
Journal of Functional Analysis 257 (2009) 149–193
www.elsevier.com/locate/jfa

Banach spaces without minimal subspaces

Valentin Ferenczi a, Christian Rosendal b,∗,1

a Departamento de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo,
05311-970 São Paulo, SP, Brazil

b Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago,
322 Science and Engineering Offices (M/C 249), 851 S. Morgan Street, Chicago, IL 60607-7045, USA

Received 21 October 2008; accepted 23 January 2009

Available online 20 February 2009

Communicated by K. Ball

Abstract

We prove three new dichotomies for Banach spaces à la W.T. Gowers’ dichotomies. The three di-
chotomies characterise respectively the spaces having no minimal subspaces, having no subsequentially
minimal basic sequences, and having no subspaces crudely finitely representable in all of their subspaces.
We subsequently use these results to make progress on Gowers’ program of classifying Banach spaces by
finding characteristic spaces present in every space. Also, the results are used to embed any partial order of
size ℵ1 into the subspaces of any space without a minimal subspace ordered by isomorphic embeddability.
 2009 Elsevier Inc. All rights reserved.
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1. Introduction

In the paper [20], W.T. Gowers initiated a celebrated classification theory for Banach spaces.
Since the task of classifying all (even separable) Banach spaces up to isomorphism is extremely
complicated (just how complicated is made precise in [11]), one may settle for a loose classifi-
cation of Banach spaces up to subspaces, that is, look for a list of classes of Banach spaces such
that:

(a) each class is pure, in the sense that if a space belongs to a class, then every subspace belongs
to the same class, or maybe, in the case when the properties defining the class depend on a
basis of the space, every block subspace belongs to the same class,

(b) the classes are inevitable, i.e., every Banach space contains a subspace in one of the classes,
(c) any two classes in the list are disjoint,
(d) belonging to one class gives a lot of information about operators that may be defined on the

space or on its subspaces.

We shall refer to this list as the list of inevitable classes of Gowers. Many classical problems
are related to this classification program, as for example the question whether every Banach
space contains a copy of c0 or !p , solved in the negative by B.S. Tsirelson in 1974 [42], or
the unconditional basic sequence problem, also solved negatively by Gowers and B. Maurey
in 1993 [21]. Ultimately one would hope to establish such a list so that any classical space appears
in one of the classes, and so that belonging to that class would yield most of the properties which
are known for that space. For example, any property, which is known for Tsirelson’s space, is
also true for any of its block subspaces. So Tsirelson’s space is a pure space, and, as such, should
appear in one of the classes with a reasonable amount of its properties. Also, presumably the
nicest among the classes would consist of the spaces isomorphic to c0 or !p , 1 ! p <∞.

After the discovery by Gowers and Maurey of the existence of hereditarily indecompos-
able (or HI) spaces, i.e., spaces such that no subspace may be written as the direct sum of
infinite-dimensional subspaces [21], Gowers proved that every Banach space contains either an
HI subspace or a subspace with an unconditional basis [19]. These were the first two examples of
inevitable classes. We shall call this dichotomy the first dichotomy of Gowers. He then used his
famous Ramsey or determinacy theorem [20] to refine the list by proving that any Banach space
contains a subspace with a basis such that either no two disjointly supported block subspaces are
isomorphic, or such that any two subspaces have further subspaces which are isomorphic. He
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called the second property quasi minimality. This second dichotomy divides the class of spaces
with an unconditional basis into two subclasses (up to passing to a subspace). Finally, recall that
a space is minimal if it embeds into any of its subspaces. A quasi minimal space which does not
contain a minimal subspace is called strictly quasi minimal, so Gowers again divided the class
of quasi minimal spaces into the class of strictly quasi minimal spaces and the class of minimal
spaces.

Obviously the division between minimal and strictly quasi minimal spaces is not a real di-
chotomy, since it does not provide any additional information. The main result of this paper is to
provide the missing dichotomy for minimality, which we shall call the third dichotomy.

A first step in that direction was obtained by A.M. Pełczar, who showed that any strictly
quasi minimal space contains a further subspace with the additional property of not containing
any subsymmetric sequence [35]. The first author proved that the same holds if one replaces
subsymmetric sequences by embedding homogeneous sequences (any subspace spanned by a
subsequence contains an isomorphic copy of the whole space) [10].

A crucial step in the proofs of [35] and [10] is the notion of asymptoticity. An asymptotic game
of length k in a space E with a basis is a game where I plays integers ni and II plays block vectors
xi supported after ni , and where the outcome is the length k sequence (xi). Asymptotic games
have been studied extensively and the gap between finite-dimensional and infinite-dimensional
phenomena was usually bridged by fixing a constant and letting the length of the game tend to
infinity. For example, a basis is asymptotic !p if there exists C such that for any k, I has a winning
strategy in the length k asymptotic game so that the outcome is C-equivalent to the unit vector
basis of !k

p .
In [35] it is necessary to consider asymptotic games of infinite length, which are defined in

an obvious manner. The outcome is then an infinite block sequence. The proof of the theorem
in [35] is based on the obvious fact that if a basic sequence (ei) is subsymmetric and (xi) is a
block sequence of (ei), then II has a strategy in the infinite asymptotic game in E = [ei] to ensure
that the outcome is equivalent to (xi). In [10] a similar fact for embedding homogeneous basic
sequences is obtained, but the proof is more involved and a more general notion of asymptoticity
must be used. Namely, a generalised asymptotic game in a space E with a basis (ei) is a game
where I plays integers ni and II plays integers mi and vectors xi such that supp(xi)⊆ [n1,m1] ∪
· · · ∪ [ni,mi], and the outcome is the sequence (xi), which may no longer be a block basis.

The second author analysed infinite asymptotic games in [38] (a previous study had also been
undertaken by E. Odell and T. Schlumprecht in [34]), showing that the most obvious necessary
conditions are, in fact, also sufficient for II to have a strategy to play inside a given set. This was
done through relating the existence of winning strategies to a property of subspaces spanned by
vectors of the basis with indices in some intervals of integers. Now the methods of [38] extend
to the setting of generalised asymptotic games and motivate the following definition. A space Y

is tight in a basic sequence (ei) if there is a sequence of successive intervals I0 < I1 < I2 < · · ·
of N such that for all infinite subsets A⊆N, we have

Y &'
[
en

∣∣∣ n /∈
⋃

i∈A

Ii

]
,

where Y 'X denotes that Y embeds into X. In other words, any embedding of Y into [ei] has a
“large” image with respect to subsequences of the basis (ei) and cannot avoid an infinite number
of the subspaces [en]n∈Ii . We then define a tight basis as a basis such that every subspace is tight
in it and a tight space as a space with a tight basis.
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As we shall prove in Lemma 3.7, using the techniques of [38], essentially a block subspace
Y = [yi] is not tight in (ei), when II has a winning strategy in the generalised asymptotic game
in [ei] for producing a sequence equivalent to (yi). This relates the notion of tight bases to the
methods of [10], and by extending these methods we prove the main result of this paper:

Theorem 1.1 (3rd dichotomy). Let E be a Banach space without minimal subspaces. Then E has
a tight subspace.

Theorem 1.1 extends the theorems of [35,10], since it is clear that a tight space cannot contain
a subsymmetric or even embedding homogeneous block sequence. This dichotomy also provides
an improvement to the list of Gowers: a strictly quasi minimal space must contain a tight quasi
minimal subspace. Example 3.6 shows that this is a non-trivial refinement of the unconditional
and strictly quasi minimal class, and Corollary 4.3 states that Tsirelson’s space is tight. Theo-
rem 1.1 also refines the class of HI spaces in the list, i.e., every HI space contains a tight subspace,
although it is unknown whether the HI property for a space with a basis does not already imply
that the basis is tight.

Our actual examples of tight spaces turn out to satisfy one of two stronger forms of tightness.
The first is called tightness with constants. A basis (en) is tight with constants when for every
infinite-dimensional space Y , the sequence of successive intervals I0 < I1 < · · · of N witnessing
the tightness of Y in (en) may be chosen so that Y &'K [en | n /∈ IK ] for each K . This is the case
for Tsirelson’s space.

The second kind of tightness is called tightness by range. Here the range, rangex, of a vector
x is the smallest interval of integers containing its support, and the range of a block subspace
[xn] is

⋃
n rangexn. A basis (en) is tight by range when for every block subspace Y = [yn], the

sequence of successive intervals I0 < I1 < · · · of N witnessing the tightness of Y in (en) may be
defined by Ik = rangeyk for each k. This is equivalent to no two block subspaces with disjoint
ranges being comparable. In a companion paper [14], we show that tightness by range is satisfied
by an HI space and also by a space with unconditional basis both constructed by Gowers.

It turns out that there are natural dichotomies between each of these strong forms of tight-
ness and respective weak forms of minimality. For the first notion, we define a space X to be
locally minimal if for some constant K , X is K-crudely finitely representable in any of its sub-
spaces. Notice that local minimality is easily incompatible with tightness with constants. Using
an equivalent form of Gowers’ game, as defined by J. Bagaria and J. López-Abad [4], we prove:

Theorem 1.2 (5th dichotomy). Any Banach space E contains a subspace with a basis that is
either tight with constants or is locally minimal.

The ideas involved in the notion of local minimality also make sense for block representability,
which allows us to connect these notions with asymptoticity of basic sequences. Proving a simple
dichotomy for when a space contains an asymptotically !p subspace, we are led to the following
dichotomy for when a Banach space contains a copy of either c0 or !p .

Theorem 1.3 (The c0 and !p dichotomy). Suppose X is a Banach space not containing a copy of
c0 nor of !p , 1 ! p <∞. Then X has a subspace Y with a basis such that either
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(1) ∀M ∃n ∀U1, . . . ,U2n ⊆ Y ∃ui ∈ SUi

(
u1 < · · · < u2n & (u2i−1)

n
i=1 !M (u2i )

n
i=1

)
.

(2) For all block bases (zn) of Y = [yn] there are intervals I1 < I2 < I3 < · · · such that (zn)n∈IK

is not K-equivalent to a block sequence of (yn)n/∈IK .

Here, of course, the variables range over infinite-dimensional spaces.

Property (1) indicates some lack of homogeneity and (2) some lack of minimality. It is inter-
esting to see which conditions the various examples of Banach spaces not containing c0 or !p

satisfy; obviously, Tsirelson’s space and its dual satisfy (2) and indeed (2) is the only option for
spaces being asymptotic !p . On the other hand, Schlumprecht’s space S satisfies (1).

There is also a dichotomy concerning tightness by range. This direction for refining the list of
inevitable classes of spaces was actually suggested by Gowers in [20]. P. Casazza proved that if
a space X has a shrinking basis such that no block sequence is even–odd (the odd subsequence
is equivalent to the even subsequence), then X is not isomorphic to a proper subspace, see [17].
So any Banach space contains either a subspace, which is not isomorphic to a proper subspace,
or is saturated with even–odd block sequences, and, in the second case, we may find a further
subspace in which Player II has a winning strategy to produce even–odd sequences in the game of
Gowers associated to his Ramsey theorem. This fact was observed by Gowers, but it was unclear
to him what to deduce from the property in the second case.

We answer this question by using Gowers’ theorem to obtain a dichotomy which on one side
contains tightness by range, which is a slightly stronger property than the Casazza property. On
the other side, we define a space X with a basis (xn) to be subsequentially minimal if every sub-
space of X contains an isomorphic copy of a subsequence of (xn). This last property is satisfied
by Tsirelson’s space and will also be shown to be incompatible with tightness by range.

Theorem 1.4 (4th dichotomy). Any Banach space E contains a subspace with a basis that is
either tight by range or is subsequentially minimal.

