
α-MINIMAL BANACH SPACES

CHRISTIAN ROSENDAL

Abstract. A Banach space W with a Schauder basis is said to be α-minimal

for some α < ω1 if, for any two block subspaces Z,Y ⊆ W, the Bourgain

embeddability index of Z into Y is at least α.
We prove a dichotomy that characterises when a Banach space has an α-

minimal subspace, which contributes to the ongoing project, initiated by W.
T. Gowers, of classifying separable Banach spaces by identifying characteristic

subspaces.
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1. Introduction

Suppose W is a separable, infinite-dimensional Banach space. We say that W
is minimal if W isomorphically embeds into any infinite-dimensional subspace Y ⊆
W (and write W v Y to denote that W embeds into Y). The class of Banach
spaces without minimal subspaces was studied by V. Ferenczi and the author in
[2], extending work of W. T. Gowers [3] and A. M. Pelczar [5], in which a dichotomy
was proved characterising the presence of minimal subspaces in an arbitrary infinite-
dimensional Banach space.

The dichotomy hinges on the notion of tightness, which we can define as follows.
Assume that W has a Schauder basis (en) and suppose Y ⊆ W is a subspace. We
say that Y is tight in the basis (en) for W if there are successive finite intervals of
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N,
I0 < I1 < I2 < . . . ⊆ N,

such that for any isomorphic embedding T : Y → W, if PIm denotes the canonical
projection of W onto [en]n∈Im , then

lim inf
m→∞

‖PImT‖ > 0.

Alternatively, this is equivalent to requiring that whenever A ⊆ N is infinite, there
is no embedding of Y into [en

∣∣ n /∈
⋃
m∈A Im]. Also, the basis (en) is tight if any

infinite-dimensional subspace Y ⊆ W is tight in (en) and a space is tight in case it
has a tight basis. We note that ifW is tight, then so is any shrinking basic sequence
in W.

Tightness is easily seen to be an obstruction to minimality, in the sense that
a tight space cannot contain a minimal subspace. In [2] the following converse is
proved: any infinite-dimensional Banach space contains either a minimal or a tight
subspace.

J. Bourgain introduced in [1] an ordinal index that gives a quantitative measure
of how much one Banach space with a basis embeds into another. Namely, suppose
W is a space with a Schauder basis (en) and Y is any Banach space. We let
T ((en),Y,K) be the tree of all finite sequences (y0, y1, . . . , yk) in Y, including the
empty sequence ∅ = ( ), such that

(y0, . . . , yk) ∼K (e0, . . . , ek).

Here, whenever (xi) and (yi) are sequences of the same (finite or infinite) length in
Banach spaces X and Y, we write

(xi) ∼K (yi)

if for all a0, . . . , ak ∈ R

1
K

∥∥∥ k∑
i=0

aixi

∥∥∥ 6 ∥∥∥ k∑
i=0

aiyi

∥∥∥ 6 K∥∥∥ k∑
i=0

aixi

∥∥∥.
We notice that T ((en),Y,K) is ill-founded, i.e., admits an infinite branch, if and
only if W = [en] embeds with constant K into Y.

The rank function ρT on a well-founded tree T , i.e., without infinite branches, is
defined by ρT (s) = 0 if s ∈ T is a terminal node and

ρT (s) = sup
{
ρT (t) + 1

∣∣ s ≺ t, t ∈ T}
otherwise. Then, the rank of T is defined by

rank(T ) = sup
{
ρT (s) + 1

∣∣ s ∈ T},
whence rank(T ) = ρT (∅) + 1 if T is non-empty. Moreover, if T is ill-founded, we
let rank(T ) =∞, with the stipulation that α <∞ for all ordinals α.

Then, rank
(
T ((en),Y,K)

)
measures the extent to which W = [en] K-embeds

into Y and we therefore define the embeddability rank of W = [en] into Y by

Emb((en),Y) = sup
K>1

rank
(
T ((en),Y,K)

)
.

Since (en) is a basic sequence, there is for any K > 1 a sequence ∆ = (δn) of
positive real numbers, such that if yn, zn ∈ Y, ‖yn − zn‖ < δn and (y0, . . . , yk) ∼K
(e0, . . . , ek), then also (z0, . . . , zk) ∼K+1 (e0, . . . , ek). Therefore, to calculate the
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embeddability rank, Emb((en),Y), it suffices to consider the trees of all finite se-
quences (y0, . . . , yk) with (y0, . . . , yk) ∼K (e0, . . . , ek), where, moreover, we require
the yn to belong to some fixed dense subset of Y. We shall use this repeatedly later
on, where we replace Y by a dense subset of itself. This comment also implies that
Emb((en),Y) is either ∞, if W v Y, or an ordinal < density(Y)+, if W 6v Y. In
particular, if Y is separable, then Emb((en),Y) is either ∞ or a countable ordinal.
Also, note that the embeddability rank depends not only on the space W, but also
on the basis (en). However, if Y is separable andW 6v Y, then by the Boundedness
Theorem for coanalytic ranks (see [4]), the supremum of Emb((en),Y) over all bases
(en) for W is a countable ordinal. In case Emb((en),Y) > α, we say that W = [en]
α-embeds into Y.

Since minimality is explicitly expressed in terms of embeddability, it is natural
to combine it with Bourgain’s embeddability index in the following way.

Definition 1. Let α be a countable ordinal. A Banach space W with a Schauder
basis (en) is α-minimal if any block subspace Z = [zn] ⊆ W α-embeds into any
infinite-dimensional subspace Y ⊆ W.

It is easy to check that if W = [en] is a space with a basis and X = [xn] and
Y = [yn] are block subspaces of W such that xn ∈ Y for all but finitely many
n, which we denote by X ⊆∗ Y, then if Y is α-minimal, so is X . In particular,
α-minimality is preserved by passing to block subspaces.

Similarly, we can combine tightness with the embeddability index.

Definition 2. Let α be a countable ordinal and W a Banach space with a Schauder
basis (en). We say that W = [en] is α-tight if for any block basis (yn) in W there
is a sequence of intervals of N,

I0 < I1 < I2 < . . . ⊆ N

such that for any infinite set A ⊆ N,

Emb
(
(yn), [en

∣∣ n /∈
⋃
j∈A

Ij ]
)
6 α.

In other words, if Y = [yn] (α+ 1)-embeds into some subspace Z ⊆ W, then

lim inf
k→∞

‖PIk
|Z‖ > 0.

Again, it is easy to see that if W = [en] is α-tight, then so is any block subspace
of W. Also, if W = [en] is α-tight, then no block subspace, Y = [yn], is β-minimal
for α < β. And, if Y = [yn] is minimal, then Y = [yn] is α-minimal for any α < ω1.
It follows from this that if W = [en] is α-tight, then W = [en] admits no minimal
block subspaces, and thus, as any infinite-dimensional subspace contains a block
subspace up to a small perturbation, W contains no minimal subspaces either.

Our first result says that tightness can be reinforced to α-tightness.

Theorem 3. Let W be a Banach space with a Schauder basis and having no min-
imal subspaces. Then there is a block subspace X = [xn] that is α-tight for some
countable ordinal α.

Our main results, however, provides us with more detailed structural informa-
tion.
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Theorem 4. Let W be Banach space with a Schauder basis and suppose α < ω1.
Then there is a block subspace X = [xn] ⊆ W that is either ωα-tight or (α + 1)-
minimal.

