Lecture 13
Applications of "fiber dimension"

Example 1 Lines on surfaces iR2.

Theorem A general surface iB® of degree 4 contains neslin

Note: To say that a "general" surface" has sompgrtp means: look at space of dég
surfaces. This is parametrized }Bﬁﬁg)‘l. The set of tm&sdo not have the property
is a finite union of proper subvarieties.

U= {[F] e P(5")-1

V(F) has propert} should be dense Zariski-open.

<l+3)

Proof Look at the incidence variety, = {(L X) € (G(l, 3) x P51 L C X} :
d+3

Let p; be the projection t&(1,3) and i . First, we heovknow that/ is a
projective variety.

G(1,3) is a union of affine spaces isomorphicAtd . Nofige, 4) =~ G(1, 3). An open
1 0
affine set inG(2,4) is given by subspaces of the forpa 2 i , Where
b d
a,b,c,d € k for choice of basis ik* . Can also define surface 'P? of degd with an
14+t-0
: : 0+t-1 .
equationF'(xg, x1, 2, x3) = 0 . So then any pointin IS L i.c teP
b+t-d

LCX <& F(l,t,a+tc,b+td)) =0 in t. Expand, collect terms, coeffslat, t, ..., t°
give equations. This impliesl N (A4 X IP’(d?)*l) is closed subvariety:
I CG(1,3) x P(")1is a closed subvariety.

What else can we say? Well, s surjective.

SayL € G(1,3) is defined by.,; = L, =0 . We can find polynomial  of deghat
containsL . Thed' = G, L, + GoL, ,whel@,,G, are of deg 1
I={L,X)|Lcxy e, PLga,s).

- Fiber of p; : PGL(3) is transitive on lines, so we canveany lineL to the one
defined byzy = z; =0

PolynomialsF’ of deg S.Y(F) 2D V(xg,x1)

F =Gzy+ Hzxy,degG =d — 1 = dedd , count dimension of sugh

2("757) = (“75°) «— not to overcount cases whéh= z,G’' H,= zoH’

— 9d42)(d+1) _ (d+1)d(d=1) _ d(d+1)(d+5)
6 - 6 '
- Fiber ofp,

6
d(d+1)(d+5) 1
6



- Now use theorem of the fibers. Sirig€l, 3) is irrediecibf dimensiond , by the
theorem about fiberd, is irreducible of dﬁﬂw +3
We want to show thgt, is not surjectivedit> 4 . Theri/) will be a proper closed

irreducible subvariety, and we can take= p(%") -1 — p2(I) . To shipyust compare
dimensions. We have difds") 1 = (743) — 1 = @B g gpg dim
I = w + 3. We see

dimP(“)-1 _ dimI = w _q1_ w 3

(dH))(d*4+5d—6-d*-5d) _ 4 _ 711 _4—q—3

6
Sinced > 4 , diml < dinP(:")-! = Theorentd
Note Whend < 3, therare lines on any surface.
Cased = 1. The surface is a plane, sodin» 2.
Cased = 2: We have a quadric surface, so if it's smoothcarewrite it asyx; = zox3 .
Then we could write for example a lifet, ¢, at,t)  for alineX (infinite family).
Cased = 3: We have a cubic surface, and in this case, ithertsions are equal. There
are exactly27 lines on any smooth cubic surface.

Example 2 Study the determinental variety. Lt ~ be the spaEen x n matrices up to
scale (so this will be a proj spaseP™ ! ). 1M}, be tlarives inM  with rank< k.
Thm Want to show thatM; C M is an irreducible variety ofingension
(m—r)(n—r).
Proof Letl C M x G(n —r,n) so that

I ={(A,A)| Ais amatrix of sizen xn andl C ket}

Exercise I is a projective variety/ PUar ame® G(n—r,n)

-studyp, : Fix subspack of dimensior-r Al kKer igduced map.

kA A g,

-Dimn — (n—r)

- Space of sucte k"™

— Fibers ofp, arex P! |

— [ isirreducible and dimh = (rm — 1) + difs(n —r,m) = (rm—1)+ (n —r)r
- General "fiber" of p is a single pt (din ).

(if rk A=rthenonly(A , ked) eI .

= imagep; (I) is irreducible of dire&= (rm — 1) + (n — r)r

codimp,(I),M)=(mn—1)—(rm—1+rn—r})=mn—7r —nr+r? =
(m—r)(n—r).0

Define M, by vanishing ofr + 1) x (r+ 1) minors.
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Grassmannians

Say we havé” a vector space. Want to talk apdut” Saye, ..., e, is a basis df
ThenA\" V has as a basis: pigk< ... < i, ,them\..Ae; 6.4 S, , then
€isa) VAN €is) VANRA Cisyy = Slgr(é) e, N...N\e .

Z ai€; N\ Z ag;ie; N\ ... N\ Z ari€; = del(aij) €5, NN €, -

Grassmanniangy(r,n) = {r -dim subspace¥’ 6} = G(r —1,n—1) = space of
P—linprt.

Plucker embedding

Want to putG(r,n) — P(\" V) = P()-1 | IfY has dimension A’V has dimension
(I). f W" c V, choose basis fd# u,...,v, . Thensend— v; A...Av, . Choosing a
different basis leads to the same poinP{f\" V) sarthp is well defined.

Say we are looking & A es + e3 A ey (if\QV ). In general, you cahwrite it as
v1 N\ Va.

Remark The Pliucker embeding is injective and the imagsharacterized by those
elements i\"V that are completely decomposable.

Takev € A"V withw|v v € V). Ifw Av =0, then we can write=w A v , where

v € \'V. Takeu € V* (the dual). Then we can extehd/ e ANV with

ule, Ao Aey) =S (=1 ule;) = e, A e N iy Neig oy A e Then

w L (ug L ...(upy L)) Az =0 <z € A"V is completely decomposable. So we get
the Plicker relations with basis, ...,e,  and dual baSis., ¢’ so we can choose

pi,..i, to be the coefficient af;, A ... Ae; . Sothén (—1)

Divrooosiv s Piroeojitiitirnjess = 0- This has to be true for all, ..., 1, 51, ..., 5r41 . Then if

we look atG/(2,4) = G(1,3) (space of lines® ). Theppss — pi3pas + prapes = 0

so the Grassmanian of lineslth (G(2,4))  is a quadric tstpéace inP® .

Example: Let: = C and choose a basid’of . Thke- fpan., e, }.

Schubert Varieties

Defined inG(r,n) . Pick a partitiom —r > X\; > Ao > ... > A\, > 0 and fix aflag
F=0cCcF C..CF,=V.Then

> F=={WeG(r,n)|dmWnNF, i) >i}.
Ai

Example Look atG(1,3) = G(2,4) . Then



Y0 =W eG(2,4) [ dmWNF >1anddimV N Fy > 2} . Then

F, C Fy, C F3 C Fy, and we have a subvariety of lines that intersdteal line in space.
Y00 =W €G(2,4)|[dmW N F >1anddimV N F, > 2} is the set of lines that

pass through a fixed point in space.
Yo =W eG(2,4) [dmW N F > 1 and dimiV N F3 > 2} is the set of lines

contained in a fixed plane.

22,1 =7

Theorem(from topology) H*(G(r,n),Z) (cohomology). The Schubert céssgiven as
an additive basis of this cohomology)as varies alledhe partitions
n—r>XN>..>2M\>0.
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Take the homogeneous coordinate ring of a cloggebedic set i

and define the Hilbert functiorhx(m)= difi(X),  witm e N , that ishe
codimension of the space of homogeneous polynomfalegreen vanishing ok

Last time,hx(m) = d ifX wasl pointsiB" provided > d —1

Thm Let X C P" be a closed algebraic set andhlet be itsddiltunction. Therdpy
a polynomial such thdtx(m) = px(m) fon>>0 anddeg=  dikn

Bertini's Theorem

For X* a general linear space, aBet XNA ,Ad) = (Z(X),Z(A)) (satojatio

Definition LetZ C k:_[:co, .., ] . Thesaturation of of

B I ={F € klzo, ..., xn] | F(20, ..., 22)" C I}.
NoticeZ/Z is Noetherian is equivalent to saying thandZ agree after a certain
degree.