It is easy to check that the second case in Theorem 1.4 may be improved to the following
hereditary property of a basis (xn), that we call sequential minimality: every block sequence of
[xn] has a further block sequence (yn) such that every subspace of [xn] contains a copy of a
subsequence of (yn).

The five dichotomies and the interdependence of the properties involved can be visualised in
the following diagram.

Unconditional basis ∗ ∗ 1st dichotomy ∗ ∗ Hereditarily indecomposable
⇑ ⇓

Tight by support ∗ ∗ 2nd dichotomy ∗ ∗ Quasi minimal
⇓ ⇑

Tight by range ∗ ∗ 4th dichotomy ∗ ∗ Sequentially minimal
⇓ ⇑

Tight ∗ ∗ 3rd dichotomy ∗ ∗ Minimal
⇑ ⇓

Tight with constants ∗ ∗ 5th dichotomy ∗ ∗ Locally minimal
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From a different point of view, coming from combinatorics and descriptive set theory, Theo-
rem 1.1 also has important consequences for the isomorphic classification of separable Banach
spaces. To explain this, suppose that X is a Banach space and SB∞(X) is the class of all infinite-
dimensional subspaces of X. Then the relation ' of isomorphic embeddability induces a partial
order on the set of biembeddability classes of SB∞(X) and we denote this partial order by P(X).
Many questions about the isomorphic structure of X translate directly into questions about the
structure of P(X), e.g., X has a minimal subspace if and only if P(X) has a minimal element
and X is quasi minimal if and only if P(X) is downwards directed. In some sense, a space can
be said to be pure in case the complexity of P(X) does not change by passing to subspaces
and Gowers [20, Problem 7.9], motivated by this, asked for a classification of, or at least strong
structural information about, the partial orders P for which there is a Banach space X saturated
with subspaces Y ⊆ X such that P ∼= P(Y ). A simple diagonalisation easily shows that such P

either consist of a single point (corresponding to a minimal space) or are uncountable, and, using
methods of descriptive set theory and metamathematics, this was successively improved in [12]
and [37] to either |P | = 1 or P having a continuum size antichain. Using a strengthening of The-
orem 1.1, we are now able to show that such P , for which |P | > 1, have an extremely complex
structure by embedding any partial order of size at most ℵ1 into them.

For A,B ⊆N, we write A⊆∗ B to mean that A \ B is finite.

Theorem 1.5. Given a Banach space X, let P(X) be the set of all biembeddability classes of
infinite-dimensional subspaces of X, partially ordered under isomorphic embeddability. Let P

be a poset for which there exists a Banach space X such that X is saturated with subspaces Y

such that P(Y ) ∼= P . Then either |P | = 1, or ⊆∗ embeds into P . In the second case it follows
that

(a) any partial order of size at most ℵ1 embeds into P , and
(b) any closed partial order on a Polish space embeds into P .

From the point of view of descriptive set theory, it is more natural to study another problem,
part of which was originally suggested to us by G. Godefroy some time ago. Namely, the space
SB∞(X), for X separable, can easily be made into a standard Borel space using the Effros–
Borel structure. In this way, the relations of isomorphism, ∼=, and isomorphic embeddability, ',
become analytic relations on SB∞(X) whose complexities can be measured through the notion
of Borel reducibility. We obtain Theorem 1.5 as a consequence of some finer results formulated
in this language and that are of independent interest.

In Section 8, we put all the dichotomies together in order to make progress on the loose classi-
fication mentioned above. In connection with this, we shall also rely on work by A. Tcaciuc [41],
who proved a dichotomy for containing a strongly asymptotic !p basis, i.e., a basis such that fi-
nite families of disjointly supported (but not necessarily successive) normalised blocks supported
“far enough” are uniformly equivalent to the basis of !n

p . Using just the first four dichotomies,
in Theorem 8.3 we find 6 classes of inevitable spaces, 4 of which are known to be non-empty,
while if we use all 5 dichotomies plus Tcaciuc’s, we find 19 classes. Out of these, 8 of them are
known to be non-empty, though for 4 of the examples, we will need the results of a companion
paper [14] where these are constructed and investigated.

The resulting classification gives fairly detailed knowledge about the various types of in-
evitable spaces, though much work remains to be done. In particular, the new dichotomies
explains some of the structural differences between the wealth of new exotic spaces constructed



V. Ferenczi, C. Rosendal / Journal of Functional Analysis 257 (2009) 149–193 155

in the wake of the seminal paper of Gowers and Maurey [21]. It seems an interesting task to
determine which of the remaining 11 of the 19 cases are non-empty.

2. Preliminaries

2.1. Notation, terminology, and conventions

We shall in the following almost exclusively deal with infinite-dimensional Banach spaces,
so to avoid repeating this, we will always assume our spaces to be infinite-dimensional. The
spaces can also safely be assumed to be separable, but this will play no role and is not assumed.
Moreover, all spaces will be assumed to be over the field of real numbers R, though the results
hold without modification for complex spaces too.

Suppose E is a Banach space with a normalised Schauder basis (en). Then, by a standard
Skolem hull construction, there is a countable subfield F of R containing the rational numbers Q
such that for any finite linear combination

λ0e0 + λ1e1 + · · · + λnen

with λi ∈ F, we have ‖λ0e0 +λ1e1 + · · ·+λnen‖ ∈ F. This means that any F-linear combination
of (en) can be normalised, while remaining a F-linear combination. Thus, as the set of Q and
hence also F-linear combinations of (en) are dense in E, also the set of F-linear normalised
combinations of (en) are dense in the unit sphere SE .

A block vector is a normalised finite linear combination x = λ0e0 + λ1e1 + · · · + λnen where
λi ∈ F. We insist on blocks being normalised and F-linear and will be explicit on the few oc-
casions that we deal with non-normalised blocks. The restriction to F-linear combinations is no
real loss of generality, but instead has the effect that there are only countably many blocks. We
denote by D the set of blocks. The support, suppx, of a block x = λ0e0 + λ1e1 + · · · + λnen is
the set of i ∈N such that λi &= 0 and the range, rangex, is the smallest interval I ⊆N containing
suppx.

A block (sub)sequence, block basis, or blocking of (en) is an infinite sequence (xn) of blocks
such that suppxn < suppxn+1 for all n and a block subspace is the closed linear span of a block
sequence. Notice that if X is a block subspace, then the associated block sequence (xn) such that
X = [xn] is uniquely defined up to the choice of signs ±xn. So we shall sometimes confuse block
sequences and block subspaces. For two block subspaces X = [xn] and Y = [yn], write Y ! X

if Y ⊆X, or, equivalently, yn ∈ span(xi) for all n. Also, let Y !∗ X if there is some N such that
yn ∈ span(xi) for all n " N .

When we work with block subspaces of some basis (en), we will assume that we have chosen
the same countable subfield F of R for all block sequences (xn) of (en), and hence a vector in
[xn] is a block of (xn) if and only if it is a block of (en), so no ambiguity occurs. We consider
the set bb(en) of block sequences of (en) as a closed subset of DN, where D is equipped with the
discrete topology. In this way, bb(en) is a Polish, i.e., separable, completely metrisable space. If
# = (δn) is a sequence of positive real numbers, which we denote by # > 0, and A ⊆ bb(en),
we designate by A# the set

A# =
{
(yn) ∈ bb(en)

∣∣ ∃(xn) ∈ bb(en) ∀n ‖xn − yn‖< δn
}
.
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If A is an infinite subset of N, we denote by [A] the space of infinite subsets of A with the
topology inherited from 2A. Also, if a ⊆N is finite,

[a,A] =
{
B ∈ [N]

∣∣ a ⊆ B ⊆ a ∪
(
A∩ [maxa + 1,∞[

)}
.

We shall sometimes confuse infinite subsets of N with their increasing enumeration. So if A⊆N
is infinite, we denote by An the (n + 1)st element of A in its increasing enumeration (we start
counting at 0).

A Banach space X embeds into Y if X is isomorphic to a closed subspace of Y . Since we
shall work with the embeddability relation as a mathematical object itself, we prefer to use the
slightly non-standard notation X ' Y to denote that X embeds into Y .

Given two Banach spaces X and Y , we say that X is crudely finitely representable in Y if
there is a constant K such that for any finite-dimensional subspace F ⊆X there is an embedding
T : F → Y with constant K , i.e., ‖T ‖ ·‖ T −1‖! K .

Also, if X = [xn] and Y = [yn] are spaces with bases, we say that X is crudely block finitely
representable in Y if for some constant K and all k, there are (not necessarily normalised) blocks
z0 < · · · < zk of (yn) such that (x0, . . . , xk)∼K (z0, . . . , zk).

Two Banach spaces are said to be incomparable if neither one embeds into the other, and
totally incomparable if no subspace of one is isomorphic to a subspace of the other.

We shall at several occasions use non-trivial facts about the Tsirelson space and its p-con-
vexifications, for which our reference is [8], and also facts from descriptive set theory that can
all be found in [24]. For classical facts in Banach space theory we refer to [27].

2.2. Gowers’ block sequence game

A major ingredient in several of our proofs will be the following equivalent version of Gowers’
game due to J. Bagaria and J. López-Abad [4].

Suppose E = [en] is given. Player I and II alternate in choosing blocks x0 < x1 < x2 < · · · and
y0 < y1 < y2 < · · · as follows: Player I plays in the kth round of the game a block xk such that
xk−1 < xk . In response to this, II either chooses to pass, and thus play nothing in the kth round,
or plays a block yi ∈ [xl+1, . . . , xk], where l was the last round in which II played a block.

I x0 · · · xk0 xk0+1 · · · xk1

II y0 ∈ [x0, . . . , xk0] y1 ∈ [xk0+1, . . . , xk1 ]

We thus see I as constructing a block sequence (xi), while II chooses a block subsequence (yi).
This block subsequence (yi) is then called the outcome of the game. (Potentially the blocking
could be finite, but the winning condition can be made such that II loses unless it is infinite.)
We now have the following fundamental theorem of Gowers (though he only proves it for real
scalars, it is clear that his proof is valid for the field F too).

Theorem 2.1. (See W.T. Gowers [20].) Suppose (en) is a Schauder basis and A⊆ bb(ei) is an
analytic set such that any (xi) ∈ bb(ei) has a block subsequence (yi) belonging to A, then for all
#> 0, there is a block subsequence (vi) ∈ bb(ei) such that II has a strategy to play in A# if I is
restricted to play blockings of (vi).
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2.3. A trick and a lemma

We gather here a couple of facts that will be used repeatedly later on.
We shall at several occasions use coding with inevitable subsets of the unit sphere of a Banach

space, as was first done by López-Abad in [28]. So let us recall here the relevant facts and set up
a framework for such codings.

Suppose E is an infinite-dimensional Banach space with a basis not containing a copy of c0.
Then by the solution to the distortion problem by Odell and Schlumprecht [31] there is a block
subspace [xn] of E and two closed subsets F0 and F1 of the unit sphere of [xn] such that
dist(F0,F1) = δ > 0 and such that for all block bases (yn) of (xn) there are block vectors v

and u of (yn) such that v ∈ F0 and u ∈ F1. In this case we say that F0 and F1 are positively
separated, inevitable, closed subsets of S[xn].

We can now use the sets F0 and F1 to code infinite binary sequences, i.e., elements of 2N in
the following manner. If (zn) is a block sequence of (xn) such that for all n, zn ∈ F0 ∪F1, we let
ϕ((zn)) = α ∈ 2N be defined by

αn =
{

0, if zn ∈ F0;
1, if zn ∈ F1.

Since the sets F0 and F1 are positively separated, this coding is fairly rigid and can be extended
to block sequences (vn) such that dist(vn,F0 ∪ F1) < δ

2 by letting ϕ((vn)) = β ∈ 2N be defined
by

βn =
{

0, if dist(vn,F0) < δ
2 ;

1, if dist(vn,F1) < δ
2 .