Finally, combining Theorems 3 and 4, we have the following refinement of The-
orem 3.

Theorem 5. Let W be a Banach space with a Schauder basis. Then W has a
minimal subspace or a block subspace X = [xn] ⊆ W that is α-minimal and ωα-
tight for some countable ordinal α.

Proof. Suppose that W has no minimal subspace and pick by Theorem 3 some
block subspace W0 ⊆ W that is β-tight for some β < ω1. So no block subspace of
W0 is (β + 1)-minimal. Let now α be the supremum of all ordinals γ such that W0

is saturated with γ-minimal block subspaces and pick a block subspace W1 ⊆ W0

not containing any (α+ 1)-minimal subspace.
We claim that W1 contains a α-minimal block subspace W∞. If α is a successor

ordinal, this is obvious, so suppose instead that α is a limit. Then we can find ordi-
nals γ2 < γ3 < . . . with supremum α. We then inductively choose block subspaces
W1 ⊇ W2 ⊇ W3 ⊇ . . . such that Wn is γn-minimal. Letting W∞ ⊆ W1 be a block
subspace such that W∞ ⊆∗ Wn for all n, we see that W∞ is γn-minimal for all
n, which means that for any block sequence (zm) ⊆ W∞ and infinite-dimensional
subspace Y ⊆ W∞, we have

Emb
(
(zm),Y

)
> γn

for all n, whence Emb
(
(zm),Y

)
> supn γn = α. So W∞ is α-minimal and so are

its subspaces.
Now, W∞ has no (α+ 1)-minimal subspace, so, by Theorem 4, W∞ contains an

ωα-tight block subspace X , which simultaneously is α-minimal. �

Since any two Banach spaces of the same finite dimension are isomorphic, one
easily sees that any spaceW with a Schauder basis (en) is ω-minimal. On the other
hand, in [2], a space W = [en] is defined to be tight with constants if for any block
subspace Y = [yn] there are intervals I0 < I1 < I2 < . . . such that for any integer
constant K,

[yn]n∈IK
6vK [en]n/∈IK

.

In this case, it follows that for any infinite set A ⊆ N and any K ∈ A,

rank
(
T ((yn), [en

∣∣ n /∈
⋃
j∈A

Ij ],K)
)
6 max IK ,

and hence

Emb((yn), [en
∣∣ n /∈

⋃
j∈A

Ij ]) = sup
K∈A

rank
(
T ((yn), [en

∣∣ n /∈
⋃
j∈A

Ij ],K)
)
6 ω.

So, if W = [en] is tight with constants, we see that W = [en] is ω-tight and ω-
minimal.

Following [2], we also define a spaceW to be locally minimal if there is a constant
K > 1 such that W is K-crudely finitely representable in any infinite-dimensional
subspace, i.e., if for any finite-dimensional F ⊆ W and infinite-dimensional Y ⊆ W,
F vK Y. Let us first see local minimality in terms of α-minimality.
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Proposition 6. Suppose W is a locally minimal Banach space with a Schauder
basis (en). Then W = [en] is ω2-minimal.

Proof. Let K be the constant of local minimality. For any infinite-dimensional
subspace Y ⊆ W, block sequence (wi) ⊆ W and α < ω2, we need to show that
Emb((wi),Y) > α. So choose n such that α < ω · n and find some constant C such
that if x1 < . . . < xn and y1 < . . . < yn are finite block sequences of (ei) such that
1
K ‖xi‖ 6 ‖yi‖ 6 K‖xi‖, then (xi) ∼C (yi). We claim that

rank
(
T ((wi),Y, 2C)

)
> ω · n.

To see this, find some block subspace X such that X v2 Y. It suffices to prove that

rank
(
T ((wi),X , C)

)
> ω · n.

Let k1 be given. We shall see that ∅ has rank > ω(n−1)+k1−1 in T ((wi),X , C).
So choose by local K-minimality some z0, . . . , zk1−1 ∈ X such that

(w0, . . . , wk1−1) ∼K (z0, . . . , zk1−1).

It then suffices to show that (z0, . . . , zk1−1) has rank > ω(n− 1) in T ((wi),X , C),
or, equivalently, that for any k2, it has rank > ω(n − 2) + k2 − 1. So choose
zk1 , . . . , zk1+k2−1 in X with support after all of z0, . . . , zk1−1 such that

(wk1 , . . . , wk1+k2−1) ∼K (zk1 , . . . , zk1+k2−1).

Again, it suffices to show that

(z0, . . . , zk1−1, zk1 , . . . , zk1+k2−1)

has rank > ω(n− 2) in T ((wi),X , C). Et cetera.
Eventually, we will have produced

z0, . . . , zk1−1 < zk1 , . . . , zk1+k2−1 < . . . < zk1+...+kn−1 , . . . , zk1+...+kn−1

such that for each l,

(wk1+...+kl−1 , . . . , wk1+...+kl−1) ∼K (zk1+...+kl−1 , . . . , zk1+...+kl−1).

Since we have chosen the successive sections of (zi) successively on the basis, we
have, by the choice of C, that

(w0, . . . , wk1+...+kn−1) ∼C (z0, . . . , zk1+...+kn−1),

whereby (z0, . . . , zk1+...+kn−1) ∈ T ((wi),X , C) and hence has rank > 0 = ω(n− n)
in T ((wi),X , C). This finishes the proof. �

In [2], another dichotomy was proved stating that any infinite-dimensional Ba-
nach space contains a subspace with a basis that is either tight with constants or
is locally minimal. In particular, we have the following dichotomy.

Theorem 7 (V. Ferenczi and C. Rosendal [2]). Any infinite-dimensional Banach
space contains an infinite-dimensional subspace with a basis that is either ω-tight
or is ω2-minimal.

One problem that remains open is to exhibit spaces that are α-minimal and
ωα-tight for unbounded α < ω1. We are not aware of any construction in the
literature that would produce this, but remain firmly convinced that such spaces
must exist, since otherwise there would be a universal β < ω1 such that any Banach
space would either contain a minimal subspace or a β-tight subspace, which seems
unlikely.
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Problem 8. Show that there are α-minimal, ωα-tight spaces for unboundedly many
α < ω1.

Out main result, Theorem 5, allows us to refine the classification scheme devel-
oped in [3] and [2], by further differentiating the class of tight spaces into α-minimal,
ωα-tight for α < ω1. Currently, the most interesting direction for further results
would be to try to distinguish between different classes of minimal spaces, knowing
that these pose particular problems for applying Ramsey Theory.

Apart from some basic facts about Schauder bases, the main tools of our paper
originate in descriptive set theory for which our general reference is the book by A.
S. Kechris [4]. In particular, we follow his presentation of trees and games, except
that we separate a game from its winning condition and thus talk about players
having a strategy to play in a certain set, rather than having a strategy to win.