Proof. (of Bertini's) LetX N A =Y wher& is a collection dfipts,
A={L,=..=L;=0}.

Then 70 =Z(X) Cc ' = (Z(X), L)) C Z* = (Z(X), L1, Ly) C ... c I®¥), But then

h%(m) = dim(S(X)/Z%), and h*(m) = constant ifm >0 . We want to calculate

. L,
h%(m). Consider the exact sequerf® !, — S5~ — S5 — 0



Thenh®(m) = h*~1(m) — h*1(m — 1) . So then
m+k
heHm + k) = ¢+ 30 h(9).
Hence, by induction, it follows thaf,. (m) isa r;olynMIbf degreé: .
The leading coefficient gfx (m) will be very importaotr us. It will define the degree
of the variety. In cas& is acuryg(m) =cm+ (1 —g) .Then itedahe genus of

the curvec .

Example Letc be a plane curve of ddg . Then it lias ofeg withZ = (f) so then
g is a homogeneous polynomial of degnee  vanishing|ip, and dimS(X), is the
codimension of the space of deg  polynomials diesby f . Ifm > d ,g = fh where
h is homogeneous of degree— d . Then the dimensidmeagpace of homogeneous

polynomials of degreer — d is
("3%) = (") =lm +2)(m+ 1) — (m —d +2)(m —d +1)]/2 =

(m+1)(m+2)— (m+2)(m+1)+d( 2)+d(m+1)—d? _ d(2m+3) d? — dm + —d? +3d
Thenl — g = ~£3 5o thafdli =g (thisis called arithmetic genu@tldbda

d=1,2 |mpI|eSg =0 andl =3 implieg=1 ,andl=4 meaps 3 0.

If ¢ is smooth overC , then we can consider as a ptexn manifold. Up to
homeomorphism, any such complex manifold is a sphéth ¢ handles (like a teacup).

Tangent spaces

Start with X ¢ A", want to define the tangent space giomt x € X. As a first
approximation, lef, X be the union of all the tanderds toX atr .

Then takeZ (X) = (Fi, ..., Fy,), say = (0,0,...,0) . Any line passing through
L, = Mot 4 o
ThenF(tay, ..., ta,) = Fy(tay, ..., ta,) = ... = F,,(tas, ..., ta,) = 0 describes. So each
of these polynomials are polynomials of one vagab}(ta) = ¢;],, (t — ;)™ .
fa(t) = hef(Fy(ta), ..., Fi(ta)).

Definition The multiplicity of intersectionof L, with X is the multiplicity with which
(t — a) dividesf,(t) . If f,(t) = Q set this mult ter co

L, istangenttoX at if the mult. of intersection/gfwith X atx is at least .

X is a hypersurface, havE =0 . Then expréss- L + G wliere linear and
orderG > 2. ThenF'(ta) = L(ta) + G(ta) = tL(a) + G(ta) (where deg is at leaSt
in G(ta)). The lineta can be tangentfo=0 < L(a) =0

- Z%(O) x;. The tangent space at a point to a hypersuitace)

1=1



Example If F = y* — 2* at(0,0), thenZl: = 32> af0,0) both vanish, andigt= 2y
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A line is given byL; = ta . Therf;(t) = h¢F(td)) & heFi(ta), ..., F,(td)) where
the F; generatd (X) F € Z(X) . To say thag has contact of otde meanst?
divides f;(t) . ForF' a hypersurface, the Taylor expansion

F=L+F+..
F(td) = L(ta) + Fy(td) + ... = tL(@) + t?F»(@) + ...
L; = ta has contact of order 2 if and onlyZifd) = 0

L=> %(0) x;. In general, the tangent spate- (t1, ..., t,).
i=1 "

If X is not a hhypersurface, the tangent spacedstersection fo all the linear spaces to
a set of generatois,, ..., F,,, 8{X) . The kernel of the matrix

oF oF oF
' O, O,
oy e oz,

The local ring ofX at a point Qx, C k(X) . Thény,:= the subrifghe function
field f € k(X) such thatf is regular at< localizationkgf] tla maximal ideal of
the pointz . Recall that this maximal idealrisy = { the# of regular functions that
vanish atz} . e.g., Il D p is a prime ideal, thap:= {(f,g9)| f,g€ A, g ¢ p} (khin

of it as(g) ). But of coursé = L Bh¢p sk(f'g—fg)=0 .Addand mpily

y
(f,9)-(f,d)=(f,99)
(f,9)+(f,9)=(fd +af' 99)
r
5

_ fg+gf

The latter comes frongl + i

Differential ~ d,F = > 9E(t;) (z; —t;).Usual  properties  exist: d,(F + G) =
=1

d,F +d,G, andd,(FG) = Gd,F + Fd,G . Then[, X ={d, Fy = ... =d,F,, =0} ,

with Z(X) = {1, ..., Fi, }.

Now suppose | have an arbitrary regular functios k[x] Say G is a polynomial in
k[x1,...,z,] such thaG|, = ¢g . Thed,g = d,G . But this is not well-defineddause~
is not uniquely determined, only upZdX) ). Then

G+A R +...+AF,=d.G+ > (F,d,A; + Aid, F}).



Restrict this to the tangent space. THen = d.G|r, x is wedilhed.

Noted,o = 0 ¢ € k) . Hence if we change by a constant vahen wve do not change
d.g. Let's assume thgte m, .Thép:mx, — 17X

X

Theorem. The mapi, : mx,m/m?m — T*X is anisomorphism. [as in diff. manifd]d

Proof. Surjectivity is clear, because any linear fior@l on the tangent space is. Now
we just need ot look at the kernel. Any linear foom7, X is induced by some linear
functional:

The kerneld,g =0 forg induced by som& d,G = \d,F\ + ...+ \,d.F,, . Then
define G; = G — Y_ \;F;, so thatGy|, =g . Then Taylor expansion @f has no
constant (none &’ ) or linear terms (cancelledyueach\; F; ) , s@r; € (xq, ...,:cn)2

Sog € m%, . Hence this is an isomorphisim.

Corollary. T,X is the space of linear functionalsmn /m?

Corollary. Under an isomorphism, the tangent spaces of dhesponding points are
isomorphic.

When X C P" is a quasiprojective variety C X is a point. Gleoaffine
neighborhoodr € A" . Do the same count. The closui®’inoes chot depend on choice
of affine neighborhood.

Projective tangent space

> 5 (@) Ji = 0. A" x X 2 {(a,7) |a € T.X }.

=0

Look at the second projection 6 A&f x X . By the tie@o on the dimension of
fibers, there is a minimal such that all fibersreothave dimension> s

Definition. A point z € X is non-singular if dimry!(z) = s . Otherwise itslled
singular.

Theorem. The dim7, X — m;!(z) = dimX ifr is non-singular.
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Theorem. If X is a variety, the set of singular pointsXnis a proper closed subvariety
(possibly empty). At a non-singular pointe X , difiX =  diKi(in general,
dm7,X = dimX)



Example. A% x P! O {zv = uy} ™ A25 0. If one ofz ory # 0 , this is a birational
map (a regular map on a Zariski open set; biratibaeause its inverse is rational).

If X and Y are varietiesy*: k(Y) — k(X) is birational if and onlfy
P
E(Y) S k(X).

Let X be a variety of dimn . Then tr dédX)) =n . Thenz) =
k(zi,...,Tn,xn11), and x,,; can written as a polynomial with coefficgenin
k?[:l?1,...,13n].

Two isomorphic birational varieties have isomorphariski open subsets.

