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ABSTRACT

We prove that arbitrary homomorphisms from one of the groups

Homeo(2N), Homeo(2N)N, Aut(Q, <), Homeo(R) or Homeo(S1)

into a separable group are automatically continuous. This has conse-

quences for the representations of these groups as discrete groups. For

example, it follows, in combination with a result of V. G. Pestov, that

any action of the discrete group Homeo+(R) by homeomorphisms on a

compact metric space has a fixed point.

1. Introduction

The classical theorem of Pettis [9, Theorem 9.10] says that any Baire measur-

able homomorphism from a Polish group to a separable group is continuous.

Measure theoretic counterparts of this result are also known. Recently, it was

proved [17] that if G is an amenable at 1 Polish group, then any universally

measurable homomorphism from G to a separable group is continuous. All

locally compact Polish groups and abelian Polish groups are amenable at 1 as

are, for example, countable products of amenable locally compact Polish groups.

Therefore, the classical measure theoretic automatic continuity results of Weil

(locally compact groups) and Christensen (abelian groups) are contained in this

theorem. Going beyond homomorphisms with regularity assumptions, of Baire

category type or of measurable type, in automatic continuity results requires the
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domain group to be complicated. It was discovered recently [11] that each ho-

momorphism whose domain is a Polish group with ample generic elements and

whose range is separable is continuous. A Polish group G has ample generics

if for each finite n ≥ 1 the diagonal conjugation action of G on Gn given by

g · (h1, . . . , hn) = (gh1g
−1, . . . , ghng−1)

has a comeagre orbit. Examples of groups with ample generics can be found

among permutation groups; most importantly S∞, the group of all permutations

of N, is such a group (see [11]).

The principal goal of this paper is to exhibit groups which are less complicated

than those with ample generics but which still have this very strong automatic

continuity property. However, our results have broader consequences: for ex-

tremely amenable groups and for questions concerning representing groups as

subgroups of S∞ or as linear groups.

The main tool in our proofs of automatic continuity is a version of the classical

fact due to Steinhaus that if A ⊆ R is a measurable set of positive Lebesgue

measure, then 0 ∈ Int(A − A). (Analogous lemmas were proved later by Pettis

for non-meager subsets A of Polish groups with A having the Baire property and

by Weil for non-Haar zero Haar measurable subsets of locally compact groups.)

Definition 1: Let G be a topological group. We say that G is Steinhaus

if there is k ≥ 1 such that for any symmetric countably syndetic set

W ⊆ G (i.e., covering G by countably many left-translates), W k contains an

open neighbourhood of 1G. To emphasise the exponent k, we will sometimes

say that G is Steinhaus with exponent k.

The first examples of Steinhaus groups come from [11] where it was shown

that Polish groups with ample generics are Steinhaus with exponent 10.

The proposition below makes a connection between the Steinhaus property

and automatic continuity. Its proof is analogous to the derivation of continuity

of Baire measurable homomorphisms from Pettis’ lemma.

Proposition 2: Let G be a Steinhaus topological group and π: G → H a

homomorphism into a separable group. Then π is continuous.

Proof: We need only show that π is continuous at 1G. So suppose U ⊆ H

is an open neighbourhood of 1H and find some symmetric open V such that

1H ∈ V ⊆ V 2k ⊆ U ⊆ H . As H is separable, V covers H by countably

many translates {hnV }. So for each hnV intersecting π[G] take some gn ∈ G
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such that π(gn) ∈ hnV . Then hnV ⊆ π(gn)V −1V = π(gn)V 2, and hence the

π(gn)V 2 cover π[G]. Now, if g ∈ G, find n such that π(g) ∈ π(gn)V 2, whence

π(g−1
n g) ∈ V 2 and g−1

n g ∈ π−1[V 2], i.e., the gnπ−1[V 2] cover G.

So W = π−1[V 2] is symmetric and countably syndetic and hence 1G ∈

Int(W k) for some k ≥ 1. But then π[W k] ⊆ V 2k ⊆ U , and therefore, 1G ∈

Int(π−1[U ]) and π is continuous at 1G.

We see that the exact condition we need to impose on H in the above proof

is that any non-empty open set covers H by countably many translates. This

condition is known in the literature as ℵ0-boundedness and is equivalent to

embedding as a subgroup into a direct product of second countable groups (see

Guran [6]). Thus, by the definition of the product topology, to show that any

homomorphism with range in an ℵ0-bounded group is continuous, it is enough

to show that any homomorphism into a second countable group is continuous.

So from our perspective the three notions of second countable, separable, and

ℵ0-bounded are equivalent.

Let us mention an immediate corollary.

Corollary 3: Let G and H be Polish groups. If G is Steinhaus and H is an

image of G by a homomorphism, then H is Steinhaus.

Proof: The homomorphism between G and H is continuous, by Proposition 2,

and therefore, since it is surjective and since G and H are Polish, it is open.

Now it follows that H is Steinhaus by a straightforward computation.

The main result of this paper is the following.

Theorem 4: The following groups are Steinhaus:

Homeo(2N), Homeo(2N)N, Aut(Q, <), Homeo+(R), and Homeo+(S1).

Here, Homeo+(R) is the group of increasing homeomorphisms of R, and sim-

ilarly Homeo+(S1) is the group of orientation preserving homeomorphisms of

the unit circle, both of them with the topology of uniform (or equivalently,

pointwise) convergence.

A crucial role in our arguments will be played by the existence of comeager

conjugacy classes in Aut(Q, <) [19], [13], and in Homeo(2N) and Homeo+(R)

[11]. Of course, having ample generics implies having a comeager conjugacy

class, however, it is known that Aut(Q, <) and Homeo(R) do not have ample

generics; whether Homeo(2N) has ample generics is open. All conjugacy classes

of Homeo+(S1) are meager.
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Corollary 5: An arbitrary homomorphism from either

Homeo(2N), Homeo(2N)N, Aut(Q, <), Homeo(R), or Homeo(S1)

into a separable group is continuous.