2. Setup

For the proof of Theorem 4, we will need to replace Banach spaces with the
more combinatorial setting of normed vector space over countable fields, which we
will be using throughout the paper (cf. [6]). So suppose W is a Banach space
with a Schauder basis (en). By a standard Skolem hull construction, we find a
countable subfield F ⊆ R such that for any F-linear combination

∑m
n=0 anen, the

norm ‖
∑m
n=0 anen‖ belongs to F. Let also W be the countable-dimensional F-

vector space with basis (en). In the following, we shall exclusively consider the
F-vector space structure of W , and thus subspaces etc. refer to F-vector subspaces.
We equip W with the discrete topology, whereby any subset is open, and equip its
countable power WN with the product topology. Since W is a countable discrete
set, WN is a Polish, i.e., separable and completely metrisable, space. Notice that a
basis for the topology on WN is given by sets of the form

N(x0, . . . , xk) = {(yn) ∈WN ∣∣ y0 = x0 & . . . & yk = xk},

where x0, . . . , xk ∈ W . Henceforth, we let x, y, z, v be variables for non-zero el-
ements of W . If x =

∑
anen ∈ W , we define the support of x to be the finite,

non-empty set supp(x) = {n
∣∣ an 6= 0} and set for x, y ∈W ,

x < y ⇔ ∀n ∈ supp(x) ∀m ∈ supp(y) n < m.

Similarly, if k is a natural number, we set

k < x⇔ ∀n ∈ supp(x) k < n.

Analogous notation is used for finite subsets of N and finite-dimensional subspaces
of W . A finite or infinite sequence (x0, x1, x2, x3, . . .) of vectors is said to be a block
sequence if for all n, xn < xn+1.

Note that, by elementary linear algebra, for all infinite-dimensional subspaces
X ⊆ W there is a subspace Y ⊆ X spanned by an infinite block sequence,
called a block subspace. Henceforth, we use variables X,Y, Z, V to denote infinite-
dimensional block subspaces of W . Also, denote finite sequences of non-zero vectors
by variables ~x, ~y, ~z,~v. Finally, variables E,F are used to denote finite-dimensional
subspaces of W .
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3. Proof of Theorem 3

We should first recall a natural strengthening of tightness from [2]. Suppose W
is a Banach space with a Schauder basis (en) and find F and W as in section 2.
Let also bb(en) ⊆ WN be the closed set of all block sequences in WN. Let I be the
countable set of all non-empty finite intervals {n, n+1, . . . ,m} ⊆ N and give IN the
product topology, where I is taken discrete. We say that W = [en] is continuously
tight if there is a continuous function

f : bb(en)→ IN

such that for any block sequence (yn) ∈ WN, f
(
(yn)

)
= (In) ∈ IN is a sequence of

intervals such that I0 < I1 < I2 < . . . and such that whenever A ⊆ N is infinite,

[yn] 6v [en
∣∣ n /∈

⋃
k∈A

Ik].

In other words, f continuously chooses the sequence of intervals witnessing tight-
ness.

As in the case of Banach spaces, for anyK > 1, block subspace Y ⊆W , and block
sequence (xn) of (en), we define T ((xn), Y,K) to be the non-empty tree consisting
of all finite sequences (y0, . . . , yk) in Y such that

(y0, . . . , yk) ∼K (x0, . . . , xk).

Similarly define the embeddability index of (xn) in Y by

Emb((xn), Y ) = sup
K>1

rank
(
T ((xn), Y,K)

)
.

Then, if Y denotes the closed R-linear subspace of W spanned by Y , we have, as
was observed earlier, that

Emb((xn),Y) = Emb((xn), Y ).

We recall the statement of Theorem 3.

Theorem 9. Let W be a Banach space with a Schauder basis (en) and having no
minimal subspaces. Then there is a block subspace X = [xn] that is α-tight for some
countable ordinal α.

Proof. By the results of [2], we have that, as W has no minimal subspaces, there is
a block subspace X = [xn] of W = [en] that is continuously tight as witnessed by
a function f . So it suffices to show that for some α < ω1 and any block sequence
(yn) of (xn), if (In) = f

(
(yn)

)
, then

Emb
(
(yn), [xn

∣∣ n /∈
⋃
k∈A

Ik]
)
6 α,

for any infinite set A ⊆ N.
Note that if D is any countable set, we can equip the power set P(D) with the

compact metric topology obtained from the natural identification with 2D. Let [N]
denote the space of infinite subsets of N equipped with the Polish topology induced
from P(N). We define a Borel measurable function between Polish spaces

T : bb(xn)× [N]× N→ P(X<N),

by setting
T ((yn), A,K) = T ((yn), [xn

∣∣ n /∈
⋃
j∈A

Ij ],K),
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where (In) = f
(
(yn)

)
.

By assumption, the image of T is an analytic set of well-founded trees on X. So,
by the Boundedness Theorem for analytic sets of well-founded trees, there is some
α < ω1 such that

sup
((yn),A,K)∈bb(xn)×[N]×N

rank
(
T ((yn), [xn

∣∣ n /∈
⋃
j∈A

Ij ],K)
)
6 α,

whereby, for any block sequence (yn) of (xn) and any infinite subset A ⊆ N,

Emb
(
(yn), [xn

∣∣ n /∈
⋃
k∈A

Ik]
)
6 α,

showing that X is α-tight. �

4. Proof of Theorem 4

4.1. Generalised α-games. Suppose X ⊆ W and α is a countable ordinal num-
ber. We define the generalised Gowers α-game below X, denoted GαX , between two
players I and II as follows:

I Y0 Y1 Yk

ξ0 < α ξ1 < ξ0 ξk < ξk−1

. . .

II F0 ⊆ Y0 F1 ⊆ Y1 Fk ⊆ Yk

x0 ∈ F0 x1 ∈ F0 + F1 xk ∈ F0 + . . .+ Fk

Here α > ξ0 > ξ1 > . . . > ξk = 0 is a strictly decreasing sequence of ordinals,
Yl ⊆ X are block subspaces, the Fl ⊆ Yl are finite-dimensional subspaces, and
xl ∈ F0 +F1 + . . .+Fl non-zero vectors. Since I plays a strictly decreasing sequence
of ordinals, the game will end once ξk = 0 has been chosen and II has responded
with some xk. We then say that the sequence (x0, . . . , xk) of non-zero vectors is
the outcome of the game.

Similarly, we can define the asymptotic α-game below X, FαX , as follows

I n0 n1 nk

ξ0 < α ξ1 < ξ0 ξk < ξk−1

. . .
II n0 < F0 n1 < F1 nk < Fk

x0 ∈ F0 x1 ∈ F0 + F1 xk ∈ F0 + . . .+ Fk

Here again, α > ξ0 > ξ1 > . . . > ξk = 0 is a strictly decreasing sequence of
ordinals, nl natural numbers, the Fl are finite-dimensional subspaces of [ei]∞i=nl+1,
and xl ∈ F0 + F1 + . . . + Fl non-zero vectors. The game ends once I has played
ξk = 0 and II has responded with some xk. The outcome is the sequence of non-zero
vectors (x0, . . . , xk).

If ~x is a finite sequence of non-zero vectors, we define the games GαX(~x), FαX(~x)
as above, except that the outcome is now ~xˆ(z0, . . . , zk).

We also define adversarial α-games by mixing the games above. For this, suppose
E,F are finite-dimensional subspaces of W and ~z is an even-length sequence of non-
zero vectors.
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We define AαX(~z,E, F ) by

n0 < E0 n1 < E1 nk < Ek

x0 x1 xk

I Y0 Y1 Yk

ξ0 ξ1 ξk
. . .

n0 n1 n2

II F0 ⊆ Y0 F1 ⊆ Y1 Fk ⊆ Yk

y0 y1 yk

and BαX(~z,E, F ) by:

E0 ⊆ Y0 E1 ⊆ Y1 Ek ⊆ Yk

x0 x1 xk

I n0 n1 nk

ξ0 ξ1 ξk
. . .