In this way we have that if (zn) and (vn) are block sequences with zn ∈ F0∪F1 and ‖vn−zn‖< δ
2

for all n, then ϕ((zn)) = ϕ((vn)).
One can now use elements of Cantor space 2N to code other objects in various ways. For

example, let H denote the set of finite non-empty sequences (q0, q1, . . . , qn) of rationals with
qn &= 0. Then, as H is countable, we can enumerate it as 2h0, 2h1, . . . . If now (yn) and (vn)

are block sequences with ϕ((vn)) = 0n010n110n21 · · · , then (vn) codes an infinite sequence
Ψ ((vn), (yn)) = (un) of finite linear combinations of (yn) by the following rule:

uk = q0y0 + q1y1 + · · · + qmym,

where 2hnk = (q0, . . . , qm).
We should then notice three things about this type of coding:

– It is inevitable, i.e., for all block sequences (yn) of (xn) and α ∈ 2N, there is a block sequence
(vn) of (yn) with ϕ((vn)) = α.

– It is continuous, i.e., to know an initial segment of (un) = Ψ ((vn), (yn)), we only need to
know initial segments of (vn) and of (yn).

– It is stable under small perturbations. I.e., given ε > 0, we can find some # = (δn) only
depending on ε and the basis constant of (xn) with the following property. Assume that (vn)

and (yn) are block bases of (xn) with vn ∈ F0 ∪ F1 for all n and such that Ψ ((vn), (yn)) =
(un) is a block sequence of (yn) with 1

2 < ‖un‖< 2. Then whenever (v′n) and (y′n) are other
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block sequences of (xn) with ‖vn − v′n‖ < δ
2 and ‖yn − y′n‖ < δn for all n, the sequence

Ψ ((v′n), (y
′
n)) = (u′n) will be a block sequence of (y′n) that is 1 + ε-equivalent to (un).

One can of course consider codings of other objects than sequences of vectors and, depending
on the coding, obtain similar continuity and stability properties.

The inevitability of the coding is often best used in the following form.

– Suppose B is a set of pairs ((yn),α), where (yn) is a block sequence of (xn) and α ∈ 2N,
such that for all block sequences (zn) of (xn) there is a further block sequence (yn) and an
α such that ((yn),α) ∈ B. Then for all block sequences (zn) of (xn) there is a further block
sequence (yn) such that for all n, y2n+1 ∈ F0 ∪ F1 and ((y2n), ϕ((y2n+1))) ∈ B.

To see this, let (zn) be given and notice that by the inevitability of the coding there is a block
sequence (wn) of (zn) such that w3n+1 ∈ F0 and w3n+2 ∈ F1. Pick now a block sequence (vn)

of (w3n) and an α such that ((vn),α) ∈ B. Notice now that between vn and vn+1 there are block
vectors w3in+1 and w3in+2 of (zn) belonging to F0, respectively F1. Thus, if we let y2n = vn and
set

y2n+1 =
{

w3in+1, if αn = 0;
w3in+2, if αn = 1,

then ((y2n), ϕ((y2n+1))) ∈ B.

Lemma 2.2. Let (x0
n) " (x1

n) " (x2
n) " · · · be a decreasing sequence of block bases of a basic

sequence (x0
n). Then there exists a block basis (yn) of (x0

n) such that (yn) is
√

K-equivalent with
a block basis of (xK

n ) for every K " 1.

Proof. Let c(L) be a constant depending on the basis constant of (x0
n) such that if two block

bases differ in at most L terms, then they are c(L)-equivalent. Find now a sequence L1 !
L2 ! · · · of non-negative integers tending to +∞ such that c(LK) !

√
K . We can now eas-

ily construct an infinite block basis (yn) of (x0
n) such that for all K " 1 at most the first LK terms

of (yn) are not blocks of (xK
n )∞n=LK+1. Then (yn) differs from a block basis of (xK

n ) in at most

LK terms and hence is
√

K-equivalent with a block basis of (xK
n ). !

3. Tightness

3.1. Tight bases

The following definition is central to the rest of the paper.

Definition 3.1. Consider a Banach space E with a basis (en) and let Y be an arbitrary Banach
space. We say that Y is tight in the basis (en) if there is a sequence of successive non-empty
intervals I0 < I1 < I2 < · · · of N such that for all infinite subsets A⊆N, we have

Y &'
[
en

∣∣∣ n /∈
⋃

i∈A

Ii

]
.
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In other words, if Y embeds into [en]n∈B , then B ⊆N intersects all but finitely many intervals Ii .
We say that (en) is tight if every infinite-dimensional Banach space Y is tight in (en).
Finally, an infinite-dimensional Banach space X is tight if it has a tight basis.

Also, the following more analytical criterion will prove to be useful. For simplicity, denote by
PI the canonical projection onto [en]n∈I .

Lemma 3.2. Let X be a Banach space, (en) a basis for a space E, and (In) finite intervals such
that min In n→∞−−−−→∞ and for all infinite A⊆N,

X &' [en]n/∈⋃
k∈A Ik

.

Then whenever T : X→[en] is an embedding, we have lim infk‖PIkT ‖> 0.

Proof. Suppose towards a contradiction that T : X→ E is an embedding such that for some
infinite A⊆N,

lim
k→∞
k∈A

‖PIkT ‖ = 0.

Then, by passing to an infinite subset of A, we can suppose that
∑

k∈A ‖PIkT ‖< 1
2‖T −1‖−1 and

that the intervals (In)n∈A are disjoint. Thus, the sequence of operators (PIkT )k∈A is absolutely
summable and therefore the operator

∑
k∈A PIkT : X→E exists and has norm < 1

2‖T −1‖−1.
But then for x ∈X we have

∥∥∥∥
∑

k∈A

PIkT x

∥∥∥∥ !
∥∥∥∥
∑

k∈A

PIkT

∥∥∥∥ · ‖x‖! 1
2‖T −1‖‖x‖! 1

2‖T −1‖
∥∥T −1∥∥ · ‖T x‖ = 1

2
‖T x‖,

and hence also
∥∥∥∥

(
T −

∑

k∈A

PIkT

)
x

∥∥∥∥ " ‖T x‖ −
∥∥∥∥
∑

k∈A

PIkT x

∥∥∥∥ " ‖T x‖ − 1
2
‖T x‖ = 1

2
‖T x‖.

So T −∑
k∈A PIkT is still an embedding of X into E. But this is impossible as T −∑

k∈A PIkT

takes values in [en]n/∈⋃
k∈A Ik

. !

Proposition 3.3. A tight Banach space contains no minimal subspaces.

Proof. Suppose (en) is a tight basis for a space E and let Y be any subspace of E. Pick a block
subspace X = [xn] of E that embeds into Y . Since Y is tight in (en), we can find a sequence
of intervals (Ii) such that Y does not embed into [en]n∈B whenever B ⊆ N is disjoint from an
infinite number of intervals Ii . By passing to a subsequence (zn) of (xn), we obtain a space
Z = [zn] that is a subspace of some [en]n∈B where B ⊆N is disjoint from an infinite number of
intervals Ii , and hence Y does not embed into Z. Since Z embeds into Y , this shows that Y is
not minimal. !
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The classical example of space without minimal subspaces is Tsirelson’s space T and it is
not too difficult to show that T is tight. This will be proved later on as a consequence of a more
general result.

Any block sequence of a tight basis is easily seen to be tight. And also:

Proposition 3.4. If E is a tight Banach space, then every shrinking basic sequence in E is tight.

Proof. Suppose (en) is a tight basis for E and (fn) is a shrinking basic sequence in E. Let Y

be an arbitrary space and find intervals I0 < I1 < · · · associated to Y for (en), i.e., for all infinite
subsets A⊆N, we have Y &' [en | n /∈⋃

i∈A Ii].
We notice that, since (en) is a basis, we have for all m

‖PIk |[fi |i!m]‖ k→∞−−−→ 0, (1)

and, since (fn) is shrinking and the PIk have finite rank, we have for all k

‖PIk |[fi |i>m]‖ m→∞−−−−→ 0. (2)

Using alternately (1) and (2), we can construct integers k0 < k1 < · · · and intervals J0 < J1 < · · ·
such that

‖PIkn
|[fi |i /∈Jn]‖<

2
n + 1

.

To see this, suppose kn−1 and Jn−1 have been defined and find some large kn > kn−1 such that

‖PIkn
|[fi |i!maxJn−1]‖! 1

n + 1
.

Now, choose m large enough that

‖PIkn
|[fi |i>m]‖! 1

n + 1
,

and set Jn = [maxJn−1 + 1,m]. Then ‖PIkn
|[fi |i /∈Jn]‖ < 2

n+1 . It follows that if A ⊆ N is infi-
nite and T : Y → [fi]i /∈⋃n∈A Jn

is an embedding, then limn∈A ‖PIkn
T ‖ = 0, which contradicts

Lemma 3.2. So (Jn) witnesses that Y is tight in (fn). !

Corollary 3.5. If a tight Banach space X is reflexive, then every basic sequence in X is tight.

Notice that, since c0 and !1 are minimal, we have by the classical theorem of James, that if
X is a tight Banach space with an unconditional basis, then X is reflexive and so every basic
sequence in X is tight.

Example 3.6. The symmetrisation S(T (p)) of the p-convexification T (p) of Tsirelson’s space,
1 < p < +∞, does not contain a minimal subspace, yet it is not tight.
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Proof. Since S(T (p)) is saturated with isomorphic copies of subspaces of T (p) and T (p) does
not contain a minimal subspace, it follows that S(T (p)) does not have a minimal subspace. The
canonical basis (en) of S(T (p)) is symmetric, therefore S(T (p)) is not tight in (en) and so (en) is
not tight. By reflexivity, no basis of S(T (p)) is tight. !

3.2. A generalised asymptotic game

Suppose X = [xn] and Y = [yn] are two Banach spaces with bases. We define the game HY,X

with constant C " 1 between two players I and II as follows: I will in each turn play a natural
number ni , while II will play a not necessarily normalised block vector ui ∈ X and a natural
number mi such that

ui ∈X[n0,m0] + · · · + X[ni,mi],

where, for ease of notation, we write X[k,m] to denote [xn]k!n!m. Diagrammatically,

I n0 n1 n2 n3 · · ·
II u0,m0 u1,m1 u2,m2 u3,m3 · · ·

We say that the sequence (ui)i∈N is the outcome of the game and say that II wins the game if
(ui)∼C (yi).

For simplicity of notation, if X = [xn] is space with a basis, Y a Banach space, I0 < I1 <

I2 < · · · a sequence of non-empty intervals of N and K is a constant, we write

Y 'K (X, Ii)

if there is an infinite set A⊆N containing 0 such that

Y 'K

[
xn

∣∣∣ n /∈
⋃

i∈A

Ii

]
,

i.e., Y embeds with constant K into the subspace of X spanned by (xn)n/∈⋃
i∈A Ii

. Also, write

Y ' (X, Ii)

if there is an infinite set A⊆N such that Y ' [xn | n /∈⋃
i∈A Ii]. Notice that in the latter case we

can always demand that 0 ∈A by perturbating the embedding with a finite rank operator.
It is clear that if Y = [yn] and II has a winning strategy in the game HY,X with constant K ,

then for any sequence of intervals (Ii), Y 'K (X, Ii).
Modulo the determinacy of open games, the next lemma shows that the converse holds up to

a perturbation.

