of equations is ..? œ .? œ ÞÞÞ œ .? œ ! !" # 8

\ œ \ ∩ ? œ ! X \ œ X \ ∩ .? œ !3 3 B 3 B "� � � �, so 

Theorem.  If  are local parameters at ,  is non-snigular at? ß ÞÞÞß ? B \ œ \ ∩ ? œ !" 8 3 3� �
B X \ œ !, .-

α 3

Definition.   non-singular in  are transversal at  if] ß ÞÞÞß ] \ B − ]" < 3-
codim codim .X \ B 3 \ 33œ"

<

3œ"

<

B
� �- �X ] œ ]

Definition.   A formal power series  is called a Taylor series for  if F b F0 − 0 � WB 5

(the th partial sum of ) lies in .5 œ J � ÞÞÞ � J 7F ! 5 B
5�"

Theorem.  Every  has a Taylor expansion.0 − bB



Theorem.  If  is non-singular, then a function has a unique Taylor series.B − \
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From last time, we have a local system of parameters, . Then there? ß ÞÞÞß ? − 7 §" 8 B Bb
exists a formal power series expansion in the local parameters.

Theorem.  If  is non-singular, then a function has a unique Taylor series.B − \

Proof.   It suffices to show  has the zero expansion  with local parameters0 œ ! ? ß ÞÞÞß ?" 8

at . Then . Suppose it isn't . Then by a linearB J ? ß ÞÞÞß ? − 7 J œ ! !5 " 8 5B
5�"� � Ö

change, we can assume coefficient reference  is non-zero. ThenX8,
5

J X ß ÞÞÞß X œ X � K X ß ÞÞÞß X X � ÞÞÞ � K X ß ÞÞÞß X5 " 8 " " 5�" 5 " 5�"8
5 5�"

5� � � � � �α

œ ? �K ? ß ÞÞÞß ? ? � ÞÞÞ � K ? ß ÞÞÞßα 8 8
5 5�"

" " 8�" 5 "� � � �?8�" .

J ? ß ÞÞÞß ? œ ? �L ? ß ÞÞÞß ? ? � ÞÞÞ � L ? ß ÞÞÞß5 " 8 " " 8�" 5 "8 8
5 5�"� � � � � �. ?8�" .

This says any form in  can be written as a polynomial of degree  in  with7 5 ? ß ÞÞÞß ?B
5�"

" 8

coefficients in . Then . We cannot have  so7 ? � ? − ? ß ÞÞÞß ? � Â 7B " 8�" B
5
8
5� � � �α . α

then  so . Then notice � � � �. α b� − ? − X \ ¨ X \ ∩ ÞÞÞ ∩ X \�"
B B 8 B " B 8�"8

5 ? ß ÞÞÞß ?" 8�"

and . But that's a contradiction. Since  are local systems of\ œ ? œ ! ∩ \ ? ß ÞÞÞß ?3 3 " 8� �
parameters,  has only  as a solution. Then if  is a variety,  is a n-.? œ ÞÞÞ œ .? œ ! ! \ B" 8

n singular point of  implies  as an inclusion of unique Taylor seriesB 5 X ß ÞÞÞß Xb äB " 8c dc d
expansion. �

Corollary.   If  is non-singular, then there exists a unique component of  passingB − \ \
through .B

Reason:    has no zero-divisors.5 Xc dc d
In other words, a smooth and connected algebraic set is irreducible. If  and \ § X \< 8

B�
is a matrix of the form , and  is smooth if this matrix has rank .� �`0 Î`B B 8 � <3 4

Look at Sard/Bertini's Theorem.

Definition.    are 0 ß ÞÞÞß 0 −" 8 Bb local equations for  such a neighorhood of B − ] § \ B
if there is an affine neighborhood  of  with  and  and\ B 0 ß ÞÞÞß 0 − 5 B C œ C ∩ B" 7

w w wc d
M C œ 0 ß ÞÞÞß 0 5 B� � � � c dw w

" 7  in .

Definition.    An irreducible variety  of codim  has a local equation in a] § \ ""

neighborhood of a nonsingular point of .B − \

Lecture 21



Let . Having local equations for  means if affine neighborhood0 ß ÞÞÞß 0 − ] § \ b" 7 Bß\b

\ § \ B − \ 0 ß ÞÞÞß 0 − 5 \ M ] œ ] ∩ \ œ 0 ß ÞÞÞß 0 5 Bw w w w w w
" 7 " 7 with s.t.  and  in .c d � � � � c d

Theorem.   If  is nonsingular with an irreducible subvariety ofB − \ B − ] § \
codimension , then  has a local equation at ." ] B

Theorem.   If  is nonsingular, and say  is a rational map. Then the set of\ À \ Ä: �8

points    is not regular at  has codimension .e fB − \ l B � #:

Proof.   Let . Then this is not well defined when . If: À 0 À ÞÞÞ À 0 0 œ ÞÞÞ œ 0 œ !� �! 8 ! 8

1l0 3 0 œ 123 3 3 for all  then . Suppose there exists a codimension one component of the
locus where  for all . That codimension basis is defined by a local equation around0 œ ! 33

any . B �

Corollary.    Any rational map of a nonsingular curve to  (projective space)  is regular.�8

Corollary.    If two nonsingular projective curves are birational, then they are
isomorphic.

Remark.    is birational but not an isomorphism because the latter is�" # $Ä C œ B
nonsingular (  is singular on ).� �!ß ! C œ B# $

Theorem.   Let  be an affine variety and  a nonsingular point. Let  be\ B − \ ? ß ÞÞÞß ?" 8

regular functions on  that form a system of local parameters at . Then for , the\ B 7 Ÿ 8
closed subset defined by  is nonsingular at  and  in? œ ÞÞÞ œ ? œ ! B M œ ? ß ÞÞÞß ?" 7 C " 7� �
some neighborhood of . Moreover   give a system of local parameters at B ? ß ÞÞÞß ? B7�" 8

for .]

Proof.   Induction on . By previous theorem for , since  has codimension , 7 7 œ " ] " ]
has a local equation. Say  in a neighborhood of . Write  since M œ 0 B ? œ 10 ?C " "� �
vanishes on  . Then . So  is a system of local parameters at ] .? œ 1 B . 0 ? ß ÞÞÞß ? B" B " 8� �
for . Note . So if  is a nonsingular point on , . For\ 1 B Á ! B ] X œ X \ ∩ . ? œ !� � B B B "

X .? ß ÞÞÞß .? .? ß ÞÞÞß .? X ]B
‡

" 8 # 8 B,  give a basis and  give basis for . �

Theorem.   If  is a variety  a subvariety, and  with  a\ ] § \ B − ] § \ B7 8

nonsingular point of  and , then there is a locla system of parameters  at ] \ ? ß ÞÞÞß ? B" 7

and an affine neighborhood  such that  in .\ ¨ Y ® B M œ ? À ÞÞÞ À ? Y] ∩Y " 7� �
Resolution of singularities

Given  a singular variety,  can we find a model of  which is nonsingular.\ \
Furthermore, ? a nonsingular birational moprhism to , etc. You can ask for more, forb \
instance,  to be an isomoprhism between . You can even: :] � \ Ä \ �\�"ˆ ‰sing sing

reuqire that  is a simple, easily understood birational morphism.:

Theorem.   Hironaka '64   char . Wishes for the conditions in the previous� � 5 œ !
paragraph to be realized.



Normal varieties

V @ − JJ V is integrally closed if every element  (function field) which is integral over� �
V V \ 5 \ is contained in . An irreducible affine variety  is normal if  is integrally closed.c d
A quasiprojective variety is normal if every pt  has an affine neighborhood whichB − \
is normal.