Y0 Y1 Y2

II n0 < F0 n1 < F1 nk < Fk

y0 y1 yk

where

α > ξ0 > ξ1 > . . . > ξk = 0

is a decreasing sequence of ordinals, Yl ⊆ X are block subspaces, and nl natural
numbers. Moreover, in AαX(~z,E, F ),

El ⊆ X ∩ [ei]∞i=nl+1 and Fl ⊆ Yl

are finite-dimensional subspaces, while in BαX(~z,E, F ),

Fl ⊆ X ∩ [ei]∞i=nl+1 and El ⊆ Yl

are finite-dimensional subspaces. Finally, the non-zero vectors xl and yl are chosen
such that

xl ∈ E + E0 + . . .+ El,

while

yl ∈ F + F0 + . . .+ Fl.

Both games terminate once I has played ξk = 0 and II has responded with some
yk. The outcome is then the finite sequence of non-zero vectors

~zˆ(x0, y0, x1, y1, . . . , xk, yk).

Now suppose instead that ~z is an odd-length sequence of non-zero vectors. We
then define AαX(~z,E, F ) by

n1 < E1 n2 < E2 nk < Ek

x1 x2 xk

I Y0 Y1 Y2 Yk

ξ1 ξ2 ξk
. . .

n1 n2

II F0 ⊆ Y0 F1 ⊆ Y1 Fk ⊆ Yk

y0 y1 yk
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and BαX(~z,E, F ) by:
E1 ⊆ Y1 E2 ⊆ Y2 Ek ⊆ Yk

x1 x2 xk

I n0 n1 n2 nk

ξ1 ξ2 ξk
. . .

Y1 Y2

II n0 < F0 n1 < F1 nk < Fk

y0 y1 yk

where
α > ξ1 > . . . > ξk = 0

is a decreasing sequence of ordinals,

xl ∈ E + E1 + . . .+ El,

yl ∈ F + F0 + . . .+ Fl,

and otherwise the games are identical to those above. The outcome is now the finite
sequence ~zˆ(y0, x1, y1, . . . , xk, yk).

If ~z = ∅ and E = F = {0}, we shall write AαX and BαX instead of AαX(~z,E, F ),
respectively BαX(~z,E, F ). Thus, in both games AαX and BαX , one should remember
that I is the first to play a vector. And in AαX , I plays block subspaces and II
plays integers, while in BαX , II takes the role of playing block subspaces and I plays
integers.

We should also mention the degenerate case when α = 0. The games GαX(~z) and
FαX(~z) then terminate immediately with outcome ~z and, if ~z is of even length, the
same holds for the games AαX(~z,E, F ) and BαX(~z,E, F ). On the other hand, if ~z is
of odd length, in AαX(~z,E, F ) and BαX(~z,E, F ), I will play respectively Y0 and n0

and II respond with a single y0 according to the rules, whereby the outcome is now
~zˆy0.

If X and Y are subspaces, where Y is spanned by an infinite block sequence
(y0, y1, y2, . . .), we write Y ⊆∗ X if there is n such that ym ∈ X for all m > n. A
simple diagonalisation argument shows that if X0 ⊇ X1 ⊇ X2 ⊇ . . . is a decreasing
sequence of block subspaces, then there is some Y ⊆ X0 such that Y ⊆∗ Xn for all
n.

The aim of the games above is for each of the players to ensure that the outcome
lies in some predetermined set depending on the player. By the asymptotic nature
of the game, it is easily seen that if T ⊆W<N and Y ⊆∗ X, then if II has a strategy
in GαX or AαX(~z,E, F ) to play in T , i.e., to ensure that the outcome is in T , then II
will have a strategy in GαY , respectively AαY (~z,E, F ), to play in T too. Similarly,
if I has a strategy in FαX or BαX(~z,E, F ) to play in T , then I also has a strategy in
FαY , respectively in BαX(~z,E, F ), to play in T .

4.2. Ramsey determinacy of adversarial α-games. We are now ready to prove
the basic determinacy theorem for adversarial α-games, which can be seen as a
refinement of the determinacy theorem for open adversarial games (see Theorem
12 in [6]).

Theorem 10. Suppose α < ω1 and T ⊆ W<N. Then for any X ⊆ W there is
Y ⊆ X such that either

(1) II has a strategy in AαY to play in T , or
(2) I has a strategy in BαY to play in ∼T .
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Proof. We say that
(a) (~x,E, F, β,X) is good if II has a strategy in AβX(~x,E, F ) to play in T .
(b) (~x,E, F, β,X) is bad if ∀Y ⊆ X, (~x,E, F, β, Y ) is not good.
(c) (~x,E, F, β,X) is worse if it is bad and either

(1) |~x| is even and β = 0, or
(2) |~x| is even, β > 0, and

∀Y ⊆ X ∃E0 ⊆ Y ∃x0 ∈ E + E0 ∃γ < β (~xˆx0, E + E0, F, γ,X) is bad,

or
(3) |~x| is odd and

∃n ∀n < F0 ⊆ X ∀y0 ∈ F + F0 (~xˆy0, E, F + F0, β,X) is bad,

(d) (~x,E, F, β,X) is wicked if ∀y0 ∈ F (~xˆy0, E, F, β,X) is bad.
One checks that good, bad and wicked are all ⊆∗-hereditary in the last coordinate,
that is, if (~x,E, F, β,X) is good and Y ⊆∗ X, then also (~x,E, F, β, Y ) is good, etc.
So, by diagonalising over the countably many tuples of ~x, E, F , and β 6 α, we can
find some Y ⊆ X such that for all ~x, E, F , and β 6 α,

(i) (~x,E, F, β, Y ) is either good or bad, and
(ii) if there is some Y0 ⊆ Y such that for all F0 ⊆ Y0, (~x,E, F + F0, β, Y ) is

wicked, then there is some n such that for all n < F0 ⊆ Y , (~x,E, F +
F0, β, Y ) is wicked.

Lemma 11. If (~x,E, F, β, Y ) is bad, then it is worse.

Proof. Assume first that |~x| is even. The case when β = 0 is trivial, so assume also
β > 0. Since (~x,E, F, β, Y ) is bad, we have

∀V ⊆ Y II has no strategy in AβV (~x,E, F ) to play in T.

Referring to the definition of the game AβV (~x,E, F ), this implies that

∀V ⊆ Y ∃E0 ⊆ V ∃x0 ∈ E + E0 ∃γ < β

II has no strategy in AγV (~xˆx0, E + E0, F ) to play in T,

(note that the subspace Y0 ⊆ V also played by I becomes the first play of I in the
game AγV (~xˆx0, E+E0, F )). But if V ⊆ Y and II has no strategy in AγV (~xˆx0, E+
E0, F ) to play in T , then (~xˆx0, E + E0, F, γ, V ) is not good and hence must be
bad. Thus,

∀V ⊆ Y ∃E0 ⊆ V ∃x0 ∈ E + E0 ∃γ < β (~xˆx0, E + E0, F, γ, V ) is bad,

which is just to say that (~x,E, F, β, Y ) is worse.
Now suppose instead that |~x| is odd. As (~x,E, F, β, Y ) is bad, it is not good and

so II has no strategy in AβY (~x,E, F ) to play in T . Therefore, for some Y0 ⊆ Y , we
have

∀F0 ⊆ Y0 ∀y0 ∈ F + F0 II has no strategy in AβY (~xˆy0, E, F + F0) to play in T.

i.e.,

∀F0 ⊆ Y0 ∀y0 ∈ F + F0 (~xˆy0, E, F + F0, β, Y ) is not good and hence is bad.