Proof: The result is clear for the three first groups. And for the last, notice

that any homomorphism π: Homeo(R) → H into a separable group restricts

to a continuous homomorphism from Homeo+(R) into H , whence π is also

continuous as Homeo+(R) is open in Homeo(R). Similarly for Hom(S1).

Methods used to prove Theorem 4 yield also the following result on the small

index property.

Theorem 6: Homeo+(R) is the only proper subgroup of Homeo(R) of index

< 2ℵ0 . Similarly, Homeo+(S1) is the only proper subgroup of Homeo(S1) of

index < 2ℵ0 .

2. Applications

2.1 Connections with extreme amenability. A phenomenon that has

recently received considerable attention in topological dynamics is extreme

amenability [16]. A topological group is called extremely amenable if all

of its continuous actions on compact Hausdorff spaces have fixed points. Such

groups are also said to have the fixed point on compacta property. The

first examples of these groups date back to work of Herer and Christensen [7].

Of special interest to us are the results of Pestov [15] stating that Aut(Q, <)

and Homeo+(R) are extremely amenable.

All these examples belong necessarily to the topological setting as Ellis [4]

proved that any abstract (that is, discrete) group acts freely on a compact space.

(This was generalised later by Veech [21] to locally compact groups.) Therefore,

non-trivial discrete groups are not extremely amenable. However, using our

results on automatic continuity, we will see that when one restricts the attention

to actions on metrisable compacta, extreme amenability type phenomena occur

for abstract groups.

Corollary 7: An arbitrary action by homeomorphisms of Aut(Q, <) or

Homeo+(R) on a compact metrisable space has a fixed point.

Proof: It is enough to notice that any action by homeomorphisms on a com-

pact metric space X corresponds to a homomorphism into the homeomorphism
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group of X , which is Polish. By automatic continuity the homomorphism is

continuous, whence the action is continuous. So, by the results of Pestov, there

is a fixed point on X .

A continuous action of a Hausdorff topological group G on compact Hausdorff

spaces is called a G-flow. Such a flow is called minimal if each of its orbits is

dense and it is a general fact that each flow contains a minimal subflow. For any

(Hausdorff) group G there is a universal minimal flow, that is, a continuous

minimal action of G on a compact (Hausdorff) space X such that any minimal

G-flow is a homomorphic continuous image of this one. So, extremely amenable

groups are precisely those groups whose minimal flows are one point spaces.

There are Polish groups that are not extremely amenable, but for which one

nevertheless can compute the universal minimal flow, and for some groups these

flows turn out to be metrisable. For example, Pestov showed that the universal

minimal flow of Homeo+(S1) is simply the canonical action of Homeo+(S1) on

S1. Glasner and Weiss [5] computed the universal minimal flow of Homeo(2N)

to be equal to the canonical action on the space of maximal chains of compact

subsets of 2N, a space which was first introduced and studied by Uspenskij

[20]. In general, there is no reason for a topological Hausdorff group to have

a universal minimal metrisable flow, that is, a metrisable flow which maps

homomorphically onto any metrisable flow. However, using the above results of

Pestov and Glasner–Weiss and our automatic continuity result, we obtain the

existence of such universal minimal metrisable flows for groups whose universal

minimal flows are non-metrisable.

Corollary 8: The discrete groups Homeo+(S1) and Homeo(2N) have uni-

versal minimal metrisable flows, namely the canonical action on S1 and the

canonical action on the space of maximal chains of compact subsets of 2N, re-

spectively.

Note that the universal minimal flows of the discrete groups considered in the

corollary above are non-metrisable, as Kechris, Pestov and Todorcevic proved in

[10] that the universal minimal flow of any locally compact, non-compact group

is non-metrisable.

2.2 Connections with representations. There is some interest in rep-

resenting groups by (faithful) actions on countable sets which corresponds to

embedding the groups into S∞. The maximal size of such groups is 2ℵ0 , and

it is well-known that not every group of size at most 2ℵ0 is embeddable into

S∞. For example, the quotient of S∞ by its subgroup of finitary permutations
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is not so embeddable. Vladimir Pestov recently informed us that John D. Dixon

had asked for a characterisation of the separable (Hausdorff) topological groups

that were abstractly embeddable into S∞, and, in particular, he asked if there

was any counter-example at all. Theorem 6 shows that this is so. For clearly,

if Homeo+(R) acts on a set X of size κ < 2ℵ0 , then the isotropy subgroup of

Homeo+(R) at some x ∈ X is of index ≤ κ and hence has to be the whole group.

Thus Homeo+(R) has no non-trivial representations by permutations on a set

of size < 2ℵ0 whatsoever.

Consider now a more general type of representations namely linear repre-

sentations. Megrelishvili [14], proving a conjecture of Pestov, has shown that

Homeo+(R) has no non-trivial strongly continuous representations by linear

isometries on a reflexive Banach space. Thus by Theorem 4, we see that that

Homeo+(R) has no representations by linear isometries on a reflexive separable

Banach space.

Corollary 9: Homeo+(R), as an abstract group, has no non-trivial represen-

tations by permutations on a set of size < 2ℵ0 . Moreover, it has no representa-

tions by linear isometries on a reflexive separable Banach space.

2.3 Homomorphisms into locally compact Polish groups. Pestov’s

theorem that there are no fixed point free continuous actions of Aut(Q, <) or

Homeo+(R) on compact spaces and Veech’s theorem that each locally compact

group acts freely and continuously on a compact space in connection with our

automatic continuity result (and the remarks following Proposition 2) imply that

there is no abstract non-trivial homomorphism from these groups to locally com-

pact σ-compact groups. (Note that for locally compact groups ℵ0-boundedness

coincides with σ-compactness.) Similarly, a non-trivial homomorphism from a

group G into a locally compact group H , induces a representation of G by linear

isometries on L2 of the Haar measure of H , which is separable if H is second

countable. So the slightly weaker result that Homeo+(R) has no non-trivial ho-

momorphism into a second countable locally compact group, also follows from

Corollary 9.