%, &=
oL Nnodke
el Lo w_ﬂ{/

ob e
M ra(j
ol

Cusps have local equatioft = y*> ; nodes haye ; tacnaesch = y* ; triple points
havex® — 3 ; m-fold points have™ — y™ . We can associate a fimariant:

Definition. Given F =0, it is possible to write taylor series aRrpion
F=F.+ F,+..fork>2.Thensef}; =0 . Thisis called the tangent cone

Definition.  wuy, ...,u, € O, are local parametersif € m, ang,...,u, give a basis
of m, /m2.

Notice du; = duy = ... = du,, = 0. The onle solution of this set of equatidaas).
X, =XnN (ul = O), sol, X, =T,XnN (dU1 = 0)

Theorem. If uy,...,u, are local parameters at X; = X N (u; =0)  is non-snigular at
':C) U jj(l XL = O'

Definition. Y7, ..., Y, non-singular inX are transversakat JY; if
codimy, x (J:_, T.Y:) = > codinx Y; .
i=1

Definition. A formal power serie® s called a Taylor sef@asf € O, if f — S, ®
(thek th partial sum ob = Fy + ... + F}, ) lies im*+!

Theorem. Everyf € O, has a Taylor expansion.



Theorem. If z € X is non-singular, then a function has a unidaglor series.
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From last time, we have a local system of paramsgter..., u, € m, C O, . Then there
exists a formal power series expansion in the I[paghmeters.

Theorem. If x € X is non-singular, then a function has a unidaglor series.

Proof. It suffices to showf = 0 has the zero expansign..,u,,  hVatal parameters
at x. ThenFy.(uy,...,u,) € m*' = F, =0 . Suppose it ismt . Then by a linear
change, we can assume coefficient referdrfce  izamm Then

Fk(Tl, ceny Tn) = OzTT]Zg + Gl(Tl, ...,kal)Tlf_l + ...+ Gk(Tl, ---,kal)
= auf + Gi(uy, ooy U U L+ Gy, e, U ).

Fi(ug, ooy ty) = puf + Hy(ug, ooty 1) ub ™t + o+ Hi(ug, ooty ).
This says any form im**! can be written as a polyrbmi degreet inuy, ..., u, Wwith
coefficients inm, . Thenu — a)kuﬁ € (uy,...,u,—1) .We cannot haye- o ¢ m, SO
then (u — oz)’1 €O, sout € (uy,...,u,_1) . Then notic€, X, D T, X1 N..NT, X, 1
and X; = (u; = 0) N X . But that's a contradiction. Sineg ..., u, are leyatems of
parametersju; = ... = du, =0 hasonly as a solution. Thexif Jareety,z is an-

n singular point of: implie®, — k[[T1,...,7,,]] as an inclusion ofgue Taylor series
expansionl]

Corollary. If z € X is non-singular, then there exists a unigomponent ofX passing
throughz .

Reason k[[T]] has no zero-divisors.

In other words, a smooth and connected algebrais sgeducible. If X" ¢ A" and’, X
is a matrix of the forntd f;/0z;) , and is smooth if thisthahas rank: — r .

Look at Sard/Bertini's Theorem

Definition.  fi, ..., f, € O, arelocal equationgorx € Y C X such a neighorhood af
if there is an affine neighborhood  of wifh, ..., f,, € k[2/] agd= y Nz’ and

I(y') = (f1, oy i) INK[2'].

Definition. An irreducible varietyy ¢ X! of codinl has a localuatjion in a
neighborhood of a nonsingular pointoE X

Lecture 21



Let fi,..., fm € O, x. Having local equations faf ¢ X meandif affir@ghborhood
X c Xwithx € X's.t.fy, ..., fm €E[X'] and (Y =Y N X') = (f1, ..., fm) irk[2]] .

Theorem. If z € X is nonsingular withr € Y C X an irreducible subvayiebf
codimensionl , thelr has a local equation at

Theorem. If X is nonsingular, and say: X — P" s a rational majpen the set of
points{x € X | ¢ isnotregularatf has codimensior2

Proof. Lety: (fo:...: f,). Then this is not well defined whe¢p=...=f, =0 . If
g|f; for all i thenf; = gh; . Suppose there exists a codimensio& component of the
locus wheref; = 0 for all . That codimension basis i&n@e by a local equation around
anyz .1

Corollary. Any rational map of a nonsingular curvefto  [pctive space) is regular.

Corollary. If two nonsingular projective curves are birational, then they are
isomorphic.

Remark A! — ¢? = 2% is birational but not an isomorphism because latter is
nonsingular (0,0) is singular oyt = 2* ).

Theorem. Let X be an affine variety ande X  a nonsingulanpdietu,, ..., u, be
regular functions oX that form a system of locaigmeters at . Then far < n , the

closed subset defined by = ... = u,, =0 is nonsingulag at Bnd (ui,...,u,) N i
some neighborhood af . Moreovey, 1, ..., u, give a systerocd! parameters at
forY.

Proof. Induction onm . By previous theorem far=1 , sin€das codimension Y
has a local equation. Sdy = (f) in a neighborhood: of riteW,; = gf sinceu,
vanishes onY . Thedu; = g(z)d.f . 80...,u, is a system of local pasmatz
for X. Noteg(x) # 0. So ifz is a nonsingular point &h 7, =T, X Nd,u; =0 arF
T*, duy, ..., du, give a basis andus,, ..., du,,  give basis 1oy OI.

Theorem. If X is a variety” C X" a subvariety, ande Y C X with a
nonsingular point ot and , then there is a logistean of parameters,, ..., u,, at
and an affine neighborhooXl D U >«  such thagty = (ug : ... : wy,)  Uin

Resolution of singularities

Given X a singular variety, can we find a model ®f which is nonsingular.

Furthermored ? a nonsingular birational moprhisnXtcetc. You can ask for more, for
instance to be an isomoprhism betwéer ¢! (X5"9) — X — X9 You wen e
reuqire thatp is a simple, easily understood lmreti morphism.

Theorem. (Hironaka'64 chak =0 . Wishes for the conditionstlie previous
paragraph to be realized.



Normal varieties

R is integrally closed if every elementc F'/F(R)  (functigeld) which is integral over
R is contained il . An irreducible affine variety niermal ifk[X] is integrally closed.
A quasiprojective variety is normal if every ptc X shan affine neighborhood which
is normal.

Example. We knowy? = z* is not normal. We also kndw/z)* —z =0  apt is
integralk[z, y]/(y* — z*) but not in this ring.

Example. Quadric cone? + % + 22 C A® is singular @, 0,0) , but it is normal.
Lecture 22 (Chapter I1.5 in Shafarevich)

R is integrally closed if every elements of its fran field which is integral oveRR is
contained ink . An affine varietf  is normakifz] irgegrally closed.

An affine varietyX is normal ik[z] is integrally cled. A quasiprojective variet{ is
normal if every point has a normal affine neighwath.

Notice 3? = 2® + 23 C A%. This isnot normal soy/x ¢ k[c] even thoughe k[c]
Notice (y/z)*> — (1 +z) = 0.

In A3, we can look at? + y* = 22 . This is certainly singular(@t0,0). We can write
every function ink[Q] . Then we can write itas- vz where € k[z, y].

More generallyyp € k[Q] means we can wrjte= v + vz Withv € k(z,y) . Suppose
u+ vz is integral overk[Q] . Furthermore, suppase vz is afdegral ovek|x,y| .
Then write the minimal polynomidl™ — 2uT + u? — (2 + y*)v* . Thehu € k[, y]
Henceu € k[z,y] . But thenz? + y?)v? € k[z,y] since it means thé  term is in
k[z,y]. Then we can writdx + iy)(x — iy)v?> . These are irreducible,vse k[x, y]
Hencep € £[Q)] .

Lemma. If X is normal, then the local rin@y  (localizatiof k[z| alongl(Y') ) at any
irreducible varietyY C X is integrally closed. In pattiar, O, is integrally closed
Vo € X.

Proof. Let o € k(X) which is integral ove®r . Thew® +aa" '+ ..+ a, =0

where eaclu; € Oy . But the latter means we can wyfite b;/c, ravhec; € k[z] but
¢ ¢ I(Y). Then definel = c¢ycs...c, € k[z] butnotifi(Y) (because it's a prineald

cant have product be ind(Y) without one of the tertbing in it). Then
da™ + dia" ' + ... + d, = 0 whered; = (d/c;)b; . Then multiply by"!