In other words,
∀F0 ⊆ Y0 (~x,E, F + F0, β, Y ) is wicked.
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So by (ii) we have

∃n ∀n < F0 ⊆ Y (~x,E, F + F0, β, Y ) is wicked,

that is

∃n ∀n < F0 ⊆ Y ∀y0 ∈ F + F0 (~xˆy0, E, F + F0, β, Y ) is bad,

showing that (~x,E, F, β, Y ) is worse. �

If (∅, {0}, {0}, α, Y ) is good, the first possibility of the statement of the theorem
holds. So suppose instead (∅, {0}, {0}, α, Y ) is bad and hence worse. Then, using
the lemma and unraveling the definition of worse, we see that I has a strategy to
play the game BαY such that at any point in the game, if

~x = (x0, y0, x1, y1, . . . , xl, yl)
E0, F0, E1, F1, . . . , El, Fl

α > ξ0 > ξ1 > . . . > ξl,

respectively,

~y = (x0, y0, x1, y1, . . . , yl−1, xl)
E0, F0, E1, F1, . . . , Fl−1, El

α > ξ0 > ξ1 > . . . > ξl,

have been played, then

(~x,E0 + . . .+ El, F0 + . . .+ Fl, ξl, Y ),

respectively
(~y,E0 + . . .+ El, F0 + . . .+ Fl−1, ξl, Y ),

is worse. Since α > ξ0 > ξ1 . . ., we eventually have ξk = 0, that is, the game
terminates with some worse

(~z,E0 + . . .+ Ek, F0 + . . .+ Fk, 0, Y ),

whereby the outcome ~z lies in ∼T . �

4.3. A game theoretic dichotomy. We first need a lemma ensuring us a certain
uniformity.

Lemma 12. Let β < ω1 and suppose that for every X ⊆ W there are K > 1 and
a block sequence (yn) ⊆ X such that II has a strategy in F βX to play (x0, x1, . . . , xk)
satisfying

(x0, x1, . . . , xk) ∼K (y0, y1, . . . , yk).
Then there are K > 1 and Y ⊆W such that for all X ⊆ Y there is a block sequence
(yn) ⊆ X such that II has a strategy in F βX to play (x0, x1, . . . , xk) satisfying

(x0, x1, . . . , xk) ∼K (y0, y1, . . . , yk).

In other words, K > 1 can be chosen uniformly for all X ⊆ Y .

Proof. Assume toward a contradiction that the conclusion fails. Then, as the games
F βX to play in any set T ⊆ W<N are determined, i.e., either I or II has a winning
strategy, we can inductively define W ⊇ Y0 ⊇ Y1 ⊇ . . . such that for any block
sequence (yn) in YK , I has a strategy in F βYK

to play (x0, x1, . . . , xk) satisfying

(x0, x1, . . . , xk) 6∼K (y0, y1, . . . , yk).
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For each N ∈ N, let c(N) be a constant such that if (v0, v1, . . . , vN−1, vN , vN+1, . . .)
and (u0, u1, . . . , uN−1, vN , vN+1, . . .) are two normalised block sequences of (en),
then

(v0, v1, . . . , vN−1, vN , vN+1, . . .) ∼c(N) (u0, u1, . . . , uN−1, vN , vN+1, . . .).

Now choose a block sequence (x0, x1, x2, . . .) such that for every N there are nor-
malised v0, v1, . . . , vN−1 ∈ YN ·c(N) with

v0 < v1 < . . . < vN−1 < xN < xN+1 < . . .

and, moreover, such that xN , xN+1, . . . ∈ YN ·c(N). Set also X = [xn].
By the assumptions of the lemma, we can find some constant N ∈ N and a

normalised block sequence (y0, y1, . . .) in X such that II has a strategy in F βX to
play (w0, w1, . . . , wk) with

(w0, w1, . . . , wk) ∼N (y0, y1, . . . , yk).

Since min supp(xN ) 6 min supp(yN ), it follows by the choice of (xn) that there are
normalised v0, v1, . . . , vN−1 ∈ YN ·c(N) such that

v0 < v1 < . . . < vN−1 < yN < yN+1 < . . . .

Moreover, by the definition of c(N), we have

(v0, v1, . . . , vN−1, yN , yN+1, . . .) ∼c(N) (y0, y1, . . . , yN−1, yN , yN+1, . . .).

Thus, if we let vn = yn for all n > N , we see that II has a strategy in F βX to play
(w0, w1, . . . , wk) with

(w0, w1, . . . , wk) ∼N (y0, y1, . . . , yk) ∼c(N) (v0, v1, . . . , vk).

But X ⊆∗ YN ·c(N), so II has a strategy in F βYN·c(N)
to play (w0, w1, . . . , wk) with

(w0, w1, . . . , wk) ∼N ·c(N) (v0, v1, . . . , vk).

On the other hand, (vn) ⊆ YN ·c(N) and so I has a strategy in F βYN·c(N)
to play

(w0, w1, . . . , wk) such that

(w0, w1, . . . , wk) 6∼N ·c(N) (v0, v1, . . . , vk),

which is absurd. This contradiction proves the lemma. �

Lemma 13. Suppose X ⊆W , (y0, y1, y2, . . .) is a sequence of vectors in W , α < ω1

and K > 1. Assume that II has a strategy in Fω·αX to play (x0, x1, . . . , xk) such that

(x0, x1, . . . , xk) ∼K (y0, y1, . . . , yk).

Then II has a strategy in BαX to play (u0, v0, u1, v1, . . . , uk, vk) such that

(u0, u1, . . . , uk) ∼K (v0, v1, . . . , vk).

Proof. We shall describe the strategy for II in the game BαX , the idea being that,
when playing the game BαX , II will keep track of an auxiliary run of Fω·αX , using his
strategy there to compute his moves in BαX .

Now, in BαX , II will play subspaces Y0, Y1, . . . all equal to Y = [yn], whereby the
subspaces Y0, Y1, . . . and E0, E1, . . . lose their relevance and we can eliminate them
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from the game for simplicity of notation. We thus have the following presentation
of the game BαX .

u0 ∈ Y u1 ∈ Y uk ∈ Y
I n0 n1 nk

ξ0 < α ξ1 < ξ0 ξk < ξk−1

. . .

II n0 < F0 n1 < F1 nk < Fk

v0 ∈ F0 v1 ∈ F0 + F1 vk ∈ F0 + . . .+ Fk

So suppose u0, u1, . . . is being played by I in BαX . To compute the answer v0, v1, . . .,
II follows his strategy in Fω·αX to play (z0, z1, . . . , zk) ∼K (y0, y1, . . . , yk) as follows.
First, as u0, u1, . . . ∈ Y = [yn], we can write each ui as

ui =
mi−1∑
j=0

λijyj ,

where we, by adding dummy variables, can assume that m0 < m1 < m2 < . . .. So
to compute v0 and F0 given u0, n0 and ξ0, II first runs an initial part of Fω·αX as
follows

I n0 n0 n0

ωξ0+m0−1 ωξ0+m0−2 ωξ0
. . .

II n0 < F 0
1 n0 < F 0

2 n0 < F 0
m0

x0 ∈ F 0
1 x1 ∈ F 0

1 +F 0
2 xm0−1 ∈ F 0

1 + . . .+F 0
m0

He then plays F0 = F 0
1 + . . .+ F 0

m0
and

v0 =
m0−1∑
j=0

λ0
jxj ∈ F0

in BαX .
Next, I will play some u1, n1 and ξ1, and, to compute v1 and F1, II will continue

the above run of Fω·αX with

I n1 n1

ωξ1 +m1 − 1 ωξ1
. . .