We show now that the same result holds for Homeo(2N). In fact, the argument

for it is direct and applies also to Aut(Q, <) and Homeo+(R). We will use the

following property of an abstract group F first studied by Bergman [1]:

Whenever W0 ⊆ W1 ⊆ · · · ⊆ F is an exhaustive sequence of subsets,

then for some n and k, F = W k
n .

That this condition holds for Homeo(2N) is due to Droste and Göbel [2]. It also

holds for Aut(Q, <) and Homeo(R) as proved by Droste and Holland [3].
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Theorem 10: Let G be a Polish group which has the above property and has a

comeager conjugacy class. Then there is no non-trivial abstract homomorphism

from G into a locally compact σ-compact group.

Proof: Suppose π: G → H is a homomorphism into a locally compact Pol-

ish group. We claim that π[G] is compact. To see this take some increasing

exhaustive sequence of compact subsets of H :

K0 ⊆ K1 ⊆ · · · ⊆ H.

Then

(K0 ∩ π[G]) ⊆ (K1 ∩ π[G]) ⊆ · · · ⊆ π[G]

is also exhaustive, so, since G is Bergman, there are n and k such that π[G] =

(Kn ∩ π[G])k ⊆ Kk
n. But then π[G] is relatively compact, whence π[G] is com-

pact.

Secondly, we claim that the group K = π[G] has a dense conjugacy class.

For, let C ⊆ G be the comeagre conjugacy class of G and suppose V ⊆ K

is some non-empty open set. We claim that V ∩ π[C] 6= ∅. This suffices as

π[C] is contained in a single conjugacy class of K. First notice that as K is

compact and π[G] is dense, there are {gi}i≤n ⊆ G such that K =
⋃

i≤n π(gi)V ,

whence G =
⋃

i≤n giπ
−1(V ). As C is comeagre,

⋂

i≤n giC 6= ∅, so take some

h ∈
⋂

i≤n giC 6= ∅ and let m be such that h ∈ gmπ−1(V ). Then clearly,

g−1
m h ∈ π−1(V ) ∩ C, and thus π(g−1

m h) ∈ V ∩ π[C].

Therefore π[G] is compact with a dense conjugacy class. But any conjugacy

class in a compact Hausdorff group is closed, so π[G] = {1} as the conjugacy

class of 1 is {1}.

The result above implies that groups with Bergman’s property and with a

comeager conjugacy class cannot have non-trivial representations by automor-

phisms of locally finite graphs. Similarly, they cannot act non-trivially by isome-

tries on compact metric spaces.

3. Homeo(2N) and Homeo(2N)N

Before we begin our proofs, let us first mention the following elementary fact,

which will be used repeatedly.

Lemma 11: Suppose n = 1, 2, . . . ,ℵ0 and {Gi}i≤n are Polish groups with

comeagre conjugacy classes. Then G =
∏

i≤n Gi has a comeagre conjugacy

class.
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Proof: Let, for each i ≤ n, Oi ⊆ Gi be the comeagre conjugacy class. Then

obviously,
∏

i≤n Oi ⊆ G is a conjugacy class of G. Moreover, as

∏

i≤n

Oi =
⋂

i≤n

[(

∏

j 6=i

Gj

)

×Oi

]

by Kuratowski-Ulam this class is comeagre in G.

Theorem 12: Homeo(2N) is Steinhaus.

Proof: Let G = Homeo(2N) and assume W ⊆ G is symmetric and covers G

by countably many left-translates knW , kn ∈ G. In particular, W cannot be

meagre and must therefore be dense in some non-empty open set in G. But then

W−1W = W 2 is dense in an open neighbourhood of the identity in G and we

can therefore find some finite subalgebra A ⊆ clopen(2N) with atoms A1, . . . , Ap

such that W 2 is dense in G(A) = {g ∈ G
∣

∣ g[Ai] = Ai, i = 1, . . . , p}.

For each i = 1, . . . , p choose a point xi ∈ Ai and let Bi
n ⊆ Ai be a sequence of

disjoint clopen sets converging in the Hausdorff metric to the set {xi}. Moreover,

let Bn = B1
n ∪ · · · ∪ Bp

n.

Claim 1: For some n, Bn is full for W 2, i.e., if

γ ∈ {g ∈ Homeo(Bn) : g[Bi
n] = Bi

n, i = 1, . . . p},

then there is a g ∈ W 2 such that g ↾ Bn = γ.

Proof of Claim 1: It suffices to show that some Bn is full for knW since then

it is clearly also full for W 2 = (knW )−1knW . Assuming otherwise, we can find

for each n, some γn ∈ Homeo(Bn) such that for all g ∈ knW , g ↾ Bn 6= γn. Due

to the convergence of the sets Bn to {x1, . . . , xp}, there is a f ∈ G such that

f ↾ Bn = γn and

f ↾

(

2N \
⋃

n

Bn

)

= id2N\
⋃

n
Bn

.

But then by the choice of γn, f /∈ knW for any n, contradicting that the sets

knW cover G, and the claim is proved.

So we can choose some B = Bn0
that is full for W 2. Let now G(B) =

{g ∈ G(A)

∣

∣ supp(g) ⊆ B}.
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Claim 2: G(B) ⊆ W 12.

Proof of Claim 2: To see this, we notice first that G(B) is topologically iso-

morphic to Homeo(2N)p and, therefore by [11] and Lemma 11, it has a comeagre

conjugacy class. Find now some n1 such that kn1
W ∩ G(B) is non-meagre in

G(B). Then

(kn1
W ∩ G(B))−1 · (kn1

W ∩ G(B)) = (W−1k−1
n1

∩ G(B)) · (kn1
W ∩ G(B))

⊆ W 2 ∩ G(B)

is also non-meagre in G(B), so we can find f0 ∈ W 2 ∩ G(B), whose conjugacy

class in G(B) is comeagre in G(B).