Lemma 3.7. Suppose X = [xn] is space with a basis and K,ε are positive constants such that
for all block bases Y of X there is a winning strategy for I in the game HY,X with constant K + ε.
Then there is a Borel function f : bb(X)→ [N] such that for all Y if Ij = [f (Y )2j , f (Y )2j+1],
then

Y &'K (X, Ij ).
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Proof. Notice that the game HY,X is open for player I and, in fact, if DK+ε denotes the set of
blocks u with 1

K+ε ! ‖u‖! K + ε, then the set

A =
{
(Y, 2p) ∈ bb(X)× (N×DK+ε ×N)N ∣∣ either 2p is a legal run of the game HY,X

with constant K + ε in which I wins or 2p is not a legal run of the game HY,X

}

is Borel and has open sections AY = { 2p ∈ (N×DK+ε ×N)N | (Y, 2p) ∈A}. Also, since there are
no rules for the play of I in HY,X , AY really corresponds to the winning plays for I in HY,X with
constant K + ε. By assumption, I has a winning strategy to play in AY for all Y , and so by the
theorem on strategic uniformisation (see (35.32) in [24]), there is a Borel function σ : Y 6→ σY

that to each Y associates a winning strategy for I in the game HY,X with constant K + ε.
Now let # = (δn) be a sequence of positive reals such that for all 2KC-basic sequences of

blocks (wn) of X with 1
K ! ‖wn‖ ! K (where C is the basis constant of X) and sequences of

vectors (un), if for all n, ‖wn − un‖< δn, then (wn)∼√1+ε/K (un). We also choose sets Dn of
finite (not necessarily normalised) blocks with the following properties:

– for each finite d ⊆N, the number of vectors u ∈Dn such that suppu = d is finite,
– for all blocks vectors w with 1

K ! ‖w‖ ! K , there is some u ∈ Dn with suppw = suppu

such that ‖w− u‖< δn.

This is possible since the K-ball in [xi]i∈d is totally bounded for all finite d ⊆ N. So for all
2KC-basic sequences (wn) of blocks with 1

K ! ‖wn‖ ! K , there is some (un) ∈
∏

n Dn such
that suppwn = suppun and ‖wn − un‖< δn for all n, whence (wn)∼√1+ε/K (un).

Suppose now that Y = [yn] is given. For each p = (n0, u0,m0, . . . , ni, ui,mi), where uj ∈Dj

for all j and

I n0 n1 · · · ni

II u0,m0 u1,m1 · · · ui,mi

is a legal position in the game HY,X in which I has played according to σY , we write p < k if
nj ,uj ,mj < k for all j ! i. Notice that for all k there are only finitely many such p with p < k,
so we can define

α(k) = max
(
k,max

{
σY (p)

∣∣ p < k
})

and set Ik = [k,α(k)]. Clearly, the sequence (Ik) can be computed in a Borel fashion from Y .
The Ik are not necessarily successive, but their minimal elements tend to ∞, so to prove the
lemma it is enough to show that Y does not K-embed into [xn] avoiding an infinite number of Ik

including I0.
Suppose now for a contradiction that A⊆N is infinite, 0 ∈A and yi 6→wi is a K-embedding

into [xn | n /∈⋃
k /∈A Ik]. By perturbing the embedding slightly, we can suppose that the wi are

blocks such that 1
K ! ‖wi‖! K and we still have a K

√
1 + ε/K-embedding. Using the defining

properties of Di , we find ui ∈ Di such that ‖wi − ui‖ < δi and suppwi = suppui for all i,
whereby (ui)∼√1+ε/K (wi)∼K

√
1+ε/K (yi), and therefore (ui)∼K+ε (yi).

We now proceed to define natural numbers ni , mi , and ai ∈ A such that for pi =
(n0, u0,m0, . . . , ni, ui,mi), we have
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(i) a0 = 0 and [0, n0[⊆ Ia0 ,
(ii) mi = ai+1 − 1,

(iii) pi is a legal position in HY,X in which I has played according to σY ,
(iv) ]mi,ni+1[⊆ Iai+1 .

Let a0 = 0 and n0 = σY (∅) = α(0), whence Ia0 = [0, α(0)] = [0, n0]. Find a1 such that
n0, u0, a0 < a1 and set m0 = a1 − 1. Then p0 = (n0, u0,m0) is a legal position in HY,X in
which I has played according to σY , p0 < a1, so n1 = σY (n0, u0,m0) ! α(a1), and therefore
]m0, n1[⊆ Ia1 = [a1, α(a1)].

Now suppose by induction that n0, . . . , ni and a0, . . . , ai have been defined. Since [0, n0[⊆
Ia0 and ]mj ,nj+1[⊆ Iaj+1 for all j < i, we have

ui ∈X[n0,m0] + · · · + X[ni−1,mi−1] + X[ni,∞[ .

Find some ai+1 greater than all of n0, . . . , ni , u0, . . . , ui , a0, . . . , ai and let mi = ai+1 − 1. Then

ui ∈X[n0,m0] + · · · + X[ni−1,mi−1] + X[ni,mi]

and pi = (n0, u0,m0, . . . , ni, ui,mi) is a legal position played according to σY . Since pi < ai+1
also

ni+1 = σY (n0, u0,m0, . . . , ni, ui,mi) ! α(ai+1).

Thus ]mi,ni+1[⊆ Iai+1 = [ai+1, α(ai+1)].
Now since p0 ⊆ p1 ⊆ p2 ⊆ · · · , we can let 2p = ⋃

i pi and see that 2p is a run of the game in
which I followed the strategy σY and II has played (ui). Since σY is winning for I, this implies
that (ui) !K+ε (yi) contradicting our assumption. !

Lemma 3.8. Suppose X = [xn] is a space with a basis and Y is a space such that for all constants
K there are intervals I

(K)
0 < I

(K)
1 < I

(K)
2 < · · · such that Y &'K (X, I

(K)
j ). Then there are inter-

vals J0 < J1 < J2 < · · · such that Y &' (X,Jj ). Moreover, the intervals (Jj ) can be computed in
a Borel manner from (I

(K)
i )i,K .

Proof. By induction we can construct intervals J0 < J1 < J2 < · · · such that Jn contains one
interval from each of (I

(1)
i ), . . . , (I

(n)
i ) and if M = minJn−1 and K = 8n ·c(M)9, then maxJn >

max I
(K)
0 + M , where c(M) is a constant such that if two subsequences of (xn) differ in at most

M terms then they are c(M) equivalent. It then follows that if A⊆N is infinite, then

Y &' [xn]n/∈⋃
i∈A Ji

.

To see this, suppose towards a contradiction that A⊆N is infinite and that for some integer N ,

Y 'N [xn]n/∈⋃
i∈A Ji

.
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Pick then a ∈ A such that a " N and set M = minJa − 1 and K = 8a · c(M)9. Define an iso-
morphic embedding T from

[
xn

∣∣∣ n /∈
⋃

i∈A

Ji

]

into
[
xn

∣∣∣ n /∈
⋃

i∈A

Ji & n > maxJa

]
+

[
xn

∣∣ max I
(K)
0 < n ! maxJa

]

by setting

T (xn) =
{

xn, if n > maxJa;
xmax I

(K)
0 +n+1, if n ! M.

This is possible since maxJa > max I
(K)
0 + M . Also, since T only changes at most M vectors

from (xn), it is a c(M) embedding. Therefore, by composing with T and using that N · c(M) !
a · c(M) ! K , we see that

Y 'K

[
xn

∣∣∣ n /∈
⋃

i∈A

Ji & n > maxJa

]
+

[
xn

∣∣ max I
(K)
0 < n ! maxJa

]
.

In particular, as almost all Ji contain an interval I
(K)
l , we can find and infinite set B ⊆ N con-

taining 0 such that

Y 'K

[
xn

∣∣∣ n /∈
⋃

i∈B

I
(K)
i

]
,

which is a contradiction. !

Lemma 3.9. Let E = [en] be given and suppose that for all block subspaces Z ! E and con-
stants C there is a block subspace X ! Z such that for all block subspaces Y ! X, I has a
winning strategy in the game HY,X with constant C. Then there is a block subspace X ! E and
a Borel function f : bb(X)→ [N] such that for all normalised block bases Y ! X, if we set
Ij = [f (Y )2j , f (Y )2j+1], then

Y &' (X, Ij ).

Proof. Using the hypothesis inductively together with Lemma 3.7, we can construct a se-
quence X0 " X1 " X2 " · · · of block subspaces XK and corresponding Borel functions fK :
bb(XK)→[N] such that for all V ! XK if Ij = [fK(V )2j , fK(V )2j+1], then V &'K2 (XK, Ij ).

Pick by Lemma 2.2 some block X∞ of X0 that is
√

K-equivalent with a block sequence ZK of
XK for every K " 1. Then for any block sequence Y of X∞ and any K " 1 there is some block
sequence V ! ZK ! XK such that Y is

√
K-equivalent with V . Let (Ij ) be the intervals given
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by fK(V ) so that V &'K2 (XK, Ij ). We can then in a Borel way from (Ij ) construct intervals
(Jj ) such that V &'K2 (ZK,Jj ) and therefore also Y &'K (X∞, Jj ).

This means that there are Borel functions gK : bb(X∞)→ [N] such that for all Y ! X∞ if
JK

j (Y ) = [gK(Y )2j , gK(Y )2j+1], then Y &'K (X∞, JK
j (Y )). Using Lemma 3.8 we can now in a

Borel manner in Y define intervals LY
0 < LY

1 < · · · such that

Y &'
(
X∞,LY

j

)
.

Letting f : bb(X∞)→ [N] be the Borel function corresponding to Y 6→ (LY
j ), we have our

result. !

As will be clear in Section 7 it can be useful to have a version of tightness that not only assures
us that certain intervals exist, but also tells us how to obtain these. Thus, we call a basis (en)

continuously tight if there is a continuous function f : bb(en)→[N] such that for all normalised
block bases X, if we set Ij = [f (X)2j , f (X)2j+1], then

X &'
(
[en], Ij

)
,

i.e., X does not embed into [en] avoiding an infinite number of the intervals Ij .
We shall now improve Lemma 3.9 to conclude continuous tightness from its hypothesis.

Lemma 3.10. Let E = [en] be given and suppose that for all block subspaces Z ! E and con-
stants C there is a block subspace X ! Z such that for all block subspaces Y ! X, I has a
winning strategy in the game HY,X with constant C. Then there is a continuously tight block
subspace X ! E.

Proof. We observe that E does not contain a copy of c0. Indeed if Z is a block subspace of
E spanned by a block sequence which is C-equivalent to the unit vector basis of c0, then for
any Y ! X ! Z, II has a winning strategy in the game HY,X with constant C2. We shall then
use codings with inevitable subsets. So find first a block subspace Z of E such that there are
inevitable, positively separated, closed subsets F0 and F1 of SZ . By Lemma 3.9, we can find a
further block subspace V of Z and a Borel function g : bb(V )→ [N] such that for all Y ! V , if
Ij = [g(Y )2j , g(Y )2j+1], then Y &' (V , Ij ). Define the set

A =
{
(yn) ∈ bb(V )

∣∣ y2n ∈ F0 ⇔ n /∈ g
(
(y2n+1)

)
and y2n ∈ F1 ⇔ n ∈ g

(
(y2n+1)

)}
.

Obviously, A is Borel and, using inevitability, one can check that any block basis of V contains
a further block basis in A. Thus, by Gowers’ Determinacy Theorem, we have that for all #> 0
there is a block sequence X of V such that II has a strategy to play into A# when I plays block
subspaces of X. Choosing #> 0 sufficiently small, this easily implies that for some block basis
X of E, there is a continuous function h : bb(X)→ bb(X)× [N] that to each W ! X associates
a pair (Y, (In)) consisting of a block sequence Y of W and a sequence of intervals (In) such that
Y &' (V , Ij ). Notice now that continuously in the sequence (Ij ), we can construct intervals (Jj )

such that Y &' (X,Jj ) and hence also W &' (X,Jj ). So the continuous function f : bb(X)→[N]
corresponding to W 6→ (Jj ) witnesses the continuous tightness of X. !