Example.  We know  is not normal. We also know  and  isC œ B CÎB � B œ ! CÎB# $ #� �
integral  but not in this ring.5 Bß C Î C � Bc d � �# $

Example. Quadric cone  is singular at , but it is normal.B � C � D § !ß !ß !# # # $� � �
Lecture 22 (Chapter II.5 in Shafarevich)

V V is integrally closed if every elements of its fraction field which is integral over  is
contained in . An affine variety  is normal if  is integrally closed.V \ 5 Bc d
An affine variety  is normal if  is integrally closed. A quasiprojective variety  is\ 5 B \c d
normal if every point has a normal affine neighborhood.

Notice . This is  so  even though .C œ B � B § CÎB Â 5 - B − 5 -# $ $ #� not normal c d c d
Notice .� � � �CÎB � " � B œ !#

In , we can look at . This is certainly singular at . We can write�$ # # #B � C œ D !ß !ß !� �
every function in . Then we can write it as  where .5 ? � @D ?ß @ − 5 Bß Cc d c d�

More generally,  means we can write  with . Suppose: � :− 5 œ ? � @D ?ß @ − 5 Bß Cc d � �
? � @D 5 ? � @D 5 Bß C is integral over . Furthermore, suppose  is also integral over .c d c d�
Then write the minimal polynomial . Then .X � #?X � ? � B � C @ #? − 5 Bß C# # # # #� � c d
Hence . But then  since it means the  term is in? − 5 Bß C B � C @ − 5 Bß C Xc d � � c d# # # !

5 Bß C B � 3C B � 3C @ @ − 5 Bß Cc d � �� � c d. Then we can write . These are irreducible, so .#

Hence .: �− 5c d
Lemma.   If  is normal, then the local ring  (localization of  along ) at any\ 5 B M ]b] c d � �
irreducible variety  is integrally closed. In particular,  is integrally closed] § \ bB
aB − \.

Proof.    Let  which is integral over . Then α b α α− 5 \ � + � ÞÞÞ � + œ !� � ]
8 8�"

8

where each . But the latter means we can write  where  but+ − + œ , Î- , ß - − 5 B3 ] 3 3 3 3b
3

c d
- Â M ] . œ - - ÞÞÞ- − 5 B M ]3 " # 8� � c d � �. Then define  but not in  (because it's a prime ideal--
can't have product be in  without one of the terms being in it). ThenM ]� �
. � . � ÞÞÞ � . œ ! . œ .Î- , .α α8 8�" 8�"

" 8 3 3 3 where . Then multiply by :� �
� � � �. � . . � ÞÞÞ � . œ !α α8 8�"

" 8
w w .

So that  is clearly integral over k . Since  is integrally closed, .. \ 5 \ . − 5 \α αc d c d c d
Consider the element . Since  but , we have . Î. . ß . − 5 \ . Â M ] . Î. œ −α α α α bc d � � ]

as desired. So  is integrally closed. b] �



Lemma.   If  is an irreducible affine variety and  points,  is integrally closed,\ aB − \ bB
then  is normal.\

Proof.   Let  which is integral over . In particular,  is integral over  forα α b− 5 \ 5 B� � c d B

all . So then . Hence  is normal. B − \ − œ 5 \ \α b+ c dB−\ B �

Theorem.   A non-singular variety is normal.

Proof.   If  is non-singular, then  is a UFD. UFD's are integrally closed  ButB − \ ÞbB †

since  is integrally closed for all ,  itself must be normal.bB B − \ \

Theorem.   If  is normal and  is a codimension  subvarity, then an affine\ ] § \ " b
subset  such that and  and  is principal.\ § \ \ ∩ ] Á g ] œ \ ∩ ] 5 \w w w w wc d
Proof.    Can assume  is affine. It's enough to show that  with  (this is\ 7 œ ? ? −] ]� � b
the maximal ideal of , the localization of  at ). Suppose  withb

]
5 \ M ] 7 œ ?c d � � � �]

? œ +ß , − 5 B , Â M ] M ] œ @ ß ÞÞÞß @ M ] § 7+
, " 7 ] and  but . Suppose . Then . Soc d � � � � � � � �

@ œ ?A A − A œ - Î. - ß . − 5 \ . Â M ]3 3 3 ] 3 3 3 3 3 3 with . Then  with  and . Letb c d � �
\ œ \ � Z , ∪ Z . ∪ ÞÞÞ ∪ Z . ] œ ] ∩ \ M ] œ ?w w w

" 8� � � � � �� � � � � � . Take . Then .

Now we need to show that ... Take  and assume . But! Á 0 − 5 \ 0 − M ] §c d � � b]
of course  means  (the zero locus of ) since it vanishes at , i.e0 − M ] ] § Z 0 0 M ]� � � � � �
both are codimension ).  Then  and  (???), then " Z 0 œ ] ∪ ] ©Î ] \ œ \ � ]� � w w w

":
and . By restricting to , we can assume . Using the] ∩ \ Á g \ ] œ Z 0" � �
Nullstelensatz,  in  and  in . Let  be the minimal suchM ] § 0 5 \ 7 § 0 5� � � � c d � �5

]
5

]b

integer. Then there exists  such that , andα α α α" 5�" ] " 5ß ÞÞÞß − 7 ß ÞÞÞß Â 0� �
α α α α bÞÞÞ 7 − 0 1 œ ÞÞÞ ? œ 0Î1 ? Â5�" ] " 5�"

�"� �. Set . Then . We have  but
]

? 7 § \ ? 7 § 7�" �"
] ] ] ] ]b b. Then  normal implies  is integrally closed so . Since

b b] ] ] ]
�" is integrally closed. So  and so  is generated by . ? 7 œ 7 ? �

Some consequences of this theorem:

Theorem.   The set of singular points of a normal variety has codimension 2.�

Corollary.   Normal curves are non-singular.

Lecture 23

Last time, we did Theorem II.5.2 in Shafarevich. Two corollaries hold:

Corollary.   The set of singular points of a normal variety has codimension .� #

Proof.   Suppose  is normal with dimension dim . Let  be a dimension\ 8 œ \ W § \sing

8 � " C − W W locus in the singular locus. Then let  be a smooth point of . Then let
W œ W ∩ \ \w w w with  as in the theorem. Then we can choose a local system of parameters
W C W C ? ß ÞÞÞß ?w w

W ßC " 8�" at  with  the local ring of  at  and  a system of parameters. Thenb w

†Then , where  where  have no common factors.α α α8 8�"
" 8

?
@� ? � ÞÞÞ � ? œ ! œ ?ß @

Hence  and . Since  has no common factors it is a unit.? � ? @? � @ œ ! @ l ? @8 "
8�" 8 8



M W œ ? Î ? œ� � � � � �w
\ ßC W ßC \ ßC W ßC, so that . Notice  is the inverse image of  underb b ¦ ¦w w w w

the map natural map . So choose arbitrary images  of the localb b\ ßC W ßC " 8�"w wÄ @ ß ÞÞÞß @
parameters.  Then dim  so that  is a non-singular point of .¦\ ßC

#
\ ßCw wÎ7 Ÿ 8 C \

Corollary.   A normal curve is smooth.