Take any h ∈ G(B) and, by fullness of B for W 2 proved in Claim 1, find

g ∈ W 2 such that h↾ B = g ↾ B. Then as f0 ↾ ∁B = id∁B, we have

hf0h
−1 = gf0g

−1 ∈ W 6.

This means that the conjugacy class of f0 in G(B) is contained in W 6 and that

therefore W 6 ∩G(B) is comeagre in G(B), whence, as the square of a comeagre

set is everything, W 12 ∩ G(B) = G(B), proving the claim.

Since W 2 ∩ G(A) is dense in G(A), we can pick an h0 ∈ W 2 ∩ G(A) such that

h0[B] = ∁B, i.e., such that h0[B ∩ Ai] = ∁B ∩ Ai for each i = 1, . . . , p. Then

clearly,
G(∁B) = {g ∈ G(A)

∣

∣ supp(g) ⊆ ∁B}

= h0G(B)h−1
0

⊆ W 16

and

G(B) = G(B) · G(∁B) ⊆ W 28

where B is the subalgebra of clopen(2N) generated by A and the set B. So

W 28 contains the open neighbourhood of the identity, G(B), and Homeo(2N) is

Steinhaus with exponent 28.

We now show how techniques similar to the ones employed above give that

the group Homeo(2N)N is Steinhaus. This result implies the previous one by

Corollary 3. Moreover, notice that it is not in general true that the countable

product of Steinhaus groups is Steinhaus. The simplest counter-example is

(Z/2)N. Here an ultrafilter on N corresponds to a subgroup of index 2, which is

open if and only if the ultrafilter is principal. So (Z/2)N is not Steinhaus, even
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though the discrete group Z/2 is. However, it seems plausible that if W is a

symmetric countably syndetic subset of a product ΠiGi of Steinhaus topological

groups of some common exponent k, then W k should contain a product ΠiUi

of open subsets of the Gi. We have neither a proof nor a counter-example.

Theorem 13: Homeo(2N)N is Steinhaus.

Proof: The group Homeo(2N)N is isomorphic to the subgroup G of

Homeo(2N ×N) consisting of all h ∈ Homeo(2N ×N) with h[2N ×{i}] = 2N ×{i}

for each i ∈ N. Put Ki = 2N × {i}. Let W ⊆ G be such that G =
⋃

n knW for

some kn ∈ G, n ∈ N.

We will borrow two things from the proof of Theorem 12. First note that the

proof of Theorem 12 gives that for any m ∈ N a relatively open neighbourhood

of the identity of the subgroup

{

f ∈ G
∣

∣ supp(f) ⊆
⋃

i<m

Ki

}

is contained in W 28. For this reason, it will suffice to prove that there exists m,

perhaps depending on W and the sequence (kn), such that

{

f ∈ G
∣

∣ supp(F ) ⊆
⋃

m≤i

Ki

}

⊆ W 108.

Second, note that the following claim can be proved just like Claim 2 in the

proof of Theorem 12. The only difference is that in an appropriate place we

need to use Lemma 11 with n = ℵ0.

Claim 1: Let Un
i ⊆ Kn for i ≤ n be pairwise disjoint clopen sets. There exists

n0 such that
{

f ∈ G
∣

∣ supp(f) ⊆
⋃

n≥n0

Un
n0

}

⊆ W 12.

Now, let U ,U ′ be families of pairwise disjoint clopen subsets of
⋃

n Kn. We

say that U ′ refines U if
⋃

U =
⋃

U ′ and each set in U ′ is included in a set from

U . If U ′ refines U and σ and τ are permutations of U and U ′, respectively, we

say that τ refines σ if τ(U ′) ⊆ σ(U) whenever U ′ ⊆ U for U ′ ∈ U ′ and U ∈ U .

Finally, if U refines {Ki

∣

∣ i ≥ n} for some n ∈ N, let Sym0(U) be the group of

all permutations of U which refine the identity permutation of {Ki

∣

∣ i ≥ n}.
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Claim 2: There exist n0 ∈ N and a family of clopen sets U refining {Ki

∣

∣ i ≥ n0}

such that for any U ′ refining U and any τ ∈ Sym0(U
′) refining id ∈ Sym0(U) we

can find h ∈ W 2 with

h[U ] = τ(U) for any U ∈ U ′.

Proof of Claim 2: It suffices to find n0 ∈ N, a family of clopen sets U refining

{Ki

∣

∣ i ≥ n0}, and σ ∈ Sym0(U) such that for any U ′ refining U and any

τ ∈ Sym0(U
′) refining σ we can find h ∈ kn0

W with

h[U ] = τ(U) for any U ∈ U ′.

Indeed, the claim follows from the statement above since

W 2 = (kn0
W )−1kn0

W and σ−1 ◦ σ = id ∈ Sym
0

(U).

Assume towards a contradiction that the statement fails. Let U0 be

{Ki

∣

∣ i ≥ 0} and let τ0 ∈ Sym0(U0) be the identity. Assume we are given

Un refining {Ki

∣

∣ i ≥ n} and τn ∈ Sym(Un) such that there is no h ∈ kn−1W

with h[U ] = τ(U) for all U ∈ Un. Consider

U ′
n =

{

U ∈ Un

∣

∣ U ⊆
⋃

i≥n+1

Ki

}

and τ ′
n = τn ↾ U ′

n.

By our assumption, we can find Un+1 refining U ′
n and τn+1 ∈ Sym0(Un+1)

refining τ ′
n such that for no h ∈ kn+1W do we have h[U ] = τ(U) for all U ∈ Un+1.

The inductive construction allows us to find h0 ∈ G such that for each U ∈ Un

with U ⊆ Kn we have h0[U ] = τn(U). Note that, again by the construction,

h0 6∈ knW for each n. This yields a contradiction since
⋃

n knW = G, and the

claim follows.

Claim 3: Let B, C ⊆ 2N be clopen. Assume that C ∩ B and C \ B are both

non-empty. Let

G1 = {f ∈ Homeo(2N)
∣

∣f [B] = B} and G2 = {f ∈ Homeo(2N)
∣

∣ supp(f) ⊆ C}.