We shall need the following consequence of continuous tightness in Section 7.



166 V. Ferenczi, C. Rosendal / Journal of Functional Analysis 257 (2009) 149–193

Lemma 3.11. Suppose (en) is continuously tight. Then there is a continuous function f :
[N] →[ N] such that for all A,B ∈ [N], if B is disjoint from an infinite number of intervals
[f (A)2i , f (A)2i+1], then [en]n∈A does not embed into [en]n∈B .

Proof. It is enough to notice that the function h : [N] → bb(en) given by h(A) = (en)n∈A is
continuous. So when composed with the function witnessing continuous tightness we have the
result. !

3.3. A game for minimality

For L and M two block subspaces of E, define the infinite game GL,M with constant C " 1
between two players as follows. In each round I chooses a subspace Ei ⊆ L spanned by a finite
block sequence of L, a normalised block vector ui ∈ E0 + · · · + Ei , and an integer mi . In the
first round II plays an integer n0, and in all subsequent rounds II plays a subspace Fi spanned by
a finite block sequence of M , a (not necessarily normalised) block vector vi ∈ F0 + · · · + Fi and
an integer ni+1. Moreover, we demand that ni ! Ei and mi ! Fi .

Diagrammatically,

I n0 ! E0 ⊆ L n1 ! E1 ⊆ L · · ·
u0 ∈E0,m0 u1 ∈E0 + E1,m1

II n0 m0 ! F0 ⊆M m1 ! F1 ⊆M · · ·
v0 ∈ F0, n1 v1 ∈ F0 + F1, n2

The outcome of the game is the pair of infinite sequences (ui) and (vi) and we say that II wins
the game if (ui)∼C (vi).

Lemma 3.12. Suppose that X and Y are block subspaces of E and that player II has a winning
strategy in the game HY,X with constant C. Then II has a winning strategy in the game GY,X

with constant C.

Proof. We shall in fact prove that II has a winning strategy in a game that is obviously harder
for her to win. Namely, we shall suppose that II always plays ni = 0, which obviously puts
less restrictions on the play of I. Moreover, we do not require I to play the finite-dimensional
spaces Ei , which therefore also puts fewer restrictions on I in subsequent rounds. Therefore, we
shall suppress all mention of Ei and ni and only require that the ui are block vectors in Y .

While playing the game GY,X , II will keep track of an auxiliary play of the game HY,X in the
following way. In the game GY,X we have the following play

I u0 ∈ Y,m0 u1 ∈ Y,m1 · · ·

II m0 ! F0 ⊆X m1 ! F1 ⊆X · · ·
v0 ∈ F0 v1 ∈ F0 + F1

We write each vector ui = ∑ki
j=0 λ

i
j yj and may for simplicity of notation assume that ki < ki+1.

The auxiliary run of HY,X that II will keep track of is as follows, where II plays according to her
winning strategy for HY,X .
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I m0 · · · m0 m1 · · · m1 · · ·
II w0,p0 · · · wk0,pk0 wk0+1,pk0+1 · · · wk1,pk1 · · ·

To compute the vi and Fi in the game GY,X , II will refer to the play of HY,X and set

vi =
ki∑

j=0

λi
jwj ,

and let

Fi = X
[
mi,max{pki−1+1, . . . , pki }

]
.

It is not difficult to see that mi ! Fi ⊆X, vi ∈ F0 +· · ·+Fi , and that the Fi and vi only depends
on u0, . . . , ui and m0, . . . ,mi . Thus this describes a strategy for II in GY,X and it suffices to
verify that it is a winning strategy.

But since II follows her strategy in HY,X , we know that (wi) ∼C (yi) and therefore, since
ui and vi are defined by the same coefficients over respectively (yi) and (wi), we have that
(vi)∼C (ui). !

3.4. A dichotomy for minimality

We are now in condition to prove the central result of this paper.

Theorem 3.13 (3rd dichotomy). Let E be a Banach space with a basis (ei). Then either E

contains a minimal block subspace or a continuously tight block subspace.

Proof. Suppose that E has no continuously tight block basic sequence. By Lemma 3.10, we
can, modulo passing to a block subspace, suppose that for some constant C and for all block
subspaces X ! E there is a further block subspace Y ! X such that I has no winning strategy in
the game HY,X with constant C. By the determinacy of open games, this implies that for all block
subspaces X ! E there is a further block subspace Y ! X such that II has a winning strategy in
the game HY,X with constant C.

A state is a pair (a, b) with a, b ∈ (D′ × F)<ω , where F is the set of subspaces spanned by
finite block sequences and D′ the set of not necessarily normalised blocks, such that |a| = |b| or
|a| = |b|+1. The set S of states is countable, and corresponds to the possible positions of a game
GL,M after a finite number of moves were made, restricted to elements that affect the outcome
of the game from that position (i.e., mi ’s and ni ’s are forgotten).

For each state s = (a, b) we will define the game GL,M(s) in a manner similar to the game
GL,M depending on whether |a| = |b| or |a| = |b| + 1. To avoid excessive notation we do this
via two examples:

If a = (a0,A0, a1,A1), b = (b0,B0, b1,B1), the game GL,M(s) will start with II playing some
integer n2, then I playing (u2,E2,m2) with n2 ! E2 ⊆ L and u2 ∈ A0 + A1 + E2, II playing
(v2,F2, n3) with m2 ! F2 ⊆M and v2 ∈ B0 + B1 + F2, etc., and the outcome of the game will
be the pair of infinite sequences (a0, a1, u2, . . .) and (b0, b1, v2, . . .).

If a = (a0,A0, a1,A1), b = (b0,B0), the game GL,M(s) will start with I playing some inte-
ger m1, then II playing (v1,F1, n2) with m1 ! F1 ⊆M and v1 ∈ B0 + F1, I playing (u2,E2,m2)
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with n2 ! E2 ⊆ L and u2 ∈A0 + A1 + E2, etc., and the outcome of the game will be the pair of
infinite sequences (a0, a1, u2, . . .) and (b0, v1, v2, . . .).

The following lemma is well known and easily proved by a simple diagonalisation.

Lemma 3.14. Let N be a countable set and let µ : bb(E)→ P (N) satisfy either

V !∗ W ⇒ µ(V )⊆ µ(W)

or

V !∗ W ⇒ µ(V )⊇ µ(W).

Then there exists a stabilising block subspace V0 ! E, i.e., such that µ(V ) = µ(V0) for any
V !∗ V0.

Let now τ : bb(E)→P (S) be defined by

s ∈ τ(M) ⇔ ∃L ! M such that player II has a winning strategy in GL,M(s).

By the asymptotic nature of the game we see that M ′ !∗ M ⇒ τ(M ′) ⊆ τ(M), and therefore
there exists M0 ! E which is stabilising for τ . We then define a map ρ : bb(E)→ P (S) by
setting

s ∈ ρ(L) ⇔ player II has a winning strategy in GL,M0(s).

Again L′ !∗ L ⇒ ρ(L′)⊇ ρ(L) and therefore there exists L0 ! M0 which is stabilising for ρ.
Finally, the reader will easily check that ρ(L0) = τ(L0) = τ(M0), see, e.g., [35] or [10].

Lemma 3.15. For every M ! L0, II has a winning strategy for the game GL0,M .

Proof. Fix M a block subspace of L0. We begin by showing that (∅,∅) ∈ τ(L0). To see this, we
notice that as L0 ! E, there is a Y ! L0 such that II has a winning strategy for HY,L0 and thus,
by Lemma 3.12, also a winning strategy in GY,L0 with constant C. So (∅,∅) ∈ τ(L0).

We will show that for all states

(
(u0,E0, . . . , ui,Ei), (v0,F0, . . . , vi,Fi)

)
∈ τ(L0),

there is an n such that for all n ! E ⊆ L0 and u ∈E0 + · · · + Ei + E, we have

(
(u0,E0, . . . , ui,Ei, u,E), (v0,F0, . . . , vi,Fi)

)
∈ τ(L0).

Similarly, we show that for all states

(
(u0,E0, . . . , ui+1,Ei+1), (v0,F0, . . . , vi,Fi)

)
∈ τ(L0)

and for all m there are m ! F ⊆M and v ∈ F0 + · · · + Fi + F such that

(
(u0,E0, . . . , ui+1,Ei+1), (v0,F0, . . . , vi,Fi, v,F )

)
∈ τ(L0).
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Since the winning condition of GL0,M is closed, this clearly shows that II has a winning strategy
in GL0,M (except for the integers m and n, τ(L0) is a winning quasi strategy for II).

So suppose that

s =
(
(u0,E0, . . . , ui,Ei), (v0,F0, . . . , vi,Fi)

)
∈ τ(L0) = ρ(L0),

then II has a winning strategy in GL0,M0(s) and hence there is an n such that for all n ! E ⊆ L0
and u ∈E0 + · · · + Ei + E, II has a winning strategy in GL0,M0(s

′), where

s′ =
(
(u0,E0, . . . , ui,Ei, u,E), (v0,F0, . . . , vi,Fi)

)
.

So s′ ∈ ρ(L0) = τ(L0).
Similarly, if

s =
(
(u0,E0, . . . , ui+1,Ei+1), (v0,F0, . . . , vi,Fi)

)
∈ τ(L0) = τ(M)

and m is given, then as II has a winning strategy for GL,M(s) for some L ! M , there are m !
F ⊆M and v ∈ F0 + · · · + Fi + F such that II has a winning strategy in GL,M(s′), where

s′ =
(
(u0,E0, . . . , ui+1,Ei+1), (v0,F0, . . . , vi,Fi, v,F )

)
.

So s′ ∈ τ(M) = τ(L0). !

Choose now Y = [yi] ! L0 such that II has a winning strategy in HY,L0 . We shall show
that any block subspace M of L0 contains a C2-isomorphic copy of Y , which implies that Y is
C2 + ε-minimal for any ε > 0.

To see this, notice that, since II has a winning strategy in HY,L0 , player I has a strategy in
the game GL0,M to produce a sequence (ui) that is C-equivalent with the basis (yi). Moreover,
we can ask that I plays mi = 0. Using her winning strategy for GL0,M , II can then respond by
producing a sequence (vi) in M such that (vi)∼C (ui). So (vi)∼C2 (yi) and Y 'C2 M . !

Finally we observe that by modifying the notion of embedding in the definition of a tight
basis, we obtain variations of our dichotomy theorem with a weaker form of tightness on one
side and a stronger form of minimality on the other.

Theorem 3.16. Every Banach space with a basis contains a block subspace E = [en] which
satisfies one of the two following properties:

(1) For any [yi] ! E, there exists a sequence (Ii) of successive intervals such that for any infinite
subset A of N, the basis (yi) does not embed into [en]n/∈⋃

i∈A Ii
as a sequence of disjointly

supported blocks , resp. as a permutation of a block sequence, resp. as a block sequence.
(2) For any [yi] ! E, (en) is equivalent to a sequence of disjointly supported blocks of [yi],

resp. (en) is permutatively equivalent to a block sequence of [yi], resp. (en) is equivalent to
a block sequence of [yi].

The case of block sequences immediately implies the theorem of Pełczar [35].
The fact that the canonical basis of T ∗ is strongly asymptotically !∞ implies easily that it is

tight for “embedding as a sequence of disjointly supported blocks” although T ∗ is minimal in
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the usual sense. We do not know of other examples of spaces combining one form of minimality
with another form of tightness in the above list.

4. Tightness with constants and crude stabilisation of local structure

We shall now consider a stronger notion of tightness, which is essentially local in nature.
Let E be a space with a basis (en). There is a particularly simple case when a sequence (Ii) of
intervals associated to a subspace Y characterises the tightness of Y in (en). This is when for all
integer constants K , Y &'K [en]n/∈IK . This property has the following useful reformulations.