(do)" + d}(da)" " + ...+ d, = 0.

So thatda is clearly integral overfX] . SinggX] is gnedly closed,do € k[X] .
Consider the elemendin/d . Sinde, d € k[X] kW I(Y) ,wehdwgd =ac Oy
as desired. S@y s integrally closédi.



Lemma. If X is an irreducible affine variety at € X  point3, is integrally closed,
thenX is normal.

Proof. Leta € k(X) which is integral ovét{z] . In particular, imgegral ovelO, for
allz € X. So therv € (N, xO, = k[X] . Henc& is normal.

Theorem. A non-singular variety is normal.

Proof. If z € X is non-singular, thei®, is a UFD. UFD's are guidly closed. But
sinceO, is integrally closed for alle X X itself mis& normal.

Theorem. If X is normal andY” C X is a codimensian subvaribhgn3 an affine
subsetX’ ¢ X suchthat’'NY #0 and =X'NY  abd’] is principal.

Proof. Can assum& is affine. It's enough to showwtha= (u) withu € Oy (this is
the maximal ideal ofD, , the localization &fX] AtY) Jupposemy = (u) with
u = ¢ anda,b € k[z] butb ¢ I(Y) . SupposkY’) = (vi,...,v,) . ThéY) Cmy .So
X =X—- (V) UV(d)U..UuV(d,)). TakeY' =Y N X . Thed (Y') = (u) .
Now we need to show that ... Taket f € k[X]|  and assfirael(Y) C Oy . But

of coursef € I(Y) mean¥ C V(f) (the zero locusfof ) since itshas at/(Y') , i.e
both are codimensioh ). Thén(f) =Y UY’  apdlY’ (??7?), then= X — Y’

and YNX; #0. By restricting toX , we can assumé= V(f) . Using the
Nullstelensatz](Y)" c (f) ik[X] anehl C (f) i@y .Lét be the minirath
integer. Then there existsyy,...,a;_1 € my such that, ..., ¢ (f) , and

a...ap_1my € (f). Set g=aj..a_1. Thenu=f/g . We have, ! ¢ O, but
u 'my C Oy. ThenX normal implie®y is integrally closed®0'my C my inc®
Oy is integrally closed. So~!'my = Oy and 8o, is generated. thy

Some consequences of this theorem:
Theorem. The set of singular points of a normal variety badimension> 2.

Corollary. Normal curves are non-singular.

Lecture 23
Last time, we did Theorem 11.5.2 in Shafarevich.oleorollaries hold:
Corollary. The set of singular points of a normal variety begimension> 2 .

Proof. SupposeX is normal with dimensior=  dikn . Ket XS"9  aldimension
n — 1 locus in the singular locus. Then det S be a smqumtint of S. Then let
S’ =S5 n X’ with X’ as in the theorem. Then we can choose a $ystem of parameters
S" aty withOg , the local ring o’ a and,...,u,—; a systenpafameters. Then

TThena” + uja™ '+ ...+ u, = 0, wherex = % where,v have no common factors.
Henceu,, + ujvu™ ! +v" =0 and |u" . Since has no common factors it isita u



I(S") = (u), so thatOx, /(u) = Og, . Noticeny, is the inverse imagewyf , under
the map natural mafx, — Og, . So choose arbitrary images., v, f theolocal
parameters. Then dingy/m;,y <n sothat isanon-singuantofX.

Corollary. A normal curve is smooth.

Definition. A normalizationof an irreducible variet  is an irreducilslermal variety
X" sothat : X — X is defined such that is regular, firatied birational.

Theorem. An affine irreducible varietX’ has an affine madization.

Proof. We knowk[X] C k(X) . Take the integral closute= k[X]| FkifX) . Thers

a finite module ovek[X] , i.e., a finitely generate@dlgebra with no nilpotents. So let
A = k[Y] for Y an affine variety.Thely is normal ahdX] — A  induieemorhphism
Y - X. O

Theorem. (1) Suppose we have a mapY — X that is finite, mgaind birational

(for X andY affine varieties). Then there existegutar mag : X” — Y such that the

diagramX” Y x g Y b X" is commutative.

(2) fg:Y — X isregularg(Y) isdense i afd is norntlaén there is a regular
h : X — Y such that the diagraim LA x4 x g Y is commutative.

Corollary. The normalization of an affine variety is uniqugto isomorphism.

Proof. Suppose we have two of thex, X*> .. Then we havdidgram

><‘l
/ L\a

gl 85
7«
Vi,
Y

and it is commutative by the theorem so thiét ~ X [1 .
Proof. (of theorem) (1) We have the inclusignX] C k[Y] C k(X) = k(Y) ndcsi

they are birational) witk[Y] integral ovéfX] . Then ddesA = k[X]. Sincek[Y] is
integral overk[X] k[Y] C A , so each time you have a ring hoorphismX” — Y .

This induces a map between the corresponding affineties.

(2) Letu € k[X"] which is integral ovef[X] and contained:{X) C k(Y"). But since
kE[X] C k[Y], it must be integral ovek[Y] . But sindé is normal (hat k[Y] is



integrally closed)u € k[Y] .Thus we have an inclusiX”] — k[Y] \Wwhieduces a
morphismY — X" [1

Theorem 1. A quasiprojective curv& has a normalization

Proof. LetX =|JU; be a finite, open affine cover &f . By tharlier theorem, let
fi : U/ — U; be the normalization for ea¢h . First, notice= X dH_g"( is birational

to X. SetV; = U_j” . We have arational még — V;  foriafl . RettatU;” is normal
(in particular it is non-singular), so consider thapU; — V; . LetlW = HJ.V]- and let
©; = [[wij : U — W. Theng;(u) = (i, (u),...) . LetX’ = Jp:i(U}) C W . We claim
thatX’ is the normalization of . Considér=(\;_, U; . THén a Bariski open dense
subset of X . Thenp(U") C ¢;(U}) C ¢(U¥) . Notice that(U”) — X’  consists of
finitely many points. So then the mag — X s finitaddirational. But we need that
X' is normal. First, noticep; : UY — ;(U?) . Thefu,...,u,) — @i (u;) has an
inverse tap; . Sinc&? is norma; is nornial.

Theorem 2. The normalization of a projective curve is pobijee.

Corollary. Any projective curve is birational to a smogptijective curve.

Lecture 24 - Shafarevich 811.5-6

Proposition. [l.5.4.L] A finite mapf: X — Y C P" is an isomorphic embeddi if
and only iff is bijective.

Proof. This follows from Nakayama's lemma. First,enttsuffices to assum&  amd
are affine. Then we havg* : A[Y] — A[X] . By Nullstelensatz, sifices a bijection
between pointsf* is a bijection between maximaalisleSincel, X = (n/n?) d,f is
injective, so themn/m? — n/n? is surjective.

Corollary. A bijection betweerf : X — Y  with injective differentialerywhere is an
isomorphism.

Theorem. [I1.5.4.T1] Let X be a smooth, projective varieif dimensionk . ThenX
admits an embedding &+ +!

Corollary.  [I1.5.4.C1] Let X C P" be a variety withp € P"\X . Suppose gvéne
passing throughp either does not inters€ct  orgatgsX at one point transversely.
Thenr,: X — Y c P"! is an isomorphism.