Definition .   A  of an irreducible variety  is an irreducible normal varietynormalization \
\ À \ Ä \/ / so that  is defined such that  is regular, finite, and birational./ /

Theorem.   An affine irreducible variety  has an affine normalization.\

Proof.   We know . Take the integral closure  in . Then  is5 \ § 5 \ E œ 5 \ 5 \ Ec d � � c d � �
a finite module over , i.e., a finitely generated -algebra with no nilpotents. So let5 \ 5c d
E œ 5 ] ] ] 5 \ Ec d c d for  an affine variety.Then  is normal and  induces a morhphismä
] Ä \. �

Theorem.    (1) Suppose we have a map  that is finite, regular, and birational1 À ] Ä \
(for  and  affine varieties). Then there exists a regular map  such that the\ ] 2 À \ Ä ]/

diagram  is commutative.\ Ä \ Ã ] Ã \
1 2/ //

(2)  If  is regular,  is dense in  and  is normal, then there is a regular1 À ] Ä \ 1 ] \ ]� �
2 À \ Ä ] ] Ä \ Ä \ Ã ]

2 1
/ / such that the diagram  is commutative./

Corollary.    The normalization of an affine variety is unique up to isomorphism.

Proof.   Suppose we have two of them .. Then we have the diagram\ ß\/ /" #

and it is commutative by the theorem so that . \ z \/ /" # �

Proof.   (of theorem)   (1)  We have the inclusions  (since5 \ § 5 ] § 5 \ œ 5 ]c d c d � � � �
they are birational) with integral over . Then consider . Since  is5 ] 5 \ E œ 5 \ 5 ]c d c d c d c d
integral over , , so each time you have a ring homomorphism .5 \ 5 ] § E \ Ä ]c d c d /

This induces a map between the corresponding affine varieties.

(2)  Let  which is integral over  and contained in . But since? − 5 \ 5 \ 5 \ § 5 ]c d c d � � � �/

5 \ § 5 ] 5 ] ] 5 ]c d c d c d c d, it must be integral over . But since  is normal (so that  is



integrally closed) .Thus we have an inclusion  which induces a? − 5 ] 5 \ Ä 5 ]c d c d c d/

morphism . ] Ä \/ �

Theorem 1.   A quasiprojective curve  has a normalization .\ \/

Proof.   Let  be a finite, open affine cover of . By the earlier theorem, let\ œ Y \- 3

0 À Y Ä Y Y Y œ \ Y3 3 3 33 3
/ / be the normalization for each . First, notice , and  is birational

to . Set . We have a rational map  for all . Recall that  is normal\ Z œ Y Y Ä Z 3ß 4 Y4 44 3 3
/ / /

(in particular it is non-singular), so consider the map . Let  and letY Ä Z [ œ Z3 4 44
/ #

: : : : :3 34 3 3 33 3
wœ À Y Ä [ ? œ ? ß ÞÞÞ \ œ Y § [# -� � � � � �� �/ /. Then . Let . We claim

"

that  is the normalization of . Consider . Then  is a Zariski open dense\ \ Y œ Y Yw
3œ"
8

3+
subset of . Then . Notice that  consists of\ Y § Y § Y Y �\: : : :� � � � � � � �/ / / /

3 3
w

finitely many points. So then the map  is finite and birational. But we need that\ Ä \w

\ À Y Ä Y ? ß ÞÞÞß ? È ?w �"
3 3 " 8 33 3 33 is normal. First, notice . Then  has an: : :/ /� � � � � �

inverse to . Since  is normal,  is normal. :3 3
wY \/ �

Theorem 2.   The normalization of a projective curve is projective.

Corollary.     Any projective curve is birational to a smooth projective curve.

Lecture 24 - Shafarevich §II.5-6

Proposition.   [II.5.4.L] A finite map is an isomorphic embedding if0 À \ Ä ] § �8

and only if  is bijective.0

Proof.    This follows from Nakayama's lemma. First, note it suffices to assume  and \ ]
are affine. Then we have . By Nullstelensatz, since  is a bijection0 À E ] Ä E \ 0‡ c d c d
between points,  is a bijection between maximal ideals. Since ,  is0 X \ œ 8Î8 . 0‡ #

B B� �
injective, so then  is surjective.7Î7 Ä 8Î8# #

Corollary.    A bijection between  with injective differential everywhere is an0 À \ Ä ]
isomorphism.

Theorem.  [II.5.4.T1] Let  be a smooth, projective variety of dimension . Then \ 5 \
admits an embedding to .�#5�"

Corollary.    [II.5.4.C1] Let be a variety with . Suppose every line\ § : − Ï\� �8 8

passing through  either does not intersect  or intersects  at one point transversely.: \ \
Then  is an isomorphism.1 �:

8�"À \ Ä ] §

Bertini Theorems [II.6]

Theorem.    If  is a quasiprojective variety over  with char , then  is\ 5 5 œ ! 0 À \ Ä �8

a regular map. Let  be a general hyperplane in . Set . ThenL ] œ 0 L�8 �"� �
] œ \ ∩ 0 Lsing sing

�"� �.
Example.   For , note  with char .� �Bß Cß Dß Aß ? BC � DA � ? § 5 œ ## %�

Proof.   (of theorem)   Consider the universal hyperplane section

> �œ :ßL l 0 : − L § \ ‚e f � �� � � � 8 ‡



This is irreducible of dimension dim . Let  (a smooth point of\ � 8� " : − \ �\sing

\ : œ !ß !ß ÞÞÞß !ß " L œ ^ œ ! 0). Choose a coordinate such that  and . We can write � � � �!

locally, . We can write a hyperplane close to  asc d� � � � � �0 B ß 0 ß ÞÞÞß 0 B ß " L! " 8�"B
^ � ^ � ÞÞÞ � ^ œ ! 0 � 0 � ÞÞÞ � œ !! " " 8 8 ! " " 8α α > α α. This is the equation of . Then .
Since ,  is smooth at a point whose projection is a smooth point of . But`JÎ` Á ! Bα >8

� �� > > 1
18 ‡ #

#Ã §smooth . By Sard's Theorem, the general fiber of is smooth. This
concludes the proof.

Corollary.    Let  be general polynomials of degree  in  variables. J ß ÞÞÞß J . ß ÞÞÞß . 8 � "" 5 " 5

The corresponding hypersurfaces  intersect transversely. The varietyJ œ ÞÞÞ œ J œ !" 5

defined by  is nonsingular of dimension .J œ ÞÞÞ œ J œ ! 8 � 5" 5

Furthermore, , and  is called a complete intersection.M \ œ J ß ÞÞÞß J \� � � �" 5

Corollary.    Let  be a smooth projective variety of dimension . Let  be\ 5 P ß ÞÞÞß P" 5

general linear forms. Then  is smooth and the ideal of ] œ \ ∩ P œ ÞÞÞ œ P œ ! ]e f" 5

is generated by .� �� �M \ ß P ß ÞÞÞß P" 5

Remark.   This still holds in characteristic .:

Lecture 25

Degree [Shafarevich pg 143 ]�

Unlike dimension, smoothness, etc. degree is extrinsic not intrinsic.

Suppose you have a finite map  with  a finite field extension.0 À \ Ä \ 5 ] 5 \8 C � � � �ä
Then you can define deg . A notion over  of degree of a map0 œ 5 \ À 5 ]c d� � � � ‚

\ Ä ] 0 C
0

8 8 �" count # of inverse images .� �
Theorem.   If  is a finite map between irreducible varieties, and  is normal,0 À \ Ä ] ]
then the number of points # deg .0 C Ÿ 0�"� �
Proof.   If  are affine, then  is an integral extension of , and  is normal so\ß ] 5 \ 5 ] ]c d c d
that  is integrally closed. Let . Take  to be such that5 ] 0 œ B ß ÞÞÞß B + − 5 \c d e f c d�"

" 7

+ B œ ! a3 œ "ß ÞÞÞß7 + 5 ]� � c d3 . Then write the minimal polynomial of  over . If
J œ J � X � ÞÞÞ � 7 Ÿ RR R�"

" Rα α , then # .