Proposition 4.1. Let E be a space with a basis (en). The following are equivalent:

(1) For any block sequence (yn) there are intervals I0 < I1 < I2 < · · · such that for all K ,

[yn]n∈IK
&'K [en]n/∈IK .

(2) For any space Y , there are intervals I0 < I1 < I2 < · · · such that for all K ,

Y &'K [en]n/∈IK .

(3) No space embeds uniformly into the tail subspaces of E.
(4) There is no K and no subspace of E which is K-crudely finitely representable in any tail

subspace of E.

A basis satisfying properties (1), (2), (3), (4), as well as the space it generates, will be said to
be tight with constants.

Proof. The implications (1)⇒ (2)⇒ (3) are clear.
To prove (3) ⇒ (4) assume some subspace Y of E is K-crudely finitely representable in

any tail subspace of E. Without loss of generality, we may assume that Y = [yn] is a block
subspace of E. We pick a subsequence (zn) of (yn) in the following manner. Let z0 = y0, and
if z0, . . . , zk−1 have been chosen, we choose zk supported far enough on the basis (en), so that
[z0, . . . , zk−1] has a 2K-isomorphic copy in [en | k ! n < min(supp zk)]. It follows that for any k,
Z = [zn] has an M-isomorphic copy in the tail subspace [en | n " k] for some M depending only
on K and the constant of the basis (en).

To prove (4) ⇒ (1), let c(L) be a constant such that if two block sequences differ in at
most L terms, then they are c(L)-equivalent. Now assume (4) holds and let (yn) be a block
sequence of (en). Suppose also that I0 < · · · < IK−1 have been chosen. By (4) applied to
Y = [yn]∞n=max IK−1+1, we can then find m and l > max IK−1 such that [yn]ln=max IK−1+1 does
not K · c(max IK−1 + 1)-embed into [en]∞n=m. Let now

IK = [max IK−1 + 1, l + m]

and notice that, as [yn]ln=max IK−1+1 ⊆ [yn]n∈IK , we have that [yn]n∈IK does not K ·c(max IK−1 +
1)-embed into [en]∞n=m. Also, since (en)

∞
n=m and

(en)
max IK−1
n=0

.(en)
∞
n=max IK−1+1+m
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only differ in max IK−1 + 1 many terms, [yn]n∈IK does not K-embed into

[en]max IK−1
n=0 + [en]∞n=max IK−1+1+m,

and thus not into the subspace [en]n/∈IK either. !

It is worth noticing that a basis (en), tight with constants, is necessarily continuously tight.
For a simple argument shows that in order to find the intervals IK satisfying (1) above, one only
needs to know a beginning of the block sequence (yn) and hence the intervals can be found
continuously in (yn). From Proposition 4.1 we also deduce that any block basis or shrinking
basic sequence in the span of a tight with constants basis is again tight with constants.

There is a huge difference between the fact that no subspace of E is K-crudely finitely rep-
resentable in all tails of E and then that no space is K-crudely finitely representable in all tails
of E. For example, we shall see that while the former holds for Tsirelson’s space, by Dvoretzky’s
theorem (see e.g. [16]), !2 is always finitely representable in any Banach space.

Recall that a basis (en) is said to be strongly asymptotically !p , 1 ! p ! +∞ [9], if there exist
a constant C and a function f : N→ N such that for any n, any family of n unit vectors which
are disjointly supported in [ek | k " f (n)] is C-equivalent to the canonical basis of !n

p .

Proposition 4.2. Let E be a Banach space with a strongly asymptotically !p basis (en), 1 ! p <

+∞, and not containing a copy of !p . Then (en) is tight with constants.

Proof. Assume that some Banach space Y embeds with constant K in any tail subspace of E.
We may assume that Y is generated by a block sequence (yn) of E and, since any strongly
asymptotically !p basis is unconditional, (yn) is unconditional. By renorming E we may assume
it is 1-unconditional. By a result of W.B. Johnson [23] for any n there is a constant d(n) such
that (y0, . . . , yn) is 2K-equivalent to a sequence of vectors in the linear span of d(n) disjointly
supported unit vectors in any tail subspace of E, in particular in [ek | k " f (d(n))]. Therefore
[y0, . . . , yn] 2KC-embeds into !p . This means that Y is crudely finitely representable in !p and
therefore embeds into Lp , and since (yn) is unconditional asymptotically !p , that Y contains a
copy of !p (details of the last part of this proof may be found in [9]). !

Corollary 4.3. Tsirelson’s space T and its convexifications T (p), 1 < p < +∞, are tight with
constants.

Observe that on the contrary, the dual T ∗ of T , which is strongly asymptotically !∞ and does
not contain a copy of c0, is minimal and therefore does not contain any tight subspace.

Suppose a space X is crudely finitely representable in all of its subspaces. Then there is
some constant K and a subspace Y such that X is K-crudely finitely representable in all of
the subspaces of Y . For if not, we would be able to construct a sequence of basic sequences
(xK

n ) in X such that (xK+1
n ) is a block sequence of (xK

n ) and such that X is not K2-crudely
finitely representable in [xK

n ]. By Lemma 2.2, we can then find a block sequence (yn) of (x0
n)

that is
√

K-equivalent with a block sequence of (xK
n ) for any K and hence if X were K-crudely

finitely representable in [yn] for some K , then it would also be K3/2-crudely finitely repre-
sentable in [xK

n ], which is a contradiction.
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When a space X is K-crudely finitely representable in any of its subspaces for some K , we
say that X is locally minimal. For example, by the universality properties of c0, any space with
an asymptotically !∞ basis is locally minimal.

Theorem 4.4 (5th dichotomy). Let E be an infinite-dimensional Banach space with basis (en).
Then there is a block sequence (xn) satisfying one of the following two properties, which are
mutually exclusive and both possible.

(1) (xn) is tight with constants,
(2) [xn] is locally minimal.

Proof. If E contains c0, the result is trivial. So suppose not and find by the solution to the
distortion problem a block sequence (yn) and inevitable, positively separated, closed subsets F0
and F1 of the unit sphere of [yn]. Define for each integer K " 1 the set

AK =
{
(zn) ! (yn)

∣∣ z2n ∈ F0 ∪ F1 and (z2n) codes by 0’s and 1’s a block sequence (vn) of

(z2n+1) such that for all N, [vn] 'K [z2n+1]n"N and moreover 1/2 < ‖vn‖< 2
}
.

Clearly AK is analytic, so we can apply Gowers’ Determinacy Theorem to get one of two cases:

(i) either there is a block sequence (xn) and a K such that player II has a strategy to play inside
(AK)# whenever I plays a block sequence of (xn), where # will be determined later,

(ii) or we can choose inductively a sequence of block sequences (xK
n ) such that (xK+1

n ) ! (xK
n )

and such that no block sequence of (xK
n ) belongs to AK .

Consider first case (ii). Set wn = xn
2n and choose now further block sequences (xn) and (hn)

of (wn) such that

x0 < h0 < h1 < x1 < h2 < h3 < x4 < · · ·

and h2n ∈ F0, h2n+1 ∈ F1.
We claim that (xn) is tight with constants. If not, we can find some block sequence (un)

of (xn) and a K such that [un] embeds with constant K into any tail subspace of [xn]. By
passing to tails of (xn) and of (un), we can suppose that (xn) is a block sequence of (xK

n ),
(un) is a block sequence of (xn) and [un] K-embeds into all tails of [xn]. By filling in with
appropriate hi between xn and xn+1, we can now produce a block sequence (zn) of (xK

n ) such
that (z2n) codes by 0’s and 1’s the block sequence (un) of (z2n+1) with the property that for all N ,
[un] 'K [z2n+1]n"N . In other words, we have produced a block sequence of (xK

n ) belonging
to AK , which is impossible. Thus, (xn) is tight with constants.

Consider now case (i) instead and let II play according to her strategy. We suppose that # is
chosen sufficiently small so that δi < dist(F0,F1)/3 and if two block sequences are #-close then
they are 2-equivalent. Let (yn) ∈ (AK)# be the response by II to the sequence (xn) played by I
and let (zn) ∈AK be such that ‖zn − yn‖< δn for all n. Then (z2n) codes by 0’s and 1’s a block
sequence (vn) of (z2n+1). Let (un) be the block sequence of (y2n+1) constructed in the same way
as (vn) is constructed over (z2n+1). We claim that (un) is 4K-crudely finitely representable in
any block subspace of [xn].
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For this, let [u0, . . . , um] be given and suppose that (fn) is any block subspace of (xn). Find
a large k such that (z0, z2, . . . , z2k) codes the block sequence (v0, . . . , vm) of (z1, . . . , z2k+1)

and let l be large enough so that when I has played x0, . . . , xl then II has played y0, . . . , y2k+1.
Consider now the game in which player I plays

x0, x1, . . . , xl, fl+1, fl+2, . . . .

Then, following the strategy, II will play a block sequence

y0, . . . , y2k+1, g2k+2, g2k+3, . . . ∈ (AK)#.

So let (hn) ∈ AK be such that ‖hn − yn‖ < δn for all n ! 2k + 1 and ‖hn − gn‖ < δn for
all n " 2k + 2. For n ! k, we have, as ‖h2n − z2n‖ < 2δn < 2

3 dist(F0,F1), that h2n ∈ Fi ⇔
z2n ∈ Fi . Also, (h2n+1)

k
n=0 and (y2n+1)

k
n=0 are 2-equivalent and (h2n+1)

∞
n=k+1 and (g2n+1)

∞
n=k+1

are 2-equivalent, so (h2n) will code a block sequence (wn) of (h2n+1) such that (w0, . . . ,wm)

is 2-equivalent to (u0, . . . , um). Moreover, since (hn) ∈ AK , [wn] will K-embed into every tail
subspace of [h2n+1], and hence 2K-embed into every tail subspace of [g2n+1]. Therefore, since
(g2n+1) is block sequence of (fn), [u0, . . . , um] will 4K-embed into [fn], which proves the
claim. It follows that [un] is locally minimal, which proves the theorem. !

Local minimality can be reformulated in a way that makes the relation to local theory clearer.
For this, let Fn be the metric space of all n-dimensional Banach spaces up to isometry equipped
with the Banach–Mazur metric

d(X,Y ) = inf
(
log

(
‖T ‖ ·

∥∥T −1∥∥) ∣∣ T : X→ Y is an isomorphism
)
.

Then for every Banach space X, the set of n-dimensional Y that are almost isometrically embed-
dable into X form a closed subset (X)n of Fn. It is well known that this set (X)n does not always
stabilise, i.e., there is not necessarily a subspace Y ⊆X such that for all further subspaces Z ⊆ Y ,
(Z)n = (Y )n. However, if instead X comes equipped with a basis and for all block subspaces Y

we let {Y }n be the set of all n-dimensional spaces that are almost isometrically embeddable into
all tail subspaces of Y , then one can easily stabilise {Y }n on subspaces. Such considerations are
for example the basis for [30].

Theorem 4.4 gives a dichotomy for when one can stabilise the set (X)n in a certain way,
which we could call crude. Namely, X is locally minimal if and only if there is some constant
K such that for all subspaces Y of X and all n, dH ((X)n, (Y )n) ! K , where dH is the Hausdorff
distance. So by Theorem 4.4, the local structure stabilises crudely on a subspace if and only if a
space is not saturated by basic sequences tight with constants.

Often it is useful to have a bit more than local minimality. So we say that a basis (en) is locally
block minimal if it is K-crudely block finitely representable in all of its block bases for some K .
As with crude finite representability we see that there then must be a constant K and a block (yn)

such that (en) is K-crudely block finitely representable in all block subspaces of (yn). We now
have the following version of Theorem 4.4 for finite block representability.