Then Homeo(2N) = G1G2G1G2G1.

Proof of Claim 3: Let f ∈ Homeo(2N). Consider the clopen sets L1 = f [B]∩B

and L2 = f [∁B] ∩ ∁B. Assume both of them are non-empty. This assumption

allows us to find g1 ∈ G1 such that

g1[B \ L1]  C ∩ B and g1[∁B \ L2]  C ∩ ∁B.
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Now there exists g2 ∈ G2 such that

g2[g1[B \ L1]] ⊆ C ∩ ∁B and g2[g1[∁B \ L2]] ⊆ C ∩ B

and

g2[C \ g1[B \ L1]] ⊆ C ∩ B and g2[C \ g1[∁B \ L2]] ⊆ C ∩ ∁B.

Note that f(g2g1)
−1 ∈ G1, so the conclusion follows.

Assume now that L1 or L2 is empty, say L1 = ∅. Then note that ∁B \L2 6= ∅.

Let g1 ∈ G1 be such that

g1[∁B \ L2] ∩ C 6= ∅.

If now g2 ∈ G2 is such that g2[C \ B] = C ∩ B, then clearly the sets L1 and

L2 computed for f(g2g1)
−1 are both non-empty, so we can apply the previous

procedure to get the conclusion of the claim.

We prove now the theorem from the three claims. Pick n0 and U as in Claim 2.

For n ≥ n0, pick pairwise disjoint non-empty clopen sets V n
i ⊆ Kn with i ≤ n

in such a way that for each U ∈ U with U ⊆ Kn and each i ≤ n we have

U ∩ V n
i 6= ∅. We assume no V n

i contains a U ∈ U . By Claim 1, there is n1 ≥ n0

such that
{

f ∈ G
∣

∣ supp(f) ⊆
⋃

n≥n1

V n
n1

}

⊆ W 12.

For U ∈ U with U ⊆ Kn for some n ≥ n1, put

U0 = V n
n1

∩ U and U1 = U \ V n
n1

.

Let

B0 =
⋃

{U0
∣

∣ U ∈ U and U ⊆
⋃

n≥n1

Kn}

and

B1 =
⋃

{U1
∣

∣ U ∈ U and U ⊆
⋃

n≥n1

Kn}.

So we have

(1) {f ∈ G
∣

∣ supp(f) ⊆ B0} ⊆ W 12.

Note that U ′ = {U0, U1
∣

∣ U ∈ U} refines U and τ ∈ Sym0(U
′) given by

τ(U j) = U1−j refines id. Therefore, by Claim 2, we have h0 ∈ W 2 such that
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h0[U
j ] = τ(U j) for each U j ∈ U ′. It follows that h0[B0] = B1 and h0[B1] = B0,

whence from (1)

(2)
{f ∈ G

∣

∣ supp(f) ⊆ B1} ⊆ h−1
0 {f ∈ G

∣

∣ supp(f) ⊆ B0}h0

⊆ W 2W 12W 2 = W 16.

For n ≥ n1 and all i ≤ n pick pairwise disjoint clopen sets Cn
i ⊆ Kn so that

each Cn
i intersects both B0 and B1. Applying Claim 1, we see that there is

n2 ≥ n1 such that

(3)

{

f ∈ G
∣

∣ supp(f) ⊆
⋃

n≥n2

Cn
n2

}

⊆ W 12.

Now using Claim 3 for each n ≥ n2 (with B = B0 ∩ Kn and C = Cn
n2

) along

with (1), (2), and (3), we get

{

f ∈ G
∣

∣ supp(f) ⊆
⋃

n≥n2

Kn

}

⊆ W 28W 12W 28W 12W 28 = W 108,

and the theorem follows.

Let us now see how this result leads to automatic continuity for other groups

containing Homeo(2N)N. Fix a denumerable model-theoretical structure A and

suppose that Aut(A) is Steinhaus, or just that any homomorphism from Aut(A)

into a separable group is continuous. We can assume that the domain of A

is N. Now let α be an action of Aut(A) on Homeo(2N)N defined as follows:

α(g, [n 7→ hn]) = [n 7→ hg(n)]. Thus, we can form the topological semidirect

product Aut(A) ⋉α Homeo(2N)N. Recall that the topology on the semidirect

product is the same as the product topology on Aut(A)×Homeo(2N)N. Now, if

K is a separable group and π: Aut(A)⋉αHomeo(2N)N → K is a homomorphism,

then π restricts to a continuous homomorphism on each of the factors, whence

π is continuous on the semi-direct product. When A is just the empty structure

we have:

Corollary 14: Let X be the topological space N× 2N and E the equivalence

relation on X given by (n, α)E(m, β) ⇐⇒ n = m. Then any homomorphism

from Homeo(X, E) (i.e., the group of homeomorphisms of X preserving the

equivalence relation E) into a separable group is continuous.
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4. Aut(Q, <)

Theorem 15: Aut(Q, <) is Steinhaus.

Our proof of this result relies on the combinatorics of Truss’ proof from [18]

that Aut(Q, <) satisfies the so called small index property, that is, that every

subgroup of index strictly less than the continuum is open. Let G = Aut(Q, <)

and let D be the family of all subsets X ⊆ Q of the form

X =
⋃

n∈Z

]x2n, x2n+1[,

where (xn)n∈Z is a sequence of irrationals satisfying xn < xn+1 and xn → ±∞

for n → ±∞. Moreover, for X ∈ D we let

A(X) = {g ∈ G
∣

∣ supp(g) ⊆ X}.

Since any element g ∈ Aut(Q, <) can be extended to a unique homeomorphism

of R, we will sometimes evaluate expressions g(x) for g ∈ G and x an irrational

number.

The following lemma can be extracted from [18].

Lemma 16 (Truss):

G =
⋃

X,Y ∈D

A(X) · A(Y ).