Ramification   is unramified over  is # deg . Otherwise,  is ramified at .0 C 0 C œ 0 0 C�"� �
Theorem.   The set of ramification points of a map is open and non-empty if0
0 5 ] 5 \‡� � � �� � ä  is separable.

Proof.   Take a generating element and look at its minimal polynomial . Let deg .J 0 œ 8
Then  has the property that at each point you get aX � X � ÞÞ � C8 8�"

8�" !α α
polynomial. So then . To say  is unramified means : œ X � X � ÞÞ � 0 :8 8�"

8�" !α α
evaluated at  has no double roots. ramification points. C H : œ ! Í� � �

Remark:   Since  is a hypersurface,  is defined by a single polynomial, so we\ § \�8

can think of deg deg .\ œ J



Degree:   Let  be an irreducible (possibly quasiprojective) variety of dimension .\ § 5�8

Then the degree of  is defined by any of the following ways:\

(1)   The projection from a general linear space of dimension  gives a finite8 � 5 � "
surjective map  with deg deg deg .1 � 1 �À \ Ä \ œ œ 5 \ À 55 8� � c d� � � �
(2)   The general projection from  gives a birational map from  to the image\ Ä \�5�"

in ,  with deg deg deg of the polynomial defining .� 1 �5�" 5�"À \ Ä ] § \ œ ] œ ]

(3)   A general linear space of dimension will intersect  in finitely many points by8 � 5 \
the Bertini Theorem, so we can define deg # pts in where  is a general\ œ \ ∩ A A
linear space of dim .8 � 5

(4)   Consider the Hilbert polynomial  of . Then deg , the leading: 7 \ \ œ 5x\� �
coefficient of .: 7\� �
[...rest of lecture not understandable, didn't bother taking notes...]

Lecture 26

For a projective variety \ §5 5�

(1)    of deg  (2)   of deg hypersurface\ Ä B Ä
1 1

� 1 �5 5�"

(3) General  plane, # of int points 8 � 5 � " \ ∩ A

(4)  Hilbert polynomial of deg , the leading coeff5x

Examples.   (1)   Take . Then deg ?Veronese varieties @ @ œ. .
8 �" 8� � � �� ä � �ˆ ‰8�.

.

(2)    Consider a polynomial of deg  in  variables. If we restrictHilbert polynomial 7 ˆ ‰8�.
.

@ 8 � " 7..
8� ��  to a polynomial in  variables of deg , we have Hilbert polynomial

ˆ ‰ � � � � � �7.�8
8 8x

. 7 8œ 7. � 8 ÞÞÞ 7. � " Î8x œ � 7 <// œ .
8 .

l.o.t. in . Then deg .

Remarks:   In particular, rational normal curve of degree  has really degree . The. .
Veronese surface  has degree .@ § %#

# &� �� �

Then the -plane  for  gives aˆ ‰ˆ ‰ � �8�.
. " 3 .�"�8

8� " � 8 P œ ÞÞÞ œ P œ ! P ∩ @ˆ ‰8�.
.

�

hypersurface of degree  in . In how many points do  general hypersurfaces of deg . 8 .�8

intersect? . For each of the hypersurfaces of deg  you can take . . P œ ÞÞÞ œ P œ !8
3" 3.

(product of linear forms).

Examples.   (1)   Have , what is the degree?Segre varieties � � ä �8 7 8�" 7�" �"‚ � �� �
Have a Hilbert polynomial. A polynomial of deg  in  variables induces7 8� " 7� "� �� �
a homogeneous polynomial of bidegree  in  and  variables. Then the� � � � � �5ß 5 8 � " 7� "

Hilbert polynomial is given by : 5 œ œ œB
5�8 5�7
8 7 8x 7x

5�8 ÞÞÞ 5�" 5�7 ÞÞÞ 5�"� � ˆ ‰ˆ ‰ � � � � � � � �
5
8x7x 8x7x 8

8�7 x 8�78�7

� 5 œ 8 œ 7 œ "l.o.t. . Then degree . If , then we have indeed a� � ˆ ‰� �
quadric surface in .�$



Bezout's Theorem.    Let  be closed sets of  of pure dimension  and  (with\ß ] 5 6�8

5 � 6 � 8 ] \ ∩ ] œ \ † ]). Then X and  intersect naturally: deg deg deg . In particular,
5 � 6 œ 8 \ ] \ † ] means  and intersect at deg  deg  points.�

Suppose  and  intersect properly (dim ). Given an irreducible\ ] \ ∩ ] œ 5 � 6 � 8
component , one can associate an intersection multiplicity  of ^ § \ ∩ ] 7 \ß ] \^ � �
and  along .] ^

Bezout's Theorem (general). If  and  are closed subsets of pure dimension\ ]
intersecting properly, then deg deg deg .� � � � � � � ��\ † ] œ 7 \ß ] † ^

^§\ß]
^

 irred

Properties of :  (1)   ,   (2)  7 \ß ] 7 \ß ] œ 7 ] ß\ ® 7 \ß ] � " Í^ ^ ^ ^� � � � � � � �™
^ § \ ∩ ] 7 \ß ] œ " \ ],  (3)   if  and  intersect transverselly at general points of^ � �
™. (4)  if  and  have no common7 \ ∪\ ß ] œ 7 \ß ] �7 \ ß ] \ \^ ^ ^

w w w� � � � � �
components, and  include  properly.\ ∪\ ]w

Corollary.    If  and  are closed subsets of  intersecting properly of pure dimension\ ] �8

intersecting properly, then the deg deg deg .\ ∩ ] Ÿ \ † ]

Corollary.    Suppose  are subvarieties intersecting properly and deg\ß ] § �8

\ ∩ ] œ \ † ] \ ] \ ∩ ] deg deg . Then  and  are smooth at general points of .

Corollary.   Suppose  is a variety of degree . Then  is a linear space of\ § " \5 8�
dimension 5Þ

Proof.   (sketch) We can do this by induction on . If , pick two points 5 5 œ " : ß : − \" #

and look at all the hyperplanes containing  then the int cannot be proper, so every: ß :" #

L ® : ß : \ : ß :" # " # has to contain . But the hyperplanes containing  generate the ideal of
the line containing and .  is the line spanned by  and . Keep going for .: : \ : : 5 œ #" # " #

Pick three points on  that are not collinear. Consider hyperplanes containing .\ : ß : ß :" # $

By the case , the int  cannot be proper to . Etc. 5 œ " L ∩\ \ § L �

The Picard Group

Let  be an irreducible variety. A prime divisor on  is an irreducible codimension \ \ "
subvariety of . Then the divisor of , Div , is the free abelian group generated by\ \ \� �
prime divisors Div . Then  where and  are prime divisors onH − \ H œ - H - H� � �

3œ"
5

3 3 3 3

\ 0 − 5 \ H H. Let . Take  to be a prime divisor. Each prime divisor  determines a� �
valuation on  provided  is nonsingular in codimension 1. is5 \ \� � Assumption:   \
nonsingular in codimension ."