II n1 < F 1
1 n1 < F 1

m1
xm0 ∈ F0 + F 0

1 xm1−1 ∈ F0 + F 1
1 + . . .+ F 1

m1

He then plays F1 = F 1
1 + . . .+ F 1

m1
and

v1 =
m1−1∑
j=0

λ1
jxj ∈ F0 + F1

in BαX .
So at each stage, II will continue his run of Fω·αX a bit further until eventually I

has played some ξk = 0. Thus, in the game Fω·αX , I will play ordinals

α > ωξ0 +m0 − 1 > ωξ0 +m0 − 2 > . . . > ωξ0 > ωξ1 +m1 − 1 > . . . > ωξk = 0

and integers n0 > n0 > . . . > n0 > n1 > . . . > nk, while II will use his strategy to
play (x0, x1, . . . , xmk−1) such that

(x0, x1, . . . , xmk−1) ∼K (y0, y1, . . . , ymk−1).
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Since the vi and ui have the same coefficients over respectively (xn) and (yn), it
follows that

(u0, u1, . . . , uk) ∼K (v0, v1, . . . , vk).
�

By a similar argument, we have the following lemma.

Lemma 14. Suppose X ⊆ W , (y0, y1, y2, . . .) is a block sequence in W , α < ω1

and K > 1. Assume that II has a strategy in Fω·αX to play (x0, x1, . . . , xk) such that

(x0, x1, . . . , xk) ∼K (y0, y1, . . . , yk).

Then for any block sequence (zn) in [yn], II has a strategy in FαX to play (v0, v1, . . . , vk)
such that

(v0, v1, . . . , vk) ∼K (z0, z1, . . . , zk).

Proof. First, as (zn) is a block sequence in [yn], we can write each zi as

zi =
mi−1∑
j=mi−1

λjyj ,

where m−1 = 0 < m0 < m1 < m2 < . . ..
As before, when playing FαX , II will keep track of an auxiliary run of FωαX , using

his strategy there to compute his moves in FαX . So the game FαX runs as follows:

I n0 n1 nk

ξ0 ξ1 ξk
. . .

II n0 < F0 n1 < F1 nk < Fk

v0 ∈ F0 v1 ∈ F0 + F1 vk ∈ F0 + . . .+ Fk

To compute v0, II first runs an initial part of FωαX as follows

I n0 n0 n0

ωξ0+m0−1 ωξ0+m0−2 ωξ0
. . .

II n0 < F 0
1 n0 < F 0

2 n0 < F 0
m0

x0 ∈ F 0
1 x1 ∈ F 0

1 +F 0
2 xm0−1 ∈ F 0

1 + . . .+F 0
m0

He then plays F0 = F 0
1 + . . .+ F 0

m0
and

v0 =
m0−1∑
j=m−1

λjxj ∈ F0

in FαX .
Next, I will play some ξ1 and n1 and to compute v1 and F1, II will continue the

above run of FωαX with

I n1 n1

ωξ1 +m1 −m0 − 1 ωξ1
. . .

II n1 < F 1
1 n1 < F 1

m1−m0
xm0 ∈ F0 + F 0

1 xm1−1 ∈ F0 + F 1
1 + . . .+ F 1

m1−m0

He then plays F1 = F 1
1 + . . .+ F 1

m1−m0
and

v1 =
m1−1∑
j=m0

λjxj ∈ F0 + F1



16 CHRISTIAN ROSENDAL

in FαX .
So at each stage, II will continue his run of FωαX a bit further until eventually I

has played some ξk = 0. Thus, in the game FωαX , I will play ordinals

α > ωξ0 +m0−1 > ωξ0 +m0−2 > . . . > ωξ0 > ωξ1 +m1−m0−1 > . . . > ωξk = 0

and integers n0 > n0 > . . . > n0 > n1 > . . . > nk, while II will use his strategy to
play (x0, x1, . . . , xmk−1) such that

(x0, x1, . . . , xmk−1) ∼K (y0, y1, . . . , ymk−1).

Since the vi and zi have the same coefficients over respectively (xn) and (yn), it
follows that

(v0, v1, . . . , vk) ∼K (z0, z1, . . . , zk).
�

Lemma 15. Suppose X ⊆W , (yn) is a block sequence in W , α < ω1, and K,C >
1. Assume that

(a) II has a strategy in FαX to play (x0, . . . , xk) such that

(x0, x1, . . . , xk) ∼K (y0, y1, . . . , yk),

and
(b) II has a strategy in AαX to play (u0, v0, . . . , uk, vk) such that

(u0, u1, . . . , uk) ∼C (v0, v1, . . . , vk),

Then II has a strategy in GαX to play (v0, . . . , vk) such that

(v0, v1, . . . , vk) ∼KC (y0, y1, . . . , yk).

Proof. To compute his strategy in GαX , II will play auxiliary runs of the games AαX
and FαX in which he is using the strategies described above. Information is then
copied between the games as indicated in the diagrams below.

The game GαX :

I Y0 Y1 Yk

ξ0 ξ1 ξk
. . .

II F0 ⊆ Y0 F1 ⊆ Y1 Fk ⊆ Yk

v0 ∈ F0 v1 ∈ F0 + F1 vk ∈ F0 + . . .+ Fk

The game FαX :

I n0 n1 nk

ξ0 ξ1 ξk
. . .

II n0 < E0 n1 < E1 nk < Ek

x0 ∈ E0 x1 ∈ E0 + E1 xk ∈ E0 + . . .+ Ek

The game AαX :

n0 < E0 n1 < E1 nk < Ek

x0 ∈ E0 x1 ∈ E0+E1 xk ∈ E0+. . .+Ek

I Y0 Y1 Yk

ξ0 ξ1 ξk
. . .

n0 n1

II F0 ⊆ Y0 Fk ⊆ Yk

v0 ∈ F0 vk ∈ F0+. . .+Fk
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By chasing the diagrams, one sees that this fully determines how II is to play in
GαX . Moreover, since II follows his strategy in FαX , we have

(x0, x1, . . . , xk) ∼K (y0, y1, . . . , yk),

while the strategy in AαX ensures that

(x0, x1, . . . , xk) ∼C (v0, v1, . . . , vk),

from which the conclusion follows. �

Theorem 16. Suppose α < ω1. Then there is X ⊆ W such that one of the
following holds

(1) For every block sequence (yn) in X and K > 1, I has a strategy in FωαX to
play (x0, x1, . . . , xk) satisfying

(x0, x1, . . . , xk) 6∼K (y0, y1, . . . , yk).

(2) For some K > 1 and every block sequence (zn) ⊆ X, II has a strategy in
GαX to play (x0, x1, . . . , xk) satisfying

(x0, x1, . . . , xk) ∼K (z0, z1, . . . , zk).

Proof. Suppose that there is no X ⊆ W for which (1) holds. Then, using that the
game FωαX is determined, for every X ⊆W there is a block sequence (yn) in X and
some K > 1 such that II has a strategy in FωαX to play (x0, x1, . . . , xk) satisfying

(x0, x1, . . . , xk) ∼K (y0, y1, . . . , yk).