Proof: Given g ∈ G, find a sequence (xn)n∈Z of irrationals such that xn−1 <

g(xn) < xn+1 and xn → ±∞ for n → ±∞. Now, put In =]xn, xn+1[ and notice

by the choice of xn that

g([x4n, x4n+1]) ⊆]x4n−1, x4n+2[.

So we can define some h ∈ G such that for each n ∈ Z

h↾]x4n+2, x4n+3[ = id

h↾ g(I4n) = g−1.

Then hg ↾ I4n = id and h−1 ↾ I4n+2 = id. Letting

Y =
⋃

n∈Z

I4n+1 ∪ I4n+2 ∪ I4n+3 and X =
⋃

n∈Z

I4n ∪ I4n+1 ∪ I4n+3

we have g = h−1 · hg ∈ A(X) · A(Y ).

Proof of Theorem 15: Suppose W ⊆ G is symmetric and countably synde-

tic. Then W cannot be meagre and hence W 2 must be dense in some open
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neighbourhood of the identity, V = {g ∈ G
∣

∣ g(q1) = q1, . . . , g(qp−1) = qp−1},

for some rational numbers q1 < · · · < qp−1. Notice that V is topologically

isomorphic to Gp. Fix some kn ∈ G such that the G =
⋃

n knW .

We now let E be the family of all sets X ⊆ Q of the form

X =

(

⋃

n∈Z

]x1
2n, x1

2n+1[

)

∪ · · · ∪

(

⋃

n∈Z

]xp
2n, xp

2n+1[

)

,

where xi
n are irrationals such that for q0 = −∞ and qp = +∞, we have

qi−1 < xi
n < xi

n+1 < qi,

xi
n → qi for n → +∞,

xi
n → qi−1 for n → −∞.

Moreover, for X ∈ E, we let

A(X) = {g ∈ G
∣

∣ supp(g) ⊆ X}.

Clearly, by Lemma 16, we have

V =
⋃

X,Y ∈E

A(X) · A(Y ).

So to prove that Aut(Q) is Steinhaus with exponent 96, it suffices to show the

following claim.

Claim: A(X) ⊆ W 48 for any X ∈ E.

Proof of Claim: Fix some X ∈ E and sequences xi
n as above. Moreover, for

each i = 1, . . . , p, let

Ii
n =]xi

2n, xi
2n+1[

and for each ~a = (a1, . . . , ap), where ai ⊆ Z is bi-infinite, let

X~a = (
⋃

n∈a1

I1
n) ∪ · · · ∪ (

⋃

n∈ap

Ip
n).

We stress the fact that the Ii
n name only every second interval of the Z-ordered

partition of ]qi−1, qi[ into the intervals ]xi
m, xi

m+1[. Thus, if h ∈ A(X~a), then

h[Ii
n] = Ii

n for each n ∈ ai, i = 1, . . . , p. Now pick a sequence of ~an such that the

sets X~an
are all disjoint, which is equivalent to demanding that the j-th terms

of ~an and ~am are disjoint for n 6= m and j = 1, . . . , p. From the remark about
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h above it follows that if gn ∈ A(X~an
), then g : Q → Q defined to be gn ↾ X~an

on X~an
and the identity on Q \

⋃

n X~an
is an element of G = Aut(Q).

We claim that for some n0, X~an0
is full for kn0

W , i.e., that for any g ∈

A(X~an0
), there is some h ∈ kn0

W such that g ↾ X~an0
= h ↾ X~an0

. If not, we

could find for each n some gn ∈ A(X~an
) such that for all h ∈ knW , we have

gn ↾ X~an
6= h↾ X~an

. As noticed above, we could then find one single g ∈ G such

that g ↾ X~an
= gn ↾ X~an

for every n. But this would contradict that the knW

cover G.

So suppose X~an0
is full for kn0

W . Then X~an0
is also full for W 2. For sim-

plicity, let ~a = (a1, . . . , ap) = ~an0
.

Clearly, A(X~a) is topologically isomorphic to (GZ)p, so it has a comeagre con-

jugacy class by [19] and Lemma 11. Find now some n1 such that kn1
W ∩A(X~a)

is non-meagre in A(X~a), whence also W 2 ∩ A(X~a) is non-meagre in A(X~a).

Therefore there is some f ∈ W 2 belonging to the comeagre conjugacy class in

A(X~a). But if h ∈ A(X~a), then there is a g ∈ W 2 agreeing with h on X~a,

whence hfh−1 = gfg−1 ∈ W 6. So W 6 contains the comeagre conjugacy class

of A(X~a) and as the product of two comeagre sets in a group is everything,

A(X~a) ⊆ W 12.

Let now (~aα)α be a continuum size family of sequences ~aα = (aα
1 , . . . , aα

p )

such that aα
i ⊆ ai is bi-infinite and aα

i ∩ aβ
i is finite for every α 6= β. (See, e.g.,

Kunen [12], p. 48.)

For each α write also Q \ {q1, . . . , qp−1} as a disjoint union of non-empty

irrational intervals Jα
i,n (n ∈ Z, i = 0, . . . , p), such that

Jα
0,n < Jα

0,n+1 < q1 < Jα
1,n < Jα

1,n+1 < q2 < · · · < qp−1 < Jα
p,n < Jα

p,n+1,

where

X~aα =
⋃

i=0,...,p
n∈Z

Jα
i,2n,

Q \ X~aα =
⋃

i=0,...,p
n∈Z

Jα
i,2n+1.

We notice that this forces each Jα
i,2n to be equal to some Ii

m =]xi
2m, xi

2m+1[ for

an m ∈ aα
i , while each Jα

i,2n+1 must be of the form Jα
i,2n+1 =]xi

2m+1, x
i
2l[ for

some m < l in aα
i .

Now, find gα ∈ V such that

gα[Jα
i,n] = Jα

i,n+1.
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By the uncountability there is n2 and distinct α and β such that gα, gβ ∈ kn2
W ,

whence g−1
α gβ , g−1

β gα ∈ W 2.