The valuation is the order of the zero or pole of  along . Pick open set  such0 H Y § \
that  and . Since  consists of nonsingular points,  is defined by a\ �\ H ∩ Y Á g Y Hsing

local equation around each point . Let  be the local equation of . ThenB − Y H1
0 − 5 \ b5 0 − 0 Â @ 0 œ 5c d � � � � � �. So  such that , but  so .1 15 5�"

H
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X irreducible variety nonsingular in codimension 1



A prime divisor  is an irreducible codimension 1 subvariety of .H \

Div  - free abelian group generated on prime divisor\

H œ 5 H 5 −�
3œ"

R

3 3 3 for .™

Let  ( ) and let  be a prime divisor. Then we can define (a valuation)0 − 5 \ 0 Á ! H� �
@ 0 0 H Y HH� � ("the order of zero or pole of  along "). Take  open intersecting  and
consisting only of nonsingular points of . Possibly after shrinking , we can say  has\ Y H
a local equation in  with . First assume . Then there exists say  suchY œ ! 0 − 5 \ 71 c d
that  (  divides ) but . Then define .0 − 0 0 Â @ 0 œ 7� � � � � �1 1 17 7�"

H

Observe that  with min ,@ 0 0 œ @ 0 � @ 0 @ 0 � 0 � @ 0 ß @ 0H " # H " H # H " # H " H #� � � � � � � � e f� � � �
assuming of course . So now suppose that . Then write 0 � 0 Á ! 0 − 5 \ 0 œ 1Î2" # � �
where . Then we can define . Then1ß 2 − 5 \ @ 0 œ @ 1 � @ 2c d � � � � � �H H H

    (1)  does not depend on the representation of ,L 0

    (2) It does not depend on the choice of : if  is open then is a local equationY Z § Y 1
of  also in . Take  and again that it's well-defined.H Z [ ∩ Z

Notice it does not make sense to talk about  at a point, only at a divisor.@ 0H� �
Terminology    If , we say that  has a zero of order  along . Similarly,@ 0 œ 5 e ! 0 5 HH� �
if , then we say  has a pole of order  along .@ 0 œ �5 + ! 0 5 HH� �
It's important to note these only make sense for codimension 1 subvarieties.

Given , there are finitely many prime divisors  such that . If  is0 − 5 \ H @ 0 Á ! \� � � �H

affine and , then if  is not a component of , then . But there0 − 5 \ H Z 0 @ 0 œ !c d � � � �H

are only finitely many components of . If , express  with .Z 0 − 5 \ 0 œ 1Î2 1ß 2 − 5 \� � c d
Then  unless  is a component of  or .@ 0 œ ! H Z 1 Z 2H� � � � � �
If  is a quasiprojective cover  by finitely many affines, then since in each piece there\ \
exist finitely many  with , it follows  finitely many such that .H @ 0 Á ! b H @ 0 Á !H H� � � �
So given a rational function , we can associate a divisor to it,0 Á ! − 5 \� �

div 0 œ @ 0 H� � �
H

H

Definition.   The divisor of  is called a principal divisor.0 Á ! − 5 \� �
div . The divisor of zeroes of , div . The divisor of poles of0 œ 5 H3 0 0 œ 5 H

5 e !
� �3 ! 3 3

3

0 0 œ 5 H, div .∞ 3 3
5+!

� � �
 (1)  div div div . If , div . If ,  � � � � � � � � c d0 † 0 œ 0 � 0 0 − 5 0 œ ! 0 − 5 \" # " #

         div (the divisor is effective).� �0 � !
Definition.   A divisor  is called  if  . We write  to mean� 5 H 5 � ! a3 H � !3 3 3effective
that  is effective.H



Proposition. Suppose  is irreducible and nonsingular. If 0 and if\ 0 Á − 5 \� �
div , then . In particular, if in addition  is projective and div ,� � c d0 � ! 0 − 5 \ \ 0 � !
then .0 − 5

Proof.  Suppose  is not regular at a point . Express  where .0 B − \ 0 œ 1Î2 1ß 2 − bB
Since  is nonsingular,  is a UFD. We can assume that  have no common factor.\ 1ß 2bB
Suppose  is irreducible,  but . In some neighborhood,  is irreducible and of1 1 1 1l 2 l1 ZÎ � �
codimension , say , so . Hence div  is not effective." H @ 0 + ! 0H� � � � �

Corollary.     In a nonsingular projective variety, a rational function  is determined up to0
a constant by its divisor.

If div div , then div , so by proposition .0 œ 1 0Î1 œ ! 0Î1 œ - − 5

Principal divisors form a subgroup of Div . The quotient is the class group� �\
Cl Div  (divisors modded out by principal divisors). This is an� � � � � �\ œ \ ÎT \
important invariant of a variety.

Two divisors are called linearly equivalent if Div Div div  (is� � � � � �H � H œ 0" #

prinicipal).

Example 1.    Start with . What is the class group of , Cl ? It is  because on � � � �8 8 8 8� � !
every codimension  subvariety is defined by a single equation and so is a principal"
divisor:

For , say , div .� � � � �
3œ"

7

3 3 3 3 "
5 5

75 H H œ J œ ! H œ J ÞÞÞJ

Example 2.    Cl . Given a prime divisor , we can define  as the zero locus of� �� ™8 œ H H
a single homogeneous equation:  with  homogenous of the same degree.0 œ JÎK J ßK
Define a homomorphism deg Div  where  deg . This isÀ Ä 5 H È 5 H� �� � � �� ™8

3 3 3 3

certainly onto.  (for  a hyperplane), so the kernel is precisely the principal5L È 5 L
divisors. The kernel is precisely the prinicipal divisors  deg  with � 5 H œ ! H œ3 3� . Split it into  pieces, so5 H #3 3

H œ 5 H H œ 5 H! 3 3 ∞ 3 3
5 e! 5 +!

� �
3 3

 and .

Each  is defined by homogenous polynomials of degree , so we haveH H3 3

# #„
3−H 3−H

3 3
5 5

! ∞

3 3J J

where the numerator and denominator have the same degree, and are in .5� ��8

Example 3.   Cl  by a similar argument.� �� � ™8 8 <" <‚ ÞÞÞ ‚ z
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Locally principal divisors



If  is a nonsingular variety, then every prime divisor  around any point \ H § \ B − H
can be defined by a local equation.

If ,  is generated by one function. Suppose you have  and , and we define Y ® B H Y Y Y3 4 3

by  and  by . Then we have div div . What this means is if I look at ,0 Y 0 0 œ 0 0 Î03 4 4 3 4 3 4� � � �
then is regular on  and it is everywhere non-zero.Y ∩ Y3 4

Definition.    Let  be an open cover of , and let  be a  ofe f e fY \ 03 3 compatible system
functions corresponding to the open covering . Then  is a regular function one fY 0 Î03 3 4

Y ∩ Y3 4 which is nowhere zero.

Any compatible system of funcitons defines a divisor . Take an open set  such� 5 H Y3 3 3

that . Then . This is well defined if .Y ∩H Á g 5 œ @ 0 Y ∩ H Á g3 3 3 H 3 4 33
� �

Two systems of compatible functions  and  define the same divisor if ande f e f0 ß Y 1 ß Z3 3 4 4

only if  is regular and nowhere zero.0 Î13 4

Now let  be a regular map of nonsingular varieties Let  be a prime: À \ Ä ] H § ]



Pic� �\ œ Cartier divisors
Principal divisors.

Remark:   Suppose  is nonsingular. Then Pic Cl  with \ \ z \ @ 01 œ @ 0 �� � � � � � � �H H

@ 1 œ ‚ ÞÞÞ ‚ zH
8 8 8 <� � � � � �. Also, Pic  and Pic . How do you think about� ™ � � ™" <

Pic ? If  and  are both linear forms, .� ��8 " # " #P P 0 œ P ÎP

Suppose  is a project variety. Then if  with\ Ä \ § ¨ P� �" $

� � � �?ß > È > ß > ?ß ? >ß ?% $ $ %

then  is a divisor.P ∩\

Two divisors are linearly equivalent if they differ by a principal divisor.