Bertini Theorems [11.6]

Theorem. If X is a quasiprojective variety over with clia= 0, thenf : X — P" is
a regular map. Letd be a general hyperplanePin t Se- f~}(H). Then
Y:sing — Xsingm fﬁl(H)-

Example. For(z,y, z, w,u), notery + zw — u> C P* with chak = 2
Proof. (of theorem) Consider the universal hyperplsection
I'={(p,H)| f(p) € H} C X x (P")°



This is irreducible of dimension ditX +n —1 . Lpte X — Xqng  (a srtiopoint of
X). Choose a coordinate such that (0,0, ...,0,1) ahe= (Z, = 0) . We cae yurit
locally, [fo(z), f1(z),..., fu-1(z),1]. We can write a hyperplane close 1 as
Zo+ a1+ ...+ a,Z, = 0. This is the equation df . Thefy+ a1 f1 +... +a, =0
SincedF'/0a,, # 0 ,I' is smooth at a point whose projection ssnaoth point ofc . But
(P)* i Psmooth C I'. By Sard's Theorem, the general fiber of is smodthis
concludes the proof.

Corollary. LetF, ..., F;. be general polynomials of degrge...,d;, nig 1 \#des.
The corresponding hypersurfacés = ... = F, =0 intersect tramslyerThe variety
defined byF; = ... = F;,, = 0 is nonsingular of dimensian- k

Furthermore/(X) = (F1, ..., Fi) ,and is called a complete intersacti

Corollary. Let X be a smooth projective variety of dimensianLet L4, ..., L; be
general linear forms. Theri = X N {L; = ... = L; =0} is smooth and the idéal
is generated byl (X), L1, ..., L)

Remark This still holds in characteristic

Lecture 25
Degree [Shafarevich pg 143 |
Unlike dimension, smoothness, etc. degree is esitrimot intrinsic.

Suppose you have a finite mgp X" — XV  witft") — k(X) a finite fiexdension.
Then you can define ded = [k(X) : k(Y)] . A notion ov€r  of degréea anap

xn i Y™ count # of inverse imagg"gl(y)

Theorem. If f: X — Y is a finite map between irreducible varistiandY” is normal,
then the number of pointsf!(y) <  dé¢g

Proof. If X,Y are affine, theik[X] is an integral extensidrk[Y], andY is normal so
that k[Y] is integrally closed. Lef™! = {zy,...,z,,} . Takee k[X] to be sticht
a(z;) =0Vi=1,...,m. Then write the minimal polynomial ot  ovekt[Y] . If
F:FN—O,/lTN_l-i-...-i-OéN,then#fL <N .

Ramification f is unramified ovey isf#!(y) = defy . Otherwige, isifeed aty .
Theorem.  The set of ramification points of a mgp is opemd non-empty if
f*(k(Y)) — k(X) is separable.

Proof. Take a generating element and look at its mahpolynomialF' . Let deg = n .
Then T" + o, /T" '+ ..+ has the property that at each point you get a
polynomial. So therp =T" +a, 1 T" ' +..+ay . To saf is unramified means
evaluated ay has no double rodigp) = 0 < ramificatiom{gol]

Remark: SinceX C P" is a hypersurfac&, is defined by a sipgllynomial, so we
can think of deg = deg’



Degree: Let X C P" be an irreducible (possibly quasiprojectivajiety of dimensiork .
Then the degree of is defined by any of the foifmwvays:

(1) The projection from a general linear spacealiafensionn — k — 1 gives a finite
surjective mapr : X — P¢ with dé) = deg=  d&gX) : k(P")]

(2) The general projection frod — P**!  gives a birasiomap fromX to the image
NP 7. X — Y c PM! with degX = ded = deg of the polynomial definivg

(3) A general linear space of dimensior &£ will isextX in finitely many points by
the Bertini Theorem, so we can define d€g= # ptXin Awhere A is a general
linear space of dim — &

(4) Consider the Hilbert polynomialx(m) oX . Thengdé= k!, the leading
coefficient ofpx (m) .

[...rest of lecture not understandable, didn't bothking notes...]
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For a projective varietX* c P*

(1) X = P* of degr (2)z L P! of deg hypersurface
(3) Generah — k — 1 plane, # of int poinds N A

(4) Hilbert polynomial of deg! , the leading coeff

n+d

Examples. (1)Veronese varietiesTakev;(P") — P("i')-!  Then deg(P") = ?

(2) Hilbert polynomial Consider a polynomial of deg Qﬁjgd) variablésve restrict
vg(P") to a polynomial inn+1 variables of degd , we havebkit polynomial
(MY = (md +n)...(md + 1) /n! = L2 4|0t in(m). Then degee = d" .

n

Remarks In particular, rational normal curve of degréehas really degred . The
Veronese surface,(P?) C P°  has degtee

Then the (("}Y) —1—n) -planel; = ... = Liayy_, =0 foiL;Nva(P") gives a
hypersurface of degree ¥ . In how many pointsidgeneral hypersurfaces of dég

intersect?d” . For each of the hypersurfaces ofdlggu can takel;; = ... = L;; =0
(product of linear forms).

Examples. (1) Segre varieties HaveP" x P < P(r+1(m+1)-1 "what is the degree?
Have a Hilbert polynomial. A polynomial of deg (n+ 1)(m + 1) variables induces
a homogeneous polynomial of bidegféek)  (rint 1) gnd+ 1)  ab#es. Then the

Hilbert ponnomiaI is given bypj(k) _ (k+n)(k+m) _ (ktn)..(k+1) (kt+m)..(k+1) _

n m n! m!

B 1 lot(k). Then degree’ ™! — ("*™) iy =m =1 , then we have indeed a

nlm! nlm! n

quadric surface i




Bezout's Theorem. LetX,Y be closed sets &' of pure dimension &(aith
k+1>n). Then XandY intersect naturally: dé&gny =  dEg tteg pdriicular,
k+1=mnmeansX and intersect at d¥g- tleg poldts.

SupposeX and” intersect properly (d¥NY =k+1—n ). Given raeducible
componentZ C X NY , one can associate an intersection pficitty m,(X,Y) of X
andY alongZ .

Bezout's Theorem (general). If X andY are closed subsets of pure dimension
intersecting properly, then de¥§) - d&o => mz(X,Y).- (8g

ZCX,Y irred
Properties ofnz(X,Y) : (1) mz(X,Y)=mz(Y,X) , @QZ>mz(X,Y)>1<
ZcCcXnY, (3 my(X,Y)=1 if X andY intersect transverselly at gehpmnts of
Z. 8) mz(XUX'Y)=mz(X,Y)+mz(X,Y) if X and X’ have no common
components, and U X’ includé properly.

Corollary. If X andY are closed subsetsi3f  intersectinggny of pure dimension
intersecting properly, thenthe dagNnyY <  d€g teg

Corollary. Suppose X, Y C P* are subvarieties intersecting proparig deg
XNY = degX - ded” . TheX arid are smooth at general poiofsn Y.

Corollary.  SupposeX” c P* is a variety of degree . Thén is alirspace of
dimensionk.

Proof. (sketch) We can do this by induction/on kK1 pick two pointsp;, p» € X
and look at all the hyperplanes containpmgp- thenithh cannot be proper, so every
H > py, po has to containX . But the hyperplanes containing. enegate the ideal of
the line containing; ang, X s the line spannegpgandp, . Keep going fok = 2
Pick three points oiX that are not collinear. Caashyperplanes containing, po, p3
Bythe casé& =1 ,theiff N X cannot be propeXta H . Etc.