If n /∈ aα
i , then Ii

n ⊆ Jα
i,2l+1 for some l, whence

gα[Ii
n] ⊆ gα[Jα

i,2l+1] = Jα
i,2l+2 = Ii

m

for some m > n with m ∈ aα
i . Similarly, if n /∈ aβ

i , then gβ[Ii
n] ⊆ Ii

m for some

m > n with m ∈ aβ
i . This, along with the almost disjointness of aα

i and aβ
i ,

allows us to find N big enough so that for all i = 0, . . . , p and |n| ≥ N

n /∈ aα
i =⇒ gα[Ii

n] ⊆ Ii
m (m ∈ aα

i \ aβ
i )

n /∈ aβ
i =⇒ gβ [Ii

n] ⊆ Ii
m (m ∈ aβ

i \ aα
i ).

From this, by a similar argument, we get

n /∈ aα
i =⇒ g−1

β gα[Ii
n] ⊆ Ii

l (l ∈ aβ
i ⊆ ai)

n /∈ aβ
i =⇒ g−1

α gβ [Ii
n] ⊆ Ii

l (l ∈ aα
i ⊆ ai).

Suppose also that N has been chosen large enough to ensure that for all |n| ≥ N

either n /∈ aα
i or n /∈ aβ

i . Then for all |n| ≥ N , either

(4) g−1
β gα[Ii

n] ⊆ X~a

or

(5) g−1
α gβ[Ii

n] ⊆ X~a.

As W 2 is dense in V , we can choose h ∈ W 2 and mi ∈ ai such that

h[Ii
−N ∪ · · · ∪ Ii

N ] ⊆ Ii
mi

,

for every i = 0, . . . , p. Then for all n ∈ Z, either (4) or (5) or

(6) h[Ii
n] ⊆ X~a

where, as noticed, g−1
β gα, g−1

α gβ, h ∈ W 2 and A(X~a) ⊆ W 12.

Now define sets
bi = {n ∈ Z

∣

∣ g−1
β gα[Ii

n] ⊆ X~a}

ci = {n ∈ Z
∣

∣ g−1
α gβ[Ii

n] ⊆ X~a}

di = {n ∈ Z
∣

∣ h[Ii
n] ⊆ X~a}
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and let ~b = (b0, . . . , bp), ~c = (c0, . . . , cp) and ~d = (d0, . . . , dp). Since (4), (5), or

(6) holds for each integer n, we get

A(X) = A(X~b
) · A(X~c) · A(X~d

).

Since additionally, directly from the definitions of bi, ci and di, we have

A(X~b
) ⊆ (g−1

β gα)−1A(X~a)g−1
β gα

A(X~c) ⊆ (g−1
α gβ)−1A(X~a)g−1

α gβ

A(X~d
) ⊆ h−1A(X~a)h,

we get A(X)⊆(W 16)3 = W 48, proving the claim and thereby the theorem.

5. Homeo(R) and Homeo(S1)

Theorem 17: Homeo+(R) is Steinhaus.

Proof: Let us first recall the Polish group topology on Homeo(R). It has as

basis the following sets

U(f ; q1, . . . , qp−1; ǫ) = {g ∈ Homeo(R)
∣

∣ d(f(qi), g(qi)) < ǫ, ∀i < p}

where f ∈ Homeo(R), ǫ > 0, and q1 < · · · < qp−1 belong to R. A similar

topology on Homeo([0, 1]) gives a topologically isomorphic group. The structure

of the subgroup Homeo+(R) of all increasing homeomorphisms is very similar

to that of Aut(Q, <) except from the fact that the former is connected and the

latter is totally disconnected. Nevertheless, the proof for Aut(Q, <) translates

almost word for word into a proof for Homeo+(R). Let us just mention the

changes needed:

The first thing to notice is that there is a comeagre conjugacy class in

Homeo+(R), which is shown in [11]. Secondly, instead of working with irra-

tional intervals of Q one replaces these by, say, half open intervals ]r, s] ⊆ R.

One easily sees that Lemma 16 goes through as before. Supposing now that

W ⊆ Homeo+(R) is symmetric and countably syndetic, we find some open

neighbourhood of the identity

V = {g ∈ Homeo+(R)
∣

∣ d(qi, g(qi)) < ǫ, ∀i < p}

in which W 2 is dense. We can suppose that

ǫ < min
i

(d(qi, qi+1))/3.
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Let also

U = {g ∈ Homeo+(R)
∣

∣ g(qi) = qi, ∀i < p}

and notice that U is topologically isomorphic to Homeo+(R)p. One sees that

U =
⋃

X,Y ∈E

A(X) · A(Y ),

where E is defined as in the proof of Theorem 15. We can prove now that

A(X) ⊆ W 48 exactly as Claim was established in the proof of Theorem 15,

noticing that we do not need W 2 to be dense in U but only in V . So we get

that U ⊆ W 96. But U is not open in the Polish topology on Homeo+(R). The

following claim will show that Homeo+(R) is Steinhaus with exponent 194.

Claim: V ⊆ W 194.

Proof of Claim 1: Suppose f ∈ V and f(qi) = ri for i = 1, . . . , p− 1. Then by

the density of W 2 in V there is an h ∈ W 2 such that

d(ri, h(qi)) < 1/2d(ri, qi), for i = 1, . . . , p.

But then there is also some g ∈ U ⊆ W 96 satisfying g(h(qi)) = ri, whence

f = (gh)h−1g−1f ⊆ UW 2U ⊆ W 194, since h−1g−1f ∈ U .

Consider now the group of homeomorphisms of the unit circle Homeo(S1)

with the topology of uniform (or equivalently, pointwise) convergence. As in the

case of Homeo(R), we let Homeo+(S1) be the index 2 subgroup of orientation

preserving homeomorphisms. It is a well-known fact that Homeo+(S1) does not

even have a non-meagre conjugacy class, as e.g. the rotation number (see Katok

and Hasselblatt, [8, Chapter 11]) is a continuous conjugacy invariant. But, on

the other hand, for any x ∈ S1 the closed subgroup

Homeo(S1, x) = {g ∈ Homeo(S1)
∣

∣ g(x) = x}

is topologically isomorphic to Homeo(R).