Definition .    The  of a divisor is  such thatRiemann-Roch space H 0 − 5 \e f� �
H� 0 � !dim .� �

This is a vector space.
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Riemann-Roch Spaces

For , how does one characteristic polynomial of degree , for  such that� �" ". 0 − 5� �
dim .0 � .B � !∞

If  is a nonsingular variety, fix a divisor  so that  with div .\ H 0 − 5 \ 0 �H � !� �
Definition.    The  of  is the space of functions Riemann-Roch spaceH

_ b� � � �� �H œ L \ß H!
B

is the sub-vector space of  such that div .5 \ 0 �H � !� �
This is an important concept in algebraic geometry, and a fundamental problem since the
19th century is:

Problem.    Given a divisor , determine  (determine the dimension of ).H H H_ _� � � �
Remark:   If  and  are linearly equivalent then .H H j H œ j H" # " #� � � �

H µ H H �H œ 1" # " #Ö div .

If , div div div , so . So0 − H 01 � H œ 0 � 1 �H � ! 1 H § H_ _ _� � � � � � � � � � � �" # # " #

multiplication by  gives an isomorphism between the two. You can associate a1
dimension  for any Cl .j H H − \� � � �
Suppose  is a rational map  (assume image of ,  is nondegenerate).: : � :À \ Ä \ B8 � �
Consider  with . Let  be finitely many divisors such that� � � �0 ß ÞÞÞß 0 0 − 5 \ H ß ÞÞÞß H! 8 3 " 7

H œ 2 J J3 4 34 34�  with  prime divisors.

Then the highest common divisor hcd  where min .� � e f�H ß ÞÞÞß H œ j J j œ 5" 7 4 34 4 3 343ß4



Set hcd div ... div  with div .H œ 0 ß ß 0 H œ 0 �H� � � �� � � �! 8 33
w

A rational map  fails to be regular precisely at the points  supp  (the base locus).: + � �3 3
wH

Consider the vector space generated by . Say  is non-degenerate with .H \ § \3
w 8 8� ä �

Take the hyperplane   with  a divisor. Consider the effective divisors on ,L \ ∩L § \ \
linearly equivalent to . Then there is always a maximal linear algebra called\ ∩L œ H
the  . All effective divisors are linearly equivalent to . Ifcomplete linear systemk kH \ ∩L
Q § H À \ Ä H À \ Ä Q Qk k � �k k, then  and . Choose a basis for , say: � : �7

0 ß ÞÞÞß 0 H \ ÄH Q
8

"
. Complete to a basis of . Every rational map  is given by the mapk k �

given by the complete linear followed by a projection.

Example.   Consider  with Cl . The linear systems on  are� � � ™ �
:

8 7 8 8Ä z� �
determined by specfiying the degree of the polynomials. So the complete linear system of
deg . We then get the Veronese map . Hence every rational. À Ä: � �k k k k� � � �b b� �8 8. .

8 ˆ ‰
map (non-degenerate) is obtain by a projection of a Veronese variety.

Consider  with . We get the map  that is� � � �" $ % $ $ % " %Ä \ § ?ß > È > ß ? >ß > ?ß ? Ä� � � �
a rational normal curve of deg  and projection . % !ß !ß "ß !ß !� � �

A divisor is  if it is the hyperplane section of  under an embedding ofvery ample \
\ Ä 8�8 for some . A divisor is called  if some positive multiple is very ample.ample

 Let  be a compact complex manifold. When is  a projectivery variety? As an\ \

example,  where  is the Weierstrass -function.k œ -k œ +k � , k kw ##

Remark.   In higher dimensions, tyou cannot always embed  into .\ �8

Example. ( ) Look at  and place the equivalence relation Hopf surface ‚# " "Ï ! B ß C µe f � �� � � � � �B ß C b8 − B ß C œ B ß C# # # #
8 8
" " if  such that .™

Divisors on curves

Let  be a nonsingular projective curve. Then where  are points on \ H œ 5 : : \� 3 3 3

with deg .� � �H œ 53

Theorem.    Let  be a map between non-singular projective curves. Then0 À \ � ¦ ]

deg  and deg deg� � c d � � � �� � � � � �0 œ 5 \ À 5 ] 0 œ 0 C‡

for any point .C − ]

Corollary.    The degree of a principal divisor on any non-singular projective curve is .G
Then  defines a map  with div div div , and0 − 5 \ 0 À \ Ä 0 œ 0 � 0� � � � � � � ��" ! ∞

deg div deg deg .� � � � � �� � � �� �0 œ 5 0 H � 0 ∞ œ !‡ ‡
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Divisors on curves

Let  be a nonsingular curve. Then  with deg  .\ H œ 5 : H œ 5� �3 3 3



Theorem.   If  is a regular surjective morphism of nonsingular projective0 À \ Ä ]
curves, then deg deg  with , for any point0 œ 5 \ À 5 ] œ 0 C 5 ] 5 \c d � � � � � �� � � � � �‡ ä
C − ] .

Corollary.    The degree of a principal divisor on a nonsingular projective curve is .!

Proof.   If , then  gives a regular non-constant map, with . Then0 − 5 \ 0 0 À \ Ä� � �"

deg div deg div deg div deg deg . � � � � � �� � � � � �0 œ 0 � 0 œ 0 � 0 œ !! ∞ �

Under the hypothesis, , identify  with a subfield of . Given0 À 5 ] Ä 5 \ 5 ] 5 \‡ � � � � � � � �
finitely many points, , let . If  andB ß ÞÞÞß B − \ œ C − ]

µ
" < B ßÞÞÞßB B3œ"

<b b
" < 3

+
0 C œ B ß ÞÞÞß B œ

µ µ s�"
" < B ßÞÞÞßB C� � e f, let . Note we can identify  as a subring of .b b b b

" <

Theorem A.    is a principal ideal domain with finitely many prime ideals. There existsb
µ

elements  such that . Moreover, if , then  such that> − @ > œ ? − ? œ > ÞÞÞ>
µ µ

3 B 3 34 "
5

<
5b $ b

4
" <� �

@ ? œ 5 @
µ

B 33
� �  and is invertible in .b

Theorem B.   If , then  is a free -module of rank deg e f � �B ß ÞÞÞß B œ 0 C œ 0 œ 8
µ

" < C
�" b b

Proof.    (Theorem A + B  main Theorem)  Let  be a local parameter at . ThenÖ > C − ]

> œ > ÞÞÞ> @ @ > œ 5 0 C œ 5"
5

<
5 ‡

B 3 3
" <

3
,  where  and invertible. Then deg  since� � � �� � �

0 C œ 5 B > ß ÞÞÞß > Î > z Î >
µ µ‡

3 3 " < 3œ" 3
< 5� � � �� 9 ˆ ‰. Then  are relatively prime so that .b b 3

Compare the dimensions as -modules. Then deg . SobC 3Î > 8 œ 0 œ 5� � �
deg deg . Observe that if  is a divisor on a nonsingular variety  and� �� �0 C œ 0 H \‡

B − \ bH µ H B Â H, then  such that Supp . (Exercise) w w �

Proof. of Theorem A   ( )  Choose local parameters  at . Then div . If we? B ? œ B �H3 3 3� �
change by linear equivalence, we can assume that supp . Once we chooseH ®Î B ß ÞÞÞß Be f" <

our  as such, , .  Set  chosen as such. Let . Let? @ ? œ " @ ? œ ! > œ ? ? −
µ

3 B " B ? 3 33 4
� � � � b

? − @ ? œ 5 A œ > ÞÞÞ> ? @ A œ !aB 5
µ
b ,  and . Then  by choice of the . BothB 3 B 3 3"