The Picard Group

Let X be an irreducible variety. A prime divisor ahis an irreducible codimension
subvariety ofX . Then the divisor & , Di¥) |, is thred abelian group generated by
prime divisorsD € DivX) . TherD = Zf’:l ¢;D; where arel are primesbvs on
X. Let f € k(X). TakeD to be a prime divisor. Each primeigtiv D determines a
valuation onk(X) providedX is nonsingular in codimensil. Assumption: X is
nonsingular in codimensioh

The valuation is the order of the zero or polefailong D . Pick open séf C X  such
thatX — X" andDNU # () . Sinc& consists of nonsingular poibtss defined by a
local equation around each poimte U . ket be the losgliation of D . Then
f € k[X]. SoTk such thaf € (7*) ,byt¢ (7"t  so(f) =k
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X irreducible variety nonsingular in codimension 1



A prime divisorD is an irreducible codimension bgariety ofX .
Div X - free abelian group generated on prime diviso

N
D:ZkZDL forki e 7.
=1

7

Let f € k(X) (f #0) and letD be a prime divisor. Then we cafinge(a valuation)
vp(f) ("the order of zero or pole of along "). Take enopintersectingD and
consisting only of nonsingular points &F . Possiélter shrinkingl , we can sdy has
a local equation i/ withr =0 . First assurfiec k[X] . Themdtexists sayn such
thatf € (7™) @ dividesf ) buf ¢ (=*1) . Then defing (f) = m

)
Observe thatvp(fife) =vp(fi) +vp(fe) Withup(fi + fo) > miup(fi), vo(f2)}
assuming of cours¢; + fo #0 . So now suppose fhatk(X) . Thete We= g/h
whereg, h € k[X] . Then we can defing(f) = vp(g) —vp(h) . Then

(1) H does not depend on the representatigh of

(2) It does not depend on the choicé/of Vit U s open themr is a local equation
of D also inV . Také/ NV and again that it's well-define

Notice it does not make sense to talk ahgiftf) atiret ponly at a divisor.

Terminology If vp(f) =k > 0, we say thaf has a zero of order alénhgimilarly,
if vp(f) = —k < 0, then we sayf has a pole of order aldhg

It's important to note these only make sense fdingension 1 subvarieties.

Given f € k(X), there are finitely many prime divisais  Isubatvp(f) #0. IfX is
affine andf € k[X] , then ilD is not a componentloff) , thextf) = 0. But there
are only finitely many components bf .fife k(X) , exprgss g/h with g, h € k[X].
Thenvp(f) =0 unlesd is a componentiofg) o)

If X is a quasiprojective coveX by finitely manyiaés, then since in each piece there
exist finitely manyD withvp(f) # 0 , it followsd  finitely may D such thavp(f) #0 .
So given a rational functiofi# 0 € k(X) , we can associatwiaat to it,

div f = Z UD(f>D
D

Definition. The divisor off # 0 € k(X) is called a principal divisor.
div f = > k;Di. The divisor of zeroes ¢f , diyf = > k;D; . The divisdrpmles of

k; >0

k<0
@) div(fi- fo) = div(f) + di(f) . Iff € &, dif) = 0. Iff € k[X],
div(f) > 0 (the divisor is effective).

Definition. A divisor)_ k; D; is calleckffective ik; > 0Vi . We writd > 0 to mean
thatD is effective.



Proposition. Suppose X is irreducible and nonsingular. fif£ € 8(X) afd i
div(f) > 0, then f € k[X] . In particular, if in additioX is prefgve and divf >0 ,
thenf € k.

Proof. Supposef is not regular at a painE X . Expressg/h  eralph € O, .
Since X is nonsingula), is a UFD. We can assumegtitahave no common factor.
Supposer is irreducible,| . bmfg . In some neighbadh®dr) is irreducible and of
codimensiorl ,sa)) , 30 (f) <0 .Hence(fy is not effediive

Corollary. In a nonsingular projective variety, a ratiohalction f is determined up to
a constant by its divisor.

If div f = div g, then divf/g = 0, so by propositiofi/g =c € k

Principal divisors form a subgroup of Di¥) . The deat is the class group
Cl(X) =Div(X)/P(X) (divisors modded out by principal divisorshis is an
important invariant of a variety.

Two divisors are called linearly equivalent if Di;,) — MDDy) =div(f) (is

prinicipal).

Example 1. Start withA” . What is the class groupAdf (A1) tBD because oA”

every codimensionl subvariety is defined by a sngjuation and so is a principal
divisor:

FOI’Zk’iDi, sayDZ- = (E = 0) D = dl\(FlkFT];l) .

1=1

Example 2. CI(P") = Z. Given a prime divisab , we can defibe laszero locus of

a single homogeneous equatigh= F'/G wihG homogenoukeoame degree.
Define a homomorphism ded DO®')) —Z wheyek;D;— > k; dBg . Thisis
certainly onto.kH — k (fofH a hyperplane), so the kernseprecisely the principal
divisors. The kernel is precisely the prinicipavidors Y k; ded); =0 withD =

> k;iD;. Splititinto2 pieces, so

Dy = Z k;D; andDoo = Z k;D; .
ki>0 k;<0

EachD; is defined by homogenous polynomials of defye so we have

HW/HW
€Dy 1€Dy

where the numerator and denominator have the sagreel and are it(P")

Example 3. CI(P™ x ... x P") =~ Z" by a similar argument.
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Locally principal divisors



If X is a nonsingular variety, then every prime doniD C X around any point € D
can be defined by a local equation.

If U >z, D is generated by one function. Suppose yoweligvandU; , and we defirié
by f; andU; byf; . Then we have dfy) = djy) . What this meangl look at f;/ f;,
then is regular oV; N U; and it is everywhere non-zero.

Definition.  Let{U;} be an open cover &f , and {gt} beoepatible system  of
functions corresponding to the open cover{ig} . Tigtf; is a regular function on
U; N U; which is nowhere zero.

Any compatible system of funcitons defines a divis0k; D;. Take an open séf;  such
thatU; N D; # 0. Therk; = vp,(f;) . This is well definedif; N D; # 0

Two systems of compatible functiofg;, U;}  dudl, V;} definesttime divisor if and
only if f;/g; is regular and nowhere zero.

Now letp : X — Y be a regular map of nonsingular varieties D C Y be a prime



i ___Cartier divisors
PIC(X) ~ Principal divisors.

Remark SupposeX is nonsingular. Then (B¢ =~ (X} With( fg) = vp(f) +
vp(g). Also, Pi¢P") =7 and Pi@™ x ... x P™)~7Z" . How do you think about
Pic(P")? If L, andL, are both linear formg= L,/L,

SupposeX is a project variety. ThefPif — X c P2 D L  with
(u,t) — (4, 3u, udt, ut)
thenL N X is a divisor.
Two divisors are linearly equivalent if they diffiey a principal divisor.
Definition. TheRiemann-Roch spacef a divisoD i$f € k(X)} such that
D +dim(f) > 0.

This is a vector space.
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Riemann-Roch Spaces
ForP!, how does one characteristic polynomial ofreed , forf € k(P') such that
dim f + dxy > 0.
If X'is a nonsingular variety, fix a divis@  so thfac k(X) with div f + D > 0.
Definition. TheRiemann-Roch spacefD is the space of functions
L(D) = H(X,0,(D))
is the sub-vector space bfX) such thatfliv D >0

This is an important concept in algebraic geometngl a fundamental problem since the
19th century is:

Problem. Given a divisoD) , determin& D) (determine theatision ofL(D) ).
Remark If D; andD, are linearly equivalent théD,) = ¢(D,)
D, ND2:>D1—D2:dng.

If fe L(Dy), div (fg)+ Dy =div(f)+div(g) + Dy >0, so gL(Dy) C L(Dy). So
multiplication by ¢ gives an isomorphism between twe. You can associate a
dimension?(D) foranyp € CKX) .

Supposep is a rational magp: X — P"  (assume imag¥ op(z) nonslegenerate).
Consider( fo, ..., fn) Wwithf; € k(X) . LeDy,..., D,, be finitely many divisors bubat

D; =) h; F;; with F;; prime divisors.
Then the highest common divisor &Y, ..., D,,,) = Zm ¢ Fy;  wheres KR}



SetD = hcd divfy), .,. divf,)) withD; = diyf;) — D .
A rational mapy fails to be regular precisely & gointy"); supf@;) (the base locus).

Consider the vector space generatedby JSayP” nislagenerate witlk’ < P
Take the hyperplanH  witi N H € X a divisor. Considerdfiective divisors onX
linearly equivalent toX N H = D . Then there is always a mmak linear algebra called
the complete linear systef| . All effective divisors are linearly equivatao X N H . If

M c |D|, then ¢: X — P(|D|) andy,, : X — PM . Choose a basis fof , say
fo,s .-, far. Complete to a basis @D| . Every rational map- P"*  iemgby the map
given by the complete linear followed by a projenti

Example.  ConsiderP” P with QIPP") >~ Z . The linear systems @ are
determined by specfiying the degree of the polyradsniSo the complete linear system of
degd . We then get the Veronese map,. ) : P" — P (|0, (a)) . Hence eveopnah
map (non-degenerate) is obtain by a projection\éém@nese variety.