So, by Lemma 12, there is some K > 1 and Y ⊆ W such that for all X ⊆ Y
there is some block sequence (yn) in X such that II has a strategy in FωαX to play
(x0, x1, . . . , xk) satisfying

(x0, x1, . . . , xk) ∼K (y0, y1, . . . , yk).

If thus follows from Lemma 13 that for all X ⊆ Y , II has a strategy in BαX to
play (u0, v0, u1, v1, . . . , uk, vk) such that

(u0, u1, . . . , uk) ∼K (v0, v1, . . . , vk).

Therefore, there is no X ⊆ Y such that I has a strategy in BαX to play a sequence
(u0, v0, u1, v1, . . . , uk, vk) satisfying

(u0, u1, . . . , uk) 6∼K (v0, v1, . . . , vk),

and thus, by Theorem 10, we can find some X ⊆ Y such that II has a strategy in
AαX to play (u0, v0, u1, v1, . . . , uk, vk) satisfying

(u0, u1, . . . , uk) ∼K (v0, v1, . . . , vk).

Let (yn) be the block sequence in X such that II has a strategy in FωαX to play
(x0, x1, . . . , xk) satisfying

(x0, x1, . . . , xk) ∼K (y0, y1, . . . , yk).

Then, using Lemma 14, we see that for any block sequence (zn) ⊆ [yn], II has a
strategy in FαX to play (x0, x1, . . . , xk) such that

(x0, x1, . . . , xk) ∼K (z0, z1, . . . , zk).

In other words, there is some block sequence (yn) in X such that for any block
sequence (zn) ⊆ [yn]
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(a) II has a strategy in FαX to play (x0, . . . , xk) satisfying

(x0, x1, . . . , xk) ∼K (z0, z1, . . . , zk),

and
(b) II has a strategy in AαX to play (u0, v0, . . . , uk, vk) satisfying

(u0, u1, . . . , uk) ∼K (v0, v1, . . . , vk),

So finally, by Lemma 15, for any block sequence (zn) ⊆ [yn], II has a strategy in
GαX to play (v0, . . . , vk) such that

(v0, v1, . . . , vk) ∼K2 (z0, z1, . . . , zk).

Replacing X by the block subspace [yn] ⊆ X and K by K2, we get (2). �

4.4. The embeddability index.

Lemma 17. Suppose α < ω1, K > 1, X ⊆ W and (zn) ⊆ W is a block sequence
such that II has a strategy in GαX to play (y0, . . . , yk) satisfying

(y0, . . . , yk) ∼K (z0, . . . , zk).

Then for any subspace Y ⊆ X, rank
(
T ((zn), Y,K)

)
> α.

Proof. Let Y ⊆ X and suppose toward a contradiction that rank
(
T ((zn), Y,K)

)
=

ξ0 + 1 6 α, where ξ0 is the rank of the root ∅ in T ((zn), Y,K). Now, let I play Y, ξ0
in GαX and let II respond using his strategy

I Y

ξ0

II E0 ⊆ Y
y0 ∈ E0

Then the rank of (y0) ∈ T ((zn), Y,K) is some ordinal ξ1 < ξ0, so in GαX , I continues
by playing Y, ξ1 and II responds according to his strategy

I Y Y

ξ0 ξ1

II E0 ⊆ Y E1 ⊆ Y
y0 ∈ E0 y1 ∈ E0 + E1

Again, the rank of (y0, y1) ∈ T ((xn), Y,K) is some ordinal ξ2 < ξ1, so in GαX , I
continues by playing Y, ξ2 and II responds according to his strategy

I Y Y Y

ξ0 ξ1 ξ2

II E0 ⊆ Y E1 ⊆ Y E2 ⊆ Y
y0 ∈ E0 y1 ∈ E0 + E1 y2 ∈ E0 + E1 + E2

Etc.
Eventually, we will have constructed some (y0, y1, . . . , yk−1) whose T ((zn), Y,K)-

rank is ξk = 0, while
I Y Y

ξ0 ξk−1

. . .

II E0 ⊆ Y Ek−1 ⊆ Y
y0 ∈ E0 yk−1 ∈ E0 + . . .+ Ek−1

has been played according to the strategy of II.
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It follows that if I continues the game by playing Y, ξk = 0,

I Y Y Y
ξ0 ξk−1 ξk = 0

. . .

II E0 ⊆ Y Ek−1 ⊆ Y
y0 ∈ E0 yk−1 ∈ E0 + . . .+ Ek−1

using his strategy, II must be able to respond with some Ek and yk ∈ E0 + . . .+Ek

I Y Y Y
ξ0 ξk−1 ξk = 0

. . .

II E0 ⊆ Y Ek−1 ⊆ Y Ek ⊆ Y
y0 ∈ E0 yk−1 ∈ E0 + . . .+ Ek−1 yk ∈ E0 + . . .+ Ek

Since II played according to his strategy, we have (y0, y1, . . . , yk) ∼K (z0, z1, . . . , zk)
and thus (y0, y1, . . . , yk) ∈ T

(
(zn), Y,K

)
, contradicting that (y0, . . . , yk−1) has

T
(
(zn), Y,K

)
-rank 0 and hence is a terminal node. �

Lemma 18. Suppose (xn) ⊆ W is a block sequence, β < ω1, and that for every
normalised block sequence (yn) in X = [xn] and K > 1, I has a strategy in F βX to
play (z0, z1, . . . , zk) such that

(z0, z1, . . . , zk) 6∼K (y0, y1, . . . , yk).

Then, for every normalised block sequence (yn) in X and K > 1, there is a sequence
(Jm) of intervals of N with min Jm →∞, such that if A ⊆ N is infinite, contains 0
and Z = [xj

∣∣ j /∈ ⋃m∈A Jm], then

rank
(
T ((yn), Z,K)

)
6 β.

Proof. We relativise the notions of support of vectors et cetera to the basis (xn)
for X. So the reader can assume that (xn) is the original basis (en) and X = W .

Assume (yn) is a normalised block sequence in X and K > 1. Let also ∆ = (δj)
be a sequence of positive real numbers such that whenever zj , vj ∈ X, ‖zj−vj‖ < δj ,
and

(v0, . . . , vk) ∼K (y0, . . . , yk),

then
(z0, . . . , zk) ∼2K (y0, . . . , yk).

We choose sets Di ⊆ X such that for each finite set d ⊆ N, the number of z ∈ Di
such that supp(z) = d is finite, and for every v ∈ X with ‖v‖ 6 K there is some
z ∈ Di with supp(z) = supp(v) and ‖z − v‖ < δi. This is possible since the K-ball
in [xj ]j∈d is totally bounded for all finite d ⊆ N.

The strategy for I in F βX in the game for (yn) with constant 2K can be seen as
a pair of functions ξ and n that to each legal position (z0, E0, . . . , zj , Ej) of II in
F βX provide the next play ξ(z0, E0, . . . , zj , Ej) ∈ Ord and n(z0, E0, . . . , zj , Ej) ∈ N
by I.

We define a function p : N→ N by letting p(m) be the maximum of m and

max
(
n(z0, [xl]l∈d0 , . . . , zi, [xl]l∈di)

∣∣ dj ⊆ [0,m− 1] zj ∈ [xl]l∈d0∪...∪dj ∩ Dj
)
.

By assumption on the sets Dj , p is well-defined and so we can set Jm = [m, p(m)] ⊆
N.
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We claim that if A ⊆ N is an infinite set containing 0 and

Z = [xn | n /∈
⋃
m∈A

Jm],

then
rank

(
T ((yn), Z,K)

)
6 β.