�5
<
�5

3 3
" <� � � �

@ @ B AßA − ? œ > ÞÞÞ> A
µ µ

 and  are regular at , with . Then . Finally, to check  is�" �" 5
3 "

5
<b b" <

a PID, let  be an ideal. Set inf . Let .We want to say+ − 5 œ @ ? œ > ÞÞÞ>
µ
b α3 ?−+ B "

5
<
5

3
" <� �

+ œ Ø Ù ? − ? − + + § Ø Ù
µ

α α b α α. Then  for any , with . Let  be the set of functions�" w

? ? − + @ ? œ ! œ ? > ÞÞÞ> > ÞÞÞ>α "�" 5
?−+ B 4 3 4�" 4�"

5 5 5
< for . Then min  with . Thenw

3
" 4�" 4�" <� � �

@ œ ! a3 − − +B
�"

3
� �" "α b α . So . So . �

Proof. of Theorem B   ( )  If  is a finite map of curves and  is nonsingular,0 À \ Ä ] \

then  is nonsingular is given by , with , where  is a\ 0 C œ B ß ÞÞÞß B œ
µ µ�"

" < B� � e f +b b b
3

finite -module. We can assume  and  are affine. If  and , thenb4 \ ] E œ 5 \ F œ 5 ]c d c d
since this is a finite map and  is integral over ,  is a finite -module. We want toE F E F

prove the generators of over  give you generators of  over . Here, .E F œ 5 \
µ µ
b b b bc d C

So let a function . Take  to be the poles of . Then . Then: b :− D 0 D œ C Á C
µ

3 3 3� �
b2 − 5 ] 2 C Á ! 2 C œ ! 2 − 2 − 5 \c d � � � � c d such that  and , and . Hence, . By3 D: b :

3

construction, . In other words, . Hence, generators of  over 2 − − 5 \ E F�"
C Cb : bc d

generate  over . So then  is a finitely generated module, so it is a direct sum of ab b b
µ µ

C

free module  and a torsion module (by the structure theorem for finitely generatedb4



modules over a PID). The torsion module has to be zero, so  is a free-module, sayb
µ

b b
µ
z 5 \ À 5 ] œ 8 œ 0 7 Ÿ 8 8� � c d� � � �C

7. Then deg  with . Pick  elements that give a
basis of  over , say . We can multiply by appropriate powers of 's to5 \ 5 ] ß ÞÞÞß >� � � � α α" 8 3

make these regular. But since they are independent over , the degree has to be the5 ]� �
dgree of the field extension. �

Theorem.   A nonsingular projective curve is rational Cl .Í \ œ !!� �
Proof



Theorem.    Let  be a smooth projective curve with  a divisor on . Then\ H \

dim g g ._� � � � � � � �H œ j H Ÿ H � \ � "

Theorem.    is a finite dimensional vector space for any effective divisor  on the_� �H H
nonsingular projective curve .\

Prooj.    If  where both  and  are effective, then , withH œ H �H H H H © H" # " # "_ _� � � �
0 − H 0 �H � ! 0 �H � ! H � ! B_� � � � � � implying div  so that div . Take . Then if  is"

a point with multiplicity , . Notice that deg deg < H œ < � " B � H � <B H œ H� "
µ µ� � � �

and . Let  be a local parameter at . Then for any ,  is aH � ! > B 0 − H 0 œ > 0 B
µ

_ -� � � � � �<

linear function on . What is the kernel of ? Well, it must be precisely ,_ - _� � Š ‹H H
µ

fhose functions for which the order of  at . In particular, .> 0 B � " j H Ÿ j H � "
µ< � � Š ‹

We can keep going so that deg , with  and  such thatj H Ÿ j ! � H j ! œ " 0 − 5 \� � � � � � � �
div . Thus  is regular, but all regular for a projective ariety means constant, so� �0 � ! 0
that . Then dim deg . If , then in fact_ _� � � � � �� �! z 5 H œ j H Ÿ H � " \ zÎ T 8

j H + H � " H " j H œ H � " œ #� � � �deg . Suppose there exists  of degree , then deg . In
other words,    a non-constant map  with div  and  withb 0 − 5 \ 0 � ! � ! 0 À \ Ä� � � � �"

deg  so that both are nonsingular, proj, so .� �0 œ " \ z �"

Theorem.    Let  be a point on a non-singular cubic curve .α �!
#− \ \ §

Exercises.   (1) For ,  is non-singular if and only if the\ À DC œ B � +BD � ,D \# $ # $

discriminant .%+ � #(, Á !$ #

(2)  Given any non-singular cubic, you can make a change of variables so that it has this
form (dehomogeonize):  . Make substitution  so0 œ 0 BC � 0 Bß C � 0 Bß C C œ >B" # $� � � � � �
that . Then complete the square, . Then0 œ B 0 "ß > � B0 "ß > � B 0 "7> = œ : >c d � �� � � � � �" # $

# #

send one of the roots of to , with . Then : > ∞ C œ B � +B � ,B � - È � −� � c d# $ #
!α α α

Cl  defines a 1-1 correspondence between  and Cl . In particular, any! !� � � �\ ] \
nonsingular cubic in the plane inherits a group structure via this correlation.
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Nonsingular plane cubics

Theorem.   Let  be a nonsingular plane cubic (  with \ C œ B � +B � , %+ � #(, Á !# $ # $

and char ). Then we can get a map Cl . Fix a point  (e.g.,Ð5Ñ Á #ß $ \ Ä \
:

α!
!� �� � c d!ß "ß ! œ È � " " \α α α α! !). Then  defines a -  correspondence between  and

Cl . In particular,  inherits a group structure via this map.!� �\ \

Proof.    Observe that  is not rational as follows. Then  has\ À DC œ B � +BD � ,D \# $ # $

an automorphism (termed the elliptic/hyperelliptic involution). Then the map

� � � �Bß Cß D È Bß�Cß D
5

is an obvious automorphism (since ). What are the fixed points of ? Well,C œ �C# #� � 5
either , or the point . If  is a fixed point of , then either  orC œ ! !ß "ß ! : : œ !ß "ß !� � � �5



C œ ! D œ ! B 0 B œ B � +B � , 0, , and  is a root of . The polynomial  has 3 distinct� � $

roots, so has  fixed points. If , then the automorphisms are given by GL .5 � �% \ z #" � �
So then any automorphism of  that has more than two fixed points is the identity (since�"

a matrix can only have two eigenvalues). So  has four points. Then 5 α α " α� µ �! !

means  so that  is principal but this is only true if and only if . Weα " α " α "µ � œ
know the curve is not rational, because otherwise div  with  non-� �0 œ � 0 À \ Äα " �"

continuous of degree . But since  is not rational this is not possible. So " \ À \ Ä:
Cl is injective.!� �\

Now we show surjectivity. Suppose  is an effective divisor on , thenH \
H µ � 5 − \ H œ " 5 œ !α α α! where  is a point. If deg , then  works. So we can
assume deg . Using induction, assume we can do it up to deg . Then H e " H � " H œ
H � H µ � � 5 � µ �w

! !" α " α α " # α gives , and it's enough to show that .

Then if ,  is a rational function on . Also, $ α " $− P ∩ \ 0 œ P ÎP \ � � µα" α" $α!