ConsiderP! — X c P3 with(u,t) — (t*,v’t, t*u, u*) . We get the m@p — P*  thatis
a rational normal curve of deg and projectjoro, 1,0,0) O .

A divisor is very ampleif it is the hyperplane section X¥f der an embedding of
X — P for somen . A divisor is calledmple if some positiveltiple is very ample.

Let X be a compact complex manifold. WhenXs ajgutovery variety? As an
examplep’” = cp? = ap + b where is the Weierstrgss -function.

Remark In higher dimensions, tyou cannot always emkedto P .

Example. (Hopf surfacg Look atC*\{0} and place the equivalence relation y;) ~
(22, y2) if In € Z such thatzs, y2) = (2}, y]) -

Divisors on curves

Let X be a nonsingular projective curve. Then= > k; p; wherare points onX
with degd D) = > k; .

Theorem. Letf: X — > Y be a map between non-singular projectivees. Then
deqf) = [k(X) : k(Y)] and def) = dég"(y))
for any pointy € Y .

Corollary. The degree of a principal divisor on any norgslar projective curve i§' .
Then f € k(X) defines a mag: X — P! with dif) = diyf)— diyf) , and
deq div(f)) = degk"(f(D))) — deg”(co0) =0 .

Lecture 30 [Shafarevich pg. 168 - 171]
Divisors on curves
Let X be a nonsingular curve. Thénh= > k; p; with deg- > &;



Theorem. |If f: X — Y is a regular surjective morphism of nonsilaguprojective
curves, then ded = [k(X) : k(Y)] = déf(y)) with(Y)— k(X) , for any point
yey.

Corollary. The degree of a principal divisor on a nonsiagpkojective curve i8 .

Proof. If f € k(X), thenf gives a regular non-constant magh vii: X — P!. Then
deg(div(f)) = deg diy(f)) — deg diy(f)) = def— deg=0 01

Under the hypothesig,” : k(Y) — k(X) , identib(Y)  with a subfiefdk¢.X). Given
finitely many points, zq,...,x, € X , let o, vz, =iy O, - IfyeY and

-----

Theorem A. O isa principal ideal domain with finitely mapyime ideals. There exists
elements; € O such that, (t;) = 6;; . Moreoveruice O , then t’fl...t,’fr such tha
v, (u) = k; andw is invertible ir©

Theorem B. If {z1,....,z.} = f~1(y), then® is afre®, -module of rark dgg=n

Proof. (Theorem A +B=— main Theorem) ltet be a |lqgElameter ay € Y . Then
t=t"..th v where v, (t) =k and invertible. Then ded(y)) =3 ki since
f*(y) = > kix;. Thenty,...,t. are relatively prime so thgl/(t) = @;':15 /(tf’f)
Compare the dimensions a®),/(t) -modules. Then= deg- > k; . So
ded f*(y)) = dedf . Observe that D is a divisor on a nondarguariety X and

x € X,thendD’ ~ D suchthat ¢ Supp’ . (Exerci&e)

Proof. (of Theorem A Choose local parameters zxat . Therwiv= z; + D af w
change by linear equivalence, we can assume tppti3@ {z, ..., z,} . Once we choose

ouru; as suchy, (u;) =1 v, (u,) =0 . Sét=wu; chosen as suchulet? . Let
ue 0, v, (u) = k; andw = t;™...t-%u . Them, (w) = 0Vz; by choice of the . Both
vandv~! areregularat ,withw e O .Then= th . _thw . Finally, teckd is

a PID, leta € O be r{\ ideal. Sét = jaf v,,(u) . Let= t’fl...t,’fr We want &y s

a = (a). Thenua™t € O for anyu € a , withu C (o) . Let’ be the set of funntio
ua~! for w € a. Then miney v, (u) =0 with 8= u; tf%..t?f{t?ﬁf...tﬁr . Then

v, (8) =0Vi.Sopfat € O.Savea O

Proof. (of Theorem B If f: X — Y is a finite map of curves and is norgitar,
thenX is nonsingular is given By !(y) = {z1,...,z.} with = NO. whéle ais
finite O,-module. We can assumd¢  arid are affinel # k[X]| andB = k[Y] , then
since this is a finite map andl  is integral o¥&rA is a finite B -module. We want to

prove the generators ¢f ovBr give you generatb@ overO . Here( = k[X]O, .

So let a functionp € O . Take; to be the poleswof . Theén) = y; # y. Then
Jh € k[Y] such thath(y) #0 and(y;) =0 , angh € O, . Hencgh € k[X] . By
construction,h! € O, . In other words; € k[X]O, . Hence, generatdrs! over B
generate(N’) ove®, .So théh isa finitely generatedute, so it is a direct sum of a
free module®; and a torsion module (by the structbemrem for finitely generated



modules over a PID). The torsion module has to @re,zs00 is a free-module, say
O = (0,)". Then[k(X): k(Y)] =n = degf withn <n .Pick elements that give a
basis ofk(X) ovek(Y) , sayi,...,a, .We can multiply by apprdprigowers of; 's to
make these regular. But since they are indepermestk(Y), the degree has to be the
dgree of the field extensiohl

Theorem. A nonsingular projective curve is ratioral °CX) =0

Proof



Theorem. LetX be a smooth projective curve with  a divisn X . Then
dmL(D)=4(D) < gD)—-gX)+1.

Theorem. L(D) is a finite dimensional vector space for arfgative divisorD on the
nonsingular projective curv&

Prooj. If D= D; — D, where bothD; and, are effective, th&fD) C L(D,) hwit
f € L(D) implying div(f) + D > 0 so that diyf) + D; >0 . Také > 0 . Thendf is
a point with multiplicityr ,D = (r — 1)z + (D — rz) . Notice that defp) = deg— 1
andD > 0. Lett be a local parameterat . Then formyL(D) A(f) =t"f(z) is a
linear function onl(D) . What is the kernel &f ? WélImust be precisel;C( ZN)) :

fhose functions for which the order 8ff @&at>1 . Intmadar, /(D) < E( 5) +1.

We can keep going so th&tD) < ¢(0) + dBg ,with) =1 gnd k(X) sudh tha
div(f) > 0. Thus f is regular, but all regular for a praiee ariety means constant, so
that £(0) = k. Then digiC(D)) =4(D) < degD+1 . IfX % P* | then in fact
(D) < degD + 1. Suppose there exidls  of degree , e = degl =2 In
other words, 3 a non-constant mag k(X)  with(div-0>0  #ndX — P! ithw
deq f) = 1 so that both are nonsingular, projse: P!

Theorem. Letag € X be a point on a non-singular cubic cukve P?

Exercises (1) ForX : zy? = 2® + axz? + b2* ,X is non-singular if and only if the
discriminant4a® — 27b% # 0 .

(2) Given any non-singular cubic, you can makdéange of variables so that it has this
form (dehomogeonize)f = fi(zy) + fo(x,y) + f3(x,y) . Make substitutign= tx o)
that f = z[f1(1,t) + zf2(1,t) + 22 f3(1mt)]. Then complete the squard,= p(t) . Then
send one of the roots pft) to , wifi =2° +ax? + bz +c . Thems [a — o] €
ClI°(X) defines a 1-1 correspondence betweén ar{ Xql pdricular, any
nonsingular cubic in the plane inherits a groupctrre via this correlation.

Lecture 32
Nonsingular plane cubics

Theorem. LetX be a nonsingular plane cubié & 23 +ax +b  Witl? — 2703 # 0

and chafk) # 2,3 ). Then we can get a mé{pﬁ 0(®1) . Fix a paint e.g.(
(0,1,0) = ap). Then a+— [a — ay] defines al 1- correspondence betweéén and
CI°(X). In particular,X inherits a group structure thés map.