Theorem 4.5. Let (en) be a Schauder basis. Then (en) has a block basis (xn) with one of the
following two properties, which are mutually exclusive and both possible.



174 V. Ferenczi, C. Rosendal / Journal of Functional Analysis 257 (2009) 149–193

(1) For all block bases (yn) of (xn) there are intervals I1 < I2 < I3 < · · · such that (yn)n∈IK is
not K-equivalent to a block sequence of (xn)n/∈IK ,

(2) (xn) is locally block minimal.

Finally we note that there exist tight spaces which do not admit subspaces which are tight
with constants:

Example 4.6. There exists a reflexive, tight, locally block minimal Banach space.

Proof. E. Odell and T. Schlumprecht [33] have built a reflexive space OS with a basis such that
every monotone basis is block finitely representable in any block subspace of OS. It is in particu-
lar locally block minimal and therefore contains no basic sequence which is tight with constants.
We do not know whether the space OS is tight. Instead, we notice that since the summing basis
of c0 is block finitely representable in any block subspace of OS, OS cannot contain an uncondi-
tional block sequence. By Gowers’ 1st dichotomy it follows that some block subspace of OS is
HI, and by the 3rd dichotomy (Theorem 3.13) and the fact that HI spaces do not contain minimal
subspaces, that some further block subspace is tight, which completes the proof. !

It is unknown whether there is an unconditional example with the above property. There exists
an unconditional version of OS [32], but it is unclear whether it has no minimal subspaces.
However, the dual of a space constructed by Gowers in [17] can be shown to be both tight and
locally minimal.

Example 4.7. (See [14].) There exists a space with an unconditional basis which is tight and
locally minimal.

5. Local block minimality, asymptotic structure and a dichotomy for containing c0 or !p

Recall that a basis (en) is said to be asymptotically !p (in the sense of Tsirelson’s space) if
there is a constant C such that for all normalised block sequences n < x1 < · · · < xn, (xi)

n
i=1 is

C-equivalent with the standard unit vector basis of !n
p .

When (xn) is asymptotically !p and some block subspace [yn] of [xn] is K-crudely block
finitely representable in all tail subsequences of (xn), then it is clear that (yn) must actually be
equivalent with the unit vector basis of !p , or c0 for p =∞. So this shows that for asymptoti-
cally !p bases (xn), either [xn] contains an isomorphic copy of !p or c0 or (xn) itself satisfies
condition (1) of Theorem 4.5. This is the counterpart of Proposition 4.2 for block sequences. As
an example, we mention that, since T ∗ does not contain c0, but has a strongly asymptotically !∞
basis, it thus satisfies (1). This small observation indicates that one can characterise when !p or
c0 embeds into a Banach space by characterising when a space contains an asymptotic !p space.

We first prove a dichotomy for having an asymptotic !p subspace, for the proof of which we
need the following lemma.

Lemma 5.1. Suppose (en) is a basic sequence such that for some C and all n and normalised
block sequences n < y1 < y2 < · · · < y2n, we have

(y2i−1)
n
i=1 ∼C (y2i )

n
i=1.

Then (en) has an asymptotic !p subsequence for some 1 ! p !∞.
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Proof. By the theorem of Brunel and Sucheston [5], we can, by passing to a subsequence of
(en), suppose that (en) generates a spreading model, i.e., we can assume that for all integers
n < l1 < l2 < · · · < ln and n < k1 < k2 < · · · < kn we have

(el1 , . . . , eln)∼1+ 1
n

(ek1, . . . , ekn).

Now suppose that en < y1 < y2 < · · · < yn and en < z1 < · · · < zn are normalised block se-
quences of (e2i ). Then there are n < l1 < l2 < · · · < ln and n < k1 < k2 < · · · < kn such that

en < y1 < el1 < y2 < el2 < · · · < yn < eln

and

en < z1 < ek1 < z2 < ek2 < · · · < zn < ekn,

so (yi) ∼C (eli ) ∼1+ 1
n

(eki ) ∼C (zi) and (yi) ∼2C2 (zi). Thus, asymptotically all finite nor-

malised block sequences are 2C2-equivalent.
By Krivine’s theorem [25], there is some !p that is block finitely representable in (e2i ) and

hence asymptotically all finite normalised block sequences are equivalent to !n
p of the correct

dimension and (e2i ) is asymptotic !p . !

Theorem 5.2. Suppose X is a Banach space with a basis. Then X has a block subspace W , which
is either asymptotic !p , for some 1 ! p ! +∞, or such that

∀M ∃n ∀U1, . . . ,U2n ⊆W ∃ui ∈ SUi

(
u1 < · · · < u2n & (u2i−1)

n
i=1 !M (u2i )

n
i=1

)
.

Proof. Assume first that for some M and V ⊆X we have

∀n ∀Y ⊆ V ∃Z ⊆ Y ∀z1 < · · · < z2n ∈ SZ (z2i−1)
n
i=1 ∼M (z2i )

n
i=1.

Then we can inductively define V ⊇ Z1 ⊇ Z2 ⊇ Z3 ⊇ · · · such that for each n,

∀z1 < · · · < z2n ∈ SZn (z2i−1)
n
i=1 ∼M (z2i )

n
i=1.

Diagonalising over this sequence, we can find a block subspace W = [wn] such that for all
m " n, wm ∈ Zn. Therefore, if n < z1 < · · · < z2n is a sequence of normalised blocks of (wn),
then (z2i−1)

n
i=1 ∼M (z2i )

n
i=1. By Lemma 5.1, it follows that W has an asymptotic !p subspace.

So suppose on the contrary that

∀M ∀V ⊆X ∃n ∃Y ⊆ V ∀Z ⊆ Y ∃z1 < · · · < z2n ∈ SZ (z2i−1)
n
i=1 !M (z2i )

n
i=1.

Now find some small #> 0 such that two normalised block sequences of X that are #-close are√
2-equivalent. Applying the determinacy theorem of Gowers to # and the sets

A(M,n) =
{
(zi)

∣∣ (z2i−1)
n
i=1 !M (z2i )

n
i=1

}
,
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we have that

∀M ∀V ⊆X ∃n ∃Z ⊆ V II has a strategy to play normalised

z1 < · · · < z2n such that (z2i−1)
n
i=1 !M

2
(z2i )

n
i=1

when I is restricted to playing blocks of Z.

Using this we can inductively define a sequence X ⊇W1 ⊇W2 ⊇W3 ⊇ · · · such that for all
M there is an n = n(2M) such that II has a strategy to play normalised z1 < · · · < z2n such that
(z2i−1)

n
i=1 !M (z2i )

n
i=1 whenever I is restricted to playing blocks of WM . Diagonalising over this

sequence, we find some W ⊆X such that for all M , W ⊆∗ WM . So for all M there is n such that
II has a strategy to play normalised z1 < · · · < z2n such that (z2i−1)

n
i=1 !M (z2i )

n
i=1 whenever I

is restricted to playing blocks of W .
Letting player I play a segment of the block basis of Ui until II plays a vector, we easily see

that whenever U1, . . . ,U2n ⊆W , there are zi ∈ SUi such that z1 < · · · < z2n and (z2i−1)
n
i=1 !M

(z2i )
n
i=1. This finishes the proof. !

Using this, we can now prove the main result of this section.

Theorem 5.3 (The c0 and !p dichotomy). Suppose X is a Banach space not containing a copy of
c0 nor of !p , 1 ! p <∞. Then X has a subspace Y with a basis satisfying one of the following
properties.

(i) ∀M ∃n ∀U1, . . . ,U2n ⊆ Y ∃ui ∈ SUi u1 < · · · < u2n & (u2i−1)
n
i=1 !M (u2i )

n
i=1.

(ii) For all block bases (zn) of Y = [yn] there are intervals I1 < I2 < I3 < · · · such that (zn)n∈IK

is not K-equivalent to a block sequence of (yn)n/∈IK .

Notice that both (i) and (ii) trivially imply that Y cannot contain a copy of c0 or !p , since (i)
implies some lack of homogeneity and (ii) some lack of minimality. However, we do not know
if there are any spaces satisfying both (i) and (ii) or if, on the contrary, these two properties are
incompatible.

Proof. If X has no block subspace satisfying (i), then it must have an asymptotically !p block
subspace Y for some 1 ! p !∞. Let C be the constant of asymptoticity. Suppose now that
Z = [zn] is a further block subspace. Since Z is not isomorphic to !p , this means that for all
L and K , there is some M such that (zn)

M
n=L is not KC-equivalent to !M−L−1

p and hence not
K-equivalent with a normalised block sequence of (yn)

∞
n=M either. So if I1 < I2 < · · · < IK−1

have been defined, to define IK , we let N = max IK−1 + 1 and find M such that (zn)
M
n=2N−1 is

not K-equivalent with a normalised block sequence of (yn)
∞
n=M . It follows that (zn)

M
n=N is not

K-equivalent with a normalised block sequence of (y1, y2, . . . , yN−1, yM+1, yM+2, . . .). Letting
IK = [N,M] we have the result. !

We should mention that G. Androulakis, N. Kalton and Tcaciuc [1] have extended Tcaciuc’s
dichotomy from [41] to a dichotomy characterising containment of !p and c0. The result above
implies theirs and moreover provides additional information.



V. Ferenczi, C. Rosendal / Journal of Functional Analysis 257 (2009) 149–193 177

6. Tightness by range and subsequential minimality

Theorem 1.1 shows that if one allows oneself to pass to a basis for a subspace, one can find
a basis in which there is a close connection between subspaces spanned by block bases and
subspaces spanned by subsequences. Thus, for example, if the basis is tight there can be no space
embedding into all the subspaces spanned by subsequences of the basis. On the other hand, any
block basis in Tsirelson’s space T is equivalent to a subsequence of the basis, and actually every
subspace of a block subspace [xn] in T contains an isomorphic copy of a subsequence of (xn).
In fact, this phenomenon has a deeper explanation and we shall now proceed to show that the
connection between block sequences and subsequences can be made even closer.

Lemma 6.1. If (en) is a basis for a space not containing c0, then for all finite intervals (In) such
that min In n→∞−−−−→∞ and all subspaces Y , there is a further subspace Z such that

‖PIk |Z‖ k→∞−−−→ 0.

Proof. By a standard perturbation argument, we can suppose that Y is generated by a normalised
block basis (yn). Let K be the basis constant of (en). As min In n→∞−−−−→∞ and each In is finite,
we can choose a subsequence (vn) of (yn) such that for all k the interval Ik intersects the range
of at most one vector vm from (vn). Now, since c0 does not embed into [en], no tail sequence of
(vn) can satisfy an upper c0 estimate. This implies that for all N and δ > 0 there is a normalised
vector

z =
N ′∑

i=N

ηivi,

where |ηi | < δ. Using this, we now construct a normalised block sequence (zn) of (vn) such that
there are m(0) < m(1) < · · · and αi with

zn =
m(n+1)−1∑

i=m(n)

αivi

and |αi | < 1
n whenever m(n) ! i < m(n + 1).

Now suppose u = ∑
j λj zj and k are given. Then there is at most one vector zn whose range

intersect the interval Ik . Also, there is at most one vector vp from the support of zn whose range
intersect Ik . Therefore,

∥∥PIk (u)
∥∥ =

∥∥PIk (λnzn)
∥∥ =

∥∥PIk (λnαpvp)
∥∥

! 2K‖λnαpvp‖! |λn| ·
2K

n
! 4K2

n
‖u‖.