To see this, we define a monotone function φ, i.e., ~v ≺ ~w ⇒ φ(~v) ≺ φ(~w), associating
to each ~v = (v0, v1, . . . , vi) ∈ T ((yn), Z,K) some

φ(~v) = (z0, z1, . . . , zi) ∈ D0 × D1 × . . .× Di
such that for all j 6 i, ‖zj − vj‖ < δj and supp(zj) = supp(vj), whereby, in
particular, zj ∈ Z. Also set T = φ

[
T ((yn), Z,K)

]
and note that T is a subtree of

Z<N with
rank(T ) > rank

(
T ((yn), Z,K)

)
.

Suppose toward a contradiction that rank(T ) > β, whereby the rank of ∅ in
T is > β. We describe how II can play against the strategy for I in F βX to play
(z0, . . . , zk) such that

(z0, . . . , zk) ∼2K (y0, . . . , yk),
which will contradict the assumption on the strategy for I. The case β = 0 is trivial,
so we assume that β > 0.

First, I plays ξ(∅) < β and n(∅). Since, a0 = 0 ∈ A, we have n(∅) 6 p(a0) =
max Ja0 < Z and thus there is some n(∅) < z0 ∈ T whose rank in T is > ξ(∅).
Find also a1 ∈ A such that z0 < Ja1 and let E0 = [xj

∣∣ Ja0 < xj < Ja1 ]. So let II
respond by

I n(∅)
ξ(∅)

II n(∅) < E0

z0 ∈ E0

Now, by his strategy, I will play some ξ(z0, E0) < ξ(∅) and n(z0, E0) 6 p(a1) =
max Ja1 . So find some z1 such that (z0, z1) ∈ T and has rank > ξ(z0, E0) in T .
Find also a2 ∈ A such that z1 < Ja2 . Then, as a0, a1 ∈ A, if we set E1 = [xj

∣∣ Ja1 <
xj < Ja2 ], we have z1 ∈ E0 + E1, so we let II respond by

I n(∅) n(z0, E0)
ξ(∅) ξ(z0, E0)

II n(∅) < E0 n(z0, E0) < E1

z0 ∈ E0 z1 ∈ E0 + E1

Et cetera. It follows that at the end of the game,
I n(∅) n(z0, E0, . . . , zk−1, Ek−1)

ξ(∅) ξ(z0, E0, . . . , zk−1, Ek−1) = 0
. . .

II n(∅) < E0 n(z0, E0, . . . , zk−1, Ek−1) < Ek

z0 ∈ E0 zk ∈ E0 + . . .+ Ek

II will have constructed a sequence (z0, . . . , zk) ∈ T . So, by the definition of T ,
there is some (v0, . . . , vk) ∈ T ((yn), Z,K) such that φ(v0, . . . , vk) = (z0, . . . , zk) and
hence ‖zj − vj‖ < δj for all j. Thus,

(v0, . . . , vk) ∼K (y0, . . . , yk),
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and hence
(z0, . . . , zk) ∼2K (y0, . . . , yk).

Since II cannot have such a strategy, it follows instead that

rank
(
T ((yn), Z,K)

)
6 rank(T ) 6 β,

which proves the lemma. �

Lemma 19. Suppose (xn) ⊆ W is a normalised block sequence, β < ω1, and that
for every normalised block sequence (yn) in X = [xn] and K > 1, I has a strategy
in F βX to play (z0, z1, . . . , zk) such that

(z0, z1, . . . , zk) 6∼K (y0, y1, . . . , yk).

Then, for every normalised block sequence (yn) in X there is a sequence

I0 < I1 < I2 < . . .

of intervals of N, such that if A ⊆ N is infinite and Z = [xj
∣∣ j /∈ ⋃m∈A Im], then

Emb
(
(yn), Z

)
6 β.

Proof. Fix a normalised block sequence (yn) in X and relativise again all notions
of support et cetera to the block basis (xn). By Lemma 18, we can for every K find
a sequence (JKn ) of intervals of N with minJKn −→

n→∞
∞ such that for any infinite set

A ⊆ N containing 0, we have

rank
(
T ((yn), [xj

∣∣ j /∈ ⋃
n∈A

JKn ],K)
)
6 β.

Also, for every N , we let c(N) ∈ N be a constant such that any two subsequences
of (xj) differing in at most N terms are c(N)-equivalent.

We construct intervals I0 < I1 < I2 < . . . such that each In contains an interval
from each of the families (J1

i ), . . . , (Jni ) and, moreover,

min In < max In −max Jn·c(min In)
0 .

We claim that if A ⊆ N is infinite and Z = [xj
∣∣ j /∈ ⋃m∈A Im], then

Emb
(
(yn), Z

)
6 β.

Suppose towards a contradiction that this fails for some A and pick some N such
that rank

(
T ((yn), Z,N)

)
> β. Choose a ∈ A such that a > N and note that

min Ia < max Ia −max Ja·c(min Ia)
0 .

Thus, by changing only the terms xj for j < min Ia of the sequence

(xj
∣∣ j /∈ ⋃

m∈A
Im) =

(xj
∣∣ j /∈ ⋃

m∈A
Im & j < min Ia) ∪ (xj

∣∣ j /∈ ⋃
m∈A

Im & j > max Ia),

we find a subsequence of

(xj
∣∣ max Ja·c(min Ia)

0 < j 6 max Ia) ∪ (xj
∣∣ j /∈ ⋃

m∈A
Im & j > max Ia)
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that is c(min Ia)-equivalent with

(xj
∣∣ j /∈ ⋃

m∈A
Im).

Since N · c(min Ia) 6 a · c(min Ia), it follows that if

Y = [xj
∣∣ max Ja·c(min Ia)

0 < j 6 max Ia] + [xj
∣∣ j /∈ ⋃

m∈A
Im & j > max Ia],

then Z vc(min Ia) Y , and so

β < rank
(
T ((yn), Z,N)

)
6 rank

(
T ((yn), Y, a · c(min Ia))

)
.

But, by the choice of the In, we see that there is an infinite subset B ⊆ N containing
0 such that Y is outright a subspace of [xj

∣∣ j /∈ ⋃m∈B Ja·c(min Ia)
m ], whereby, by

choice of the intervals Ja·c(min Ia)
m , we have

rank
(
T ((yn), Y, a · c(min Ia))

)
6 β,

which is absurd. This contradiction shows that the intervals In fulfill the conclusion
of the lemma. �

By combining Theorem 16 and Lemmas 17 and 19, we obtain

Theorem 20. Suppose α < ω1. Then there is a block subspace X = [xn] ⊆ W
such that one of the following holds

(1) For every normalised block sequence (yn) in X there is a sequence

I0 < I1 < I2 < . . .

of intervals of N, such that if A ⊆ N is infinite, then

Emb
(
(yn), [xj

∣∣ j /∈ ⋃
m∈A

Im]
)
6 ωα.

(2) For any subspace Y ⊆ X and any block sequence (zn) ⊆ X,

Emb
(
(zn), Y

)
> α.

And by replacing the normed F-vector subspaces X and Y in Theorem 20 by
their closures X and Y in W, we obtain Theorem 4.

Theorem 21. Let W be Banach space with a Schauder basis and suppose α < ω1.
Then there is a block subspace X = [xn] ⊆ W that is either ωα-tight or (α + 1)-
minimal.
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