Proof Observe thak : zy? = 2° + azz? + b2® is not rational as follows. Thémas
an automorphism (termed the elliptic/hyperelliptigcolution). Then the map

(xaya Z) 'g) (‘1:7 —y,Z)

is an obvious automorphism (singé= (—y)2 ). What are tkedfpoints ofoc ? Well,
eithery = 0, or the point0,1,0) . Ip is a fixed point of hen eitherp = (0,1,0) or



y=0, z=0, andz is a root of (z) = 2* + ax +b . The polynomial has 3 disti
roots, soo hag fixed points. ¥ =~ P! | then the autorhimms are given b GR)
So then any automorphismBf  that has more tharfied points is the identity (since
a matrix can only have two eigenvalues).&So  has fwints. Thermy — oy ~ 6 —
meansa ~ (3 so that — 3 is principal but this is only tiuand only if« = 3. We
know the curve is not rational, because otherwigéfd = o — B with f : X — P! non-
continuous of degreé . But sinéé s not ratiohéd is not possible. Sg : X —
CI°(X)is injective.

Now we show surjectivity. Suppos® is an effectig&visor on X, then
D~ a+ kay wherea € X is a point. If ded =1 , thelh=0  works. So we can
assume ded > 1 . Using induction, assume we can do b WegD — 1 . TherD =
D’ + 3 givesD ~ a + 8+ kag , and it's enough to show that 3 ~ v + «y

Then if 6 € LagN X, f = Lag/Lso, is a rational function oX . Alse,+ 5+ 6 ~
ag+v+ 6 wherey € Ls,, N X . Ifa =3, letL,3 be the tangent line 6 caat . Let
D € CI°(X). ThenD = D, — D, whereD;, D, are efficient, with ~ o — 3 . By what
we proved,a +ag ~ v+ (is the same thing as). Then use theltr¢hat for any
effective divisora + ay and any point, there exists apgo such thatv — 5 ~ v — g .

O

Theorem. If D is an effective divisor oiX nonsingulay? (= =3 + azx + b, 4a® —
27b% # 0) , thenl(D) = de@D) . Conversely, I&f be a nonsingularesuch that for
any effective divisorD {(D) = dé@) .Thek can be realiasda smooth cubic in
P2

Proof. For two linear equivalent divisol® ~ D' ¢(D)=4(D') , we cassume
D = a+ kay. Since we knowX is not rationdl,D) < dd®) k=0 ¢(D)  corsist
only of constants. Ik =1 , thed(D) has a non-constantfid) =2 = deg D . Let
k> 1. Then it suffices to find a functiorfy : L(kay) such thatvdifi. = kay.
Furthermore,L(kay) C L(a + kay) , withfy, ¢ L(a — (kK — 1)) . In other words, the



vector spac&(a + ko) has dimensib+(k — 1)ag) +1 . =Pick . Thgn =1
constants, and(2p) =2 s8 nonconstant funcitgns , @Bg) =3 o 3 another
function with a pole of order exactp , saya . THétp) = 4 hasz® as a pole. Then
((5p) = 5 haszy and/(6p) =6 has® y> as poles. So there has to beaa tiglation
among these functions, since we found seven fumetio a seven dimensional vector
space, sayy’ + Sry + 6y = ax® + bx? + cx + d. You can complete the square for to
gety? =z +azx? + br +c.O0

Lecture 33
We can put a group law @ = 2° + ax + b  with digc0 . Fix a peipwith
r— ClI°X) and a+— [a— ] .

To write down formulas, one letgy be the pointatThis means if we projectivize the
curve (zy? = 23 + 2%ax + b2®) we can write down the formule where one dgtbe the
point atoco ,(0,1,0) = «p . This is an inflection point &f

Now we noticelar — a] + [8 — o] ~ [y — o] . Look at the line drawn between &nd

on the circular component, and then it hits sameo draw the line between, (at
infinity) and 6 (this will be a vertical intersecticof §), so that we cross the curve at
another point . Butthem+ 5 ~ v+« With= L.3/L.s, . Then

a € (z1,y1) € X andf € (w2,12) € X,
sotheliney —y; = 2% (z — 1) ory =y, + m(x —x;) combined with the

To—X1

equation of the curvg? = 23 + az +b give
(y1 +m(z —x1))° =22 +az+b
2+ m?(z —21) + 2ym(x — xy) = 23 + azx + b.

The coefficient oft?> isn? , so if we plug in= 2z, and=2x, @&ee these are roots of
the equations. Then; = m? — x; — a9 = (ﬁ) — 21 — 2. And y3 is determined by

the euquation of the line. Since the origis= (0,1,0) =y @i § thenL,, is the
tangent line taX at . Then the slope is giverBby+ a sindgy? = 2*> +ax +b) so

the tangent liney —y, = (22te) (2 — Theney, = — 35090 Th
e tangent liney —y, = (=5, (r—x1) . ency, = T v—— T . en

p = (z,y) — (z,—y) = —p. Notice then that addition and inversion are ragalaps on
X. X is called a group variety.

Definition. If X is a variety together with map’é( —>1)X inverse akidk X — X
multiplicative which are regular maps; these mapsul satisfy the axioms of a group:
J point ee X stexX—X is id, X xe— X is id, andassociativity, and
X x X = X means(z,z7!) — e . If we look at the matrix groupsl(n) SL(n),
SO(n), etc. Then the group just definell, , is compaut, @e can see it is an abelian
group. Then ifX is projective and the group struetis abelian, we calk aabelian
variety.



If we call the elliptic curveF : y> = 2° +ax +b . Let be a numbezli. Supposé’ s
defined ovelt . Then we can look at thék) points whasordinate$z, y) € £ are in
k. SOE(k) is a subgroup @ (C)

If 22+ 9% = 2% there are infinitely many rational solutions this equation. So now

consider this forF : y?> = 23 + ax + b . We ask the questiean you find finitely many

points onE such that you can generate all pointskdf) by the secant and tangent
method? SinceE has a group structure, we can ask the safeodern day" language:

is E(k) afinitely generated abelian group?

Theorem. (Mordell) E(k) is finitely generated.

E(k) = Z" @& Torsion where- is the rank of the elliptic curweepk . Fork = Q , the
Torsion part is fairly well understood.

Differential forms and vector bundles

Supposef is a regular function on a vari&ty . Twercan form the different, f at any
point. We saw how to do this. What kind of objexthis thing? Well, if we lef,. f be the
diff form at everyz € X , thenl,f € T,X . Now we introduce vectamndles to make
discussion of these gadgets simpler. Lt  be aréifitiable manifold. Then for @
complex vector bundle, at each point there willanpeassociated vector space, and these
should vary differentially. So &> -complex vectombie is a collection of complex
vector spaces for every pointdd ,i.f,}..,, ., togethigh aC'> manifold structure

on E =|J E..Then we have a natural projection maptl — M gwely, — .
reM
Then (1)7 is aC* -map. (2) For everye M  there is ameaghood,U > = , and a

diffeomorphismypy : #=1(U) — U x C" such that the map is linear on thers. If this

is the case, then we cdll a vector bundle of radach of the component vector spaces
has dimensiom ). Thep; is calledravialization Fff aléngE,. caited the fiber

of F overz .

o o

(T

Then on UNV, oy : 7 (UNV)S(UNV)xC", andpy : 7 ({UNV)=
(UNV)xCr. Then we have what's calledtransition functiongyy = oy = ¢! is a
map fromU NV — GL(r) . Thengyygyy =1 o NV , angyygywgwy =1  on
unvnw.

Variations

SupposeM is a complex manifold. Then we can ddfailemorphic vector bundles on
M by requiring £ to be a complex manifold to be holopiic, andyyy to be
holomorphic. Similarly, you can ask  to be a variéi to be a varietyy to be a regular
map, the cover to be by Zariski opens, and thegeten algebraic vector bundle @fy
regular maps, etc.