α # $ # α " α! � � − P ∩\ œ P \ where . If , let  be the tangent line to  at . Let$α α"!

H − \ H œ H �H H ßH H µ �Cl . Then  where  are efficient, with . By what!
" # " #� � α "

we proved,  (is the same thing as). Then use the result that for anyα α # "� µ �!

effective divisor  and any point, there exists a point  such that .α α # α " # α� � µ �! !

�

Theorem.   If  is an effective divisor on  nonsingular (H \ C œ B � +B � ,ß %+ �# $ $

#(, Á ! j H œ H \# ) , then deg . Conversely, let be a nonsingular curve such that for� � � �
any effective divisor , deg . Then  can be realized as a smooth cubic inH j H œ H \� � � �
�#.

Proof.    For two linear equivalent divisors , , we can assumeH µ H j H œ j Hw w� � � �
H œ � 5 \ j H Ÿ H 5 œ ! j Hα α!. Since we know  is not rational, deg . If ,  consists� � � � � �
only of constants. If , then  has a non-constant for deg . Let5 œ " j H 0 H œ # œ H� � � �
5 e " 0 À 5 0 œ 5. Then it suffices to find a function  such that div .5 ! ∞ 5 !_ α α� �
Furthermore, , with . In other words, the_ α _ α α _ α α� � � � � �� �5 © � 5 0 Â � 5 � "! ! 5 !



vector space  has dimension . =Pick . Then _ α α α α� � � � � �� �� 5 j � 5 � " � " :\ j : œ "! !

constants, and  so  nonconstant funcitons , and , so  anotherj #: œ # b 0 j $: œ $ b� � � �B

function with a pole of order exactly , saya . Then  has  as a pole. Then$: C j %: œ % B� � #

j &: œ & BC j ': œ ' B ß C� � � � has  and  has  as poles. So there has to be a linear relation$ #

among these functions, since we found seven functions in a seven dimensional vector
space, say . You can complete the square for  toα " $C � BC � C œ +B � ,B � -B � . C# $ #

get . C œ B � +B � ,B � -# # �

Lecture 33

We can put a group law on  with disc . Fix a point  withC œ B � +B � , Á !# $
!α

B È \ È �Cl    and .!
!� � c dα α α

To write down formulas, one lets  be the point at . This means if we projectivize theα! ∞
curve  we can write down the formule where one lets  be theÐDC œ B � D +B � ,D Ñ# $ # $

!α
point at , . This is an inflection point of .∞ !ß "ß ! œ \� � α!

Now we notice . Look at the line drawn between  and c d c d c dα α " α # α α "� � � µ �! !!

on the circular component, and then it hits some , so draw the line between  (at$ α!
infinity) and  (this will be a vertical intersection of ), so that we cross the curve at$ $
another point . But then  with . Then$ α " # α� µ � 0 œ P ÎP! α" #$!

α "− B ß C − \ − B ß C − \� � � �" " # #  and ,

so the line    or    combined with theC � C œ B � B C œ C �7 B � B" " " "
C �C
B �B
# "

# "
� � � �

equation of the curve  giveC œ B � +B � ,# $

� �� �C �7 B � B œ B � +B � ," "
# #

C �7 B � B � #C 7 B � B œ B � +B � ,"
# # $

" " "
#� � � � .

The coefficient of  is , so if we plug in  and  we see these are roots ofB 7 B œ B B œ B# #
" #

the equations. Then . And  is determined byB œ 7 � B � B œ � B � B C$ " # " # $
# C �C

B �B
ˆ ‰# "

# "

the euquation of the line. Since the origin , if , then  is the! œ !ß "ß ! œ œ P� � α α "! αα

tangent line to  at . Then the slope is given by  (since ) so\ $B � + C œ B � +B � ,α # # $

the tangent line . Then . ThenC � C œ B � B B œ � � #B" " #: "
$B �+
#C

$B �+

% B �+B �,
Š ‹� �" "

"

# #

"
$

"

� �
� �

: œ Bß C È Bß�C œ �:� � � � . Notice then that addition and inversion are regular maps on
\ \.  is called a group variety.

Definition.   If  is a variety together with maps inverse and \ \ Ä \ \ ‚\ Ä \
�" †� �

multiplicative which are regular maps; these maps should satisfy the axioms of a group:
b / − \ / ‚\ Ä \ \ ‚ / Ä \ point  s.t.  is id,  is id, and associativity, and
\ ‚\ Ä \ Bß B È / KP 8 WP 8 ß†  means . If we look at the matrix groups , � � � � � ��"

WS 8 I� �, etc. Then the group just defined, , is compact, and we can see it is an abelian
group. Then if is projective and the group structure is abelian, we call  an \ \ abelian
variety.



If we call the elliptic curve . Let  be a number field. Suppose  isI À C œ B � +B � , 5 I# $

defined over . Then we can look at the  points whose coordinates  are in5 I 5 Bß C − I� � � �
5 I 5 I. So  is a subgroup of .� � � �‚
If  there are infinitely many rational solutions to this equation. So nowB � C œ D# # #

consider this for . We ask the question: I À C œ B � +B � ,# $ can you find finitely many
points on  such that you can generate all points on  by the secant and tangentI I� ��
method?  Since  has a group structure, we can ask the same in "modern day" language:I
is  a finitely generated abelian group?I 5� �
Theorem.   ( )    is finitely generated.Mordell I 5� �
I 5 z Š < O 5 œ� � ™ �< Torsion   where is the rank of the elliptic curve over . For , the
Torsion part is fairly well understood.

Differential forms and vector bundles

Suppose  is a regular function on a variety . Then we can form the different  at any0 \ . 0B
point. We saw how to do this. What kind of object is this thing? Well, if we let  be the. 0B
diff form at every , then . Now we introduce vector bundles to makeB − \ . 0 − X \B B

discussion of these gadgets simpler. Let  be a differentiable manifold. Then for a Q G∞

complex vector bundle, at each point there will be an associated vector space, and these
should vary differentially. So a -complex vector bundle is a collection of complexG∞

vector spaces for every point in , i.e., , together with a  manifold structureQ I Ge fB B−Q ∞

on   . Then we have a natural projection map  given by .I œ À I Ä Q I È B-
B − Q

IB 1 B

Then (1)  is a -map. (2) For every  there is a neighborhood, , and a1 G B − Q Y ® B∞

diffeomorphism such that the map is linear on the fibers. If this: 1 ‚Y
�" <À Y Ä Y ‚� �

is the case, then we call  a vector bundle of rank  (each of the component vector spacesI <
has dimension ). Then  is called a of  along .  is called the fiber< I Y I:Y Btrivialization 
of  over .I B

Then on , , and Y ∩ Z À Y ∩ Z Ä Y ∩ Z ‚ À Y ∩ Z Äµ µ: 1 ‚ : 1Y Z
�" < �"� � � � � �� �Y ∩ Z ‚ 1 œ œ‚ : :< �"

YZ Z Y. Then we have what's called a  is atransition function 
map from . Then   on , and  onY ∩ Z Ä KP < 1 1 œ M Y ∩ Z 1 1 1 œ M� � YZ Z Y YZ Z [ [Y

Y ∩ Z ∩[ .

Variations

Suppose  is a complex manifold. Then we can define holomorphic vector bundles onQ
Q I ß by requiring  to be a complex manifold to be holomorphic, and  to be1 :YZ
holomorphic. Similarly, you can ask  to be a variety,  to be a variety,  to be a regularQ I 1
map, the cover to be by Zariski opens, and then we get an algebraic vector bundle of 1YZ
regular maps, etc.