Theorem 18: Homeo+(S1) is Steinhaus.

Proof: We will deduce this result from the result for Homeo+(R). So assume

that W ⊆ Homeo+(S1) is symmetric and countably syndetic. Then we can find

some neighbourhood of the identity

V = {g ∈ Homeo+(S1)
∣

∣ d(qi, g(qi)) < ǫ, ∀i ≤ n}
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in which W 2 is dense. Let

H = {g ∈ Homeo+(S1)
∣

∣ g(q1) = q1}

then H is topologically isomorphic to Homeo+(R).

Claim 1: W 2 ∩ H is symmetric and countably syndetic in H .

Proof of Claim 1: Let {knW}N cover Homeo+(S1). For each n such that

knW ∩ H 6= ∅ pick some gn in the intersection. Then kn ∈ gnW−1 = gnW and

thus

(7)

H ⊆

(

⋃

n

knW

)

∩ H ⊆

(

⋃

n

gnW 2

)

∩ H

=
⋃

n

gn(W 2 ∩ H)

where the last equality holds as gn ∈ H . The claim is proved.

Now, since H ∼= Homeo+(R) is Steinhaus with exponent 194, there are

p1, . . . , pm ∈ S1 and ǫ > δ > 0 such that

U = {g ∈ Homeo+(S1)
∣

∣ d(pi, g(pi)) < δ, ∀i ≤ m&g(q1) = q1} ⊆ (W 2)194

= W 388.

In particular,

U ′ = {g ∈ Homeo+(S1)
∣

∣ ∀ ≤ ng(qi) = qi&∀i ≤ mg(pi) = pi} ⊆ W 388

and W 2 is dense in the set

V ′ = {g ∈ Homeo+(S1)
∣

∣ ∀ ≤ nd(g(qi), qi) < δ&∀i ≤ md(g(pi), pi) < δ}.

As in the proof of Claim 1, we see that V ′ ⊆ U ′W 2U ′ ⊆ W 768, hence

Homeo+(S1) is Steinhaus with exponent 768.

Theorem 19: Homeo+(R) is the only proper subgroup of Homeo(R) of index

< 2ℵ0 .

Proof: Since Homeo+(R) is connected, it is enough to show that any subgroup

H ≤ Homeo+(R) of index < 2ℵ0 is open. This is done by repeating the proof

above for W = H . However, there are a few things that have to be noticed

before this can be done. Namely, since H is not necessarily countably syndetic,

we have to see exactly where this is used and propose a substitute. First of all,
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we have to prove that H cannot be meagre in Homeo+(R), and secondly, we

have to show that some X~a is full for H2 = H .

To see that H is not meagre in Homeo+(R), notice that the map (g, h) 7→ gh−1

is continuous and open from (Homeo+(R))2 to Homeo+(R). So if H is meagre

then E = {(g, h) ∈ (Homeo+(R))2 : gh−1 ∈ H} would be a meagre equivalence

relation and therefore by Mycielski’s Theorem (see [9, Theorem 19.1]) have a

continuum of classes, contradicting [Homeo+(R) : H ] < 2ℵ0 .

Now to see that some X~a is full for H2 = H , we pick our sequence ~an as in

the proof of Claim of Theorem 15 such that the sets X~an
are all disjoint. Let

now

N = {g ∈ Homeo+(R)
∣

∣ ∀ng[X~an
] = X~an

} ≤ Homeo+(R)

and notice that N is topologically isomorphic to
∏

n A(X~an
), which is itself

isomorphic to Homeo+(R)N. Let now Hn be the projection of H ∩ N into

A(X~an
). Then H ∩ N ≤

∏

n Hn, whence
∏

n

[A(X~an
) : Hn] = [N :

∏

n

Hn] ≤ [N : H ∩ N ] ≤ [Homeo+(R) : H ] < 2ℵ0 .

Therefore at most finitely many [A(X~an
) : Hn] can be different from 1, meaning

that at least for some n, Hn = A(X~an
), i.e., X~an

is full for H .

Corollary 20: Homeo+(S1) is the only proper subgroup of Hom(S1) of index

< 2ℵ0 .

Proof: Fix two points, e.g. i and −i, on the unit circle S1 and suppose

H < Homeo(S1), [Homeo(S1), H ] < 2ℵ0 . For x ∈ S1 let

Homeo+(S1, x) = {g ∈ Homeo+(S1)
∣

∣ g(x) = x}

which is a subgroup isomorphic to Homeo+(R). Moreover, we have

[Homeo+(S1, i) : H ∩ Homeo+(S1, i)] < 2ℵ0

and

[Homeo+(S1,−i) : H ∩ Homeo+(S1,−i)] < 2ℵ0 .

Thus as Homeo+(R) has no proper subgroups of index < 2ℵ0 ,

Homeo+(S1, i) ≤ H and Homeo+(S1,−i) ≤ H.

But it is not hard to see that

Homeo+(S1) = Homeo+(S1, i) · Homeo+(S1,−i) · Homeo+(S1, i).

So Homeo+(S1) = H .
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[2] M. Droste and R. Göbel, Uncountable cofinalities of permutation groups, Journal

of the London Mathematical Society (2) 71 (2005), 335–344.

[3] M. Droste and W. C. Holland, Generating automorphism groups of chains, Forum

Mathematica 17 (2005), 699–710.

[4] R. Ellis, Lectures on Topological Dynamics, W. A. Benjamin, Inc., New York,

1969, xv+211 pp.

[5] E. Glasner and B. Weiss, The universal minimal system for the group of homeo-

morphisms of the Cantor set, Fundamenta Mathematicae 176 (2003), 277–289.

[6] I. Guran, On topological groups close to being Lindelöf, Soviet Mathematics
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