It follows that ‖PIk |[zl ]‖! 4K2

nk
, where nk is such that Ik intersects the range of znk (or nk = k if

Ik intersects the range of no zn). Since min Ik k→∞−−−→∞ and (zn) is a block basis, nk →∞ when
k→∞, and hence ‖PIk |[zl ]‖ k→∞−−−→ 0. !
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Our next result should be contrasted with the construction by Pełczyński [36] of a basis (fi)

such that every basis is equivalent with a subsequence of it, and hence such that every space
contains an isomorphic copy of a subsequence. We shall see that for certain spaces E such con-
structions cannot be done relative to the subspaces of E provided that we demand that (fn) lies
in E too. Recall that two Banach spaces are said to be incomparable if neither of them embeds
into the other.

Proposition 6.2. Suppose that (en) is a basis such that any two block subspaces with disjoint
ranges are incomparable. Suppose also that (fn) is either a block basis or a shrinking basic
sequence in [en]. Then [en] is saturated with subspaces Z such that no subsequence of (fn)

embeds into Z.

Proof. Let Y be an arbitrary subspace of [en]. Suppose first that (fn) is a normalised shrinking
basic sequence. Then, by taking a perturbation of (fn), we can suppose that each fn is a finite
block vector of (ei) and, moreover, that min range(fn)→∞. Let In = range(fn).

Fix an infinite set N ⊆ N. Then for all infinite subsets A ⊆ N there is an infinite subset
B ⊆ A such that (fn)n∈B is a block sequence and hence, since block subspaces of (en) with
disjoint ranges are incomparable, [fn]n∈B &' [en]n/∈⋃

i∈B Ii
, and so also [fn]n∈N &' [en]n/∈⋃

i∈A Ii
.

Applying Lemma 3.2 to X = [fn]n∈N and (In)n∈N , this implies that for all embeddings
T : [fn]n∈N → [en]n∈N, we have lim infn∈N ‖PIkT ‖ > 0. So find by Lemma 6.1 a subspace
Z ⊆ Y such that ‖PIk |Z‖ k→∞−−−→ 0. Then no subsequence of (fn)∈N embeds into Z.

The argument in the case (fn) is a block basis is similar. We set In = rangefn and repeat the
argument above. !

We notice that in the above proof we actually have a measure for how “flat” a subspace Z of
[en] needs to be in order that the subsequences of (fn) cannot embed into Z. Namely, it suffices
that ‖PIk |Z‖ k→∞−−−→ 0.

We should also mention that, by similar but simpler arguments, one can show that if (en) is a
basis such that any two disjoint subsequences span incomparable spaces, then some subspace of
[en] fails to contain any isomorphic copy of a subsequence of (en).

The assumption in Proposition 6.2 that block subspaces with disjoint ranges are incomparable
is easily seen to be equivalent to the following property of a basis (en), that we call tight by
range. If (yn) is a block sequence of (en) and A⊆N is infinite, then

[yn]n∈N &'
[
en

∣∣∣ n /∈
⋃

i∈A

rangeyi

]
.

Thus, (en) is tight by range if it is tight and for all block sequences (yn) of (en) the corresponding
sequence of intervals Ii is given by Ii = rangeyi . This property is also weaker than disjointly
supported subspaces being incomparable, which we shall call tight by support. It is trivial to see
that a basis, tight by range, is continuously tight.

We say that a basic sequence (en) is subsequentially minimal if any subspace of [en] contains
an isomorphic copy of a subsequence of (en). It is clearly a weak form of minimality.

In [26] the authors study another notion in the context of certain partly modified mixed
Tsirelson spaces that they also call subsequential minimality. According to their definition, a ba-
sis (en) is subsequentially minimal if any block basis has a further block basis equivalent to a
subsequence of (en). However, in all their examples the basis (en) is weakly null and it is easily
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seen that whenever this is the case the two definitions agree. They also define (en) to be strongly
non-subsequentially minimal if any block basis contains a further block basis that has no further
block basis equivalent to a subsequence of (en). By Proposition 6.2, this is seen to be weaker
than tightness by range.

We shall now proceed to show a dichotomy between tightness by range and subsequential
minimality.

Theorem 6.3 (4th dichotomy). Let E be a Banach space with a basis (en). Then there exists a
block sequence (xn) of (en) with one of the following properties, which are mutually exclusive
and both possible:

(1) Any two block subspaces of [xn] with disjoint ranges are incomparable.
(2) The basic sequence (xn) is subsequentially minimal.

Arguably Theorem 6.3 is not a dichotomy in Gowers’ sense, since property (2) is not heredi-
tary: for example the universal basis of Pełczyński [36] satisfies (2) while admitting subsequences
with property (1). However, it follows obviously from Theorem 6.3 that any basis (en) either has
a block basis such that any two block subspaces with disjoint ranges are incomparable or has a
block basis (xn) that is hereditarily subsequentially minimal, i.e., such that any block basis has a
further block basis that is subsequentially minimal. Furthermore, by an easy improvement of our
proof or directly by Gowers’ second dichotomy, if the first case of Theorem 6.3 fails, then one
can also suppose that [xn] is quasi minimal.

We shall call a basis (xn) sequentially minimal if it is both hereditarily subsequentially min-
imal and quasi minimal. This is equivalent to any block basis of (xn) having a further block
basis (yn) such that every subspace of [xn] contains an equivalent copy of a subsequence of (yn).
We may therefore see Theorem 6.3 as providing a dichotomy between tightness by range and
sequential minimality.

Before giving the proof of Theorem 6.3, we first need to state an easy consequence of the
definition of Gowers’ game.

Lemma 6.4. Let E be a space with a basis and assume II has a winning strategy in Gowers’
game in E to play in some set B. Then there is a non-empty tree T of finite block sequences such
that [T ] ⊆ B and for all (y0, . . . , ym) ∈ T and all block sequences (zn) there is a block ym+1 of
(zn) such that (y0, . . . , ym, ym+1) ∈ T .

Proof. Suppose σ is the strategy for II. We define a pruned tree T of finite block bases
(y0, . . . , ym) and a function ψ associating to each (y0, . . . , ym) ∈ T a sequence (z0, . . . , zk) such
that for some k0 < · · · < km = k,

I z0 · · · zk0 zk0+1 · · · zk1 · · · zkm−1+1 · · · zkm

II y0 y1 · · · ym

has been played according to σ .

• The empty sequence ∅ is in T and ψ(∅) = ∅.
• If (y0, . . . , ym) ∈ T and

ψ(y0, . . . , ym) = (z0, . . . , zk),
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then we let (y0, . . . , ym, ym+1) ∈ T if there are some zk < zk+1 < · · · < zl and k0 < · · · <

km = k such that

I z0 · · · zk0 zk0+1 · · · zk1 · · · zkm+1 · · · zl

II y0 y1 · · · ym+1

has been played according to σ and in this case we let

ψ(y0, . . . , ym, ym+1) = (z0, . . . , zk, zk+1, . . . , zl)

be some such sequence.

Now, if (y0, y1, y2, . . .) is such that (y0, . . . , ym) ∈ T for all m, then ψ(∅) ⊆ ψ(y0) ⊆
ψ(y0, y1) ⊆ · · · and (yi) is the play of II according to the strategy σ in response to (zi) =⋃

n ψ(y0, . . . , yn) being played by I. So [T ] ⊆ B. It also follows by the construction that
for each (y0, . . . , ym) ∈ T and block sequence (zi) there is a block ym+1 of (zi) such that
(y0, . . . , ym, ym+1) ∈ T . !

We now pass to the proof of Theorem 6.3.

Proof. If E contains c0 the theorem is trivial. So suppose not. By the solution to the distortion
problem and by passing to a subspace, we can suppose there are two positively separated in-
evitable closed subsets F0 and F1 of the unit sphere of E, i.e., such that dist(F0,F1) > 0 and
every block basis has block vectors belonging to both F0 and F1.

Suppose that (en) has no block sequence satisfying (1). Then for all block sequences (xn) there
are further block sequences (yn) and (zn) with disjoint ranges such that [yn] '[ zn]. We claim
that there is a block sequence (fn) and a constant K such that for all block sequences (xn) of
(fn) there are further block sequences (yn) and (yn) with disjoint ranges such that [yn] 'K [zn].
If not, we can construct a sequence of block sequences (f K

n ) such that (f K+1
n ) is a block of

(f K
n ) and such that any two block sequences of (f K

n ) with disjoint ranges are K2-incomparable.
By Lemma 2.2, we then find a block sequence (gn) of (en) that is

√
K-equivalent with a block

sequence of (f K
n ) for every K " 1. Find now block subspaces (yn) and (zn) of (gn) with disjoint

ranges and a K such that [yn] '√K [zn]. Then (gn) is
√

K-equivalent with a block sequence of
(f K

n ) and hence we can find K3/2-comparable block subspaces of (f K
n ) with disjoint ranges,

contradicting our assumption.
So suppose (fn) and K are chosen as in the claim. Then for all block sequences (xn) of (fn)

we can find an infinite set B ⊆N and a block sequence (yn) of (xn) such that [yn]n∈B K-embeds
into [yn]n/∈B .

We claim that any block basis of (fn) has a further block basis in the following set of nor-
malised block bases of (fn):

A =
{
(yn)

∣∣ ∀n y2n ∈ F0 ∪ F1 & ∃∞n y2n ∈ F0 & [y2n+1]y2n∈F0 'K [y2n+1]y2n∈F1

}
.

To see this, suppose that (xn) is a block sequence of (fn) and let (zn) be a block sequence of
(xn) such that z3n ∈ F0 and z3n+1 ∈ F1. We can now find an infinite set B ⊆ N and a block
sequence (vn) of (z3n+2) such that [vn]n∈B 'K [vn]n/∈B . Let now y2n+1 = vn and notice that we
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can choose y2n = zi ∈ F0 for n ∈ B and y2n = zi ∈ F1 for n /∈ B such that y0 < y1 < y2 < · · · .
Then (yn) ∈A.

Choose now a sequence #= (δn) of positive reals, δn < dist(F0,F1)/3, such that if (xn) and
(yn) are block bases of (en) with ‖xn − yn‖< δn, then (xn)∼2 (yn). Since A is clearly analytic,
it follows by Gowers’ determinacy theorem that for some block basis (xn) of (fn), II has a
winning strategy to play in A# whenever I plays a block basis of (xn). We now show that some
block basis (vn) of (xn) is such that any subspace of [vn] contains a sequence 2K-equivalent to
a subsequence of (vn), which will give us case (2).

Pick first by Lemma 6.4 a non-empty tree T of finite block sequences of (xn) such that [T ] ⊆
A# and for all (u0, . . . , um) ∈ T and all block sequences (zn) there is a block um+1 of (zn) such
that (u0, . . . , um,um+1) ∈ T . Since T is countable, we can construct inductively a block sequence
(vn) of (xn) such that for all (u0, . . . , um) ∈ T there is some vn with (u0, . . . , um, vn) ∈ T .

We claim that (vn) works. For if (zn) is any block sequence of (vn), we construct inductively a
sequence (un) ∈A# as follows. Using inductively the extension property of T , we can construct
an infinite block sequence (h0

n) of (zn) that belongs to [T ]. Since [T ] ⊆ A#, there is a shortest
initial segment (u0, . . . , u2k0) ∈ T of (h0

n) such that d(u2k0,F0) < δ2k0 . Pick now a term u2k0+1
from (vn) such that (u0, . . . , u2k0 , u2k0+1) ∈ T .

Again, using the extension property of T , there is an infinite block sequence (h1
n) of (zn) such

that

(u0, . . . , u2k0 , u2k0+1)
.

(
h1

n

)
n
∈ [T ].

Also, as [T ] ⊆A#, there is a shortest initial segment

(u0, . . . , u2k0 , u2k0+1, . . . , u2k1) ∈ T

of

(u0, . . . , u2k0 , u2k0+1)
.

(
h1

n

)
n

that properly extends (u0, . . . , u2k0 , u2k0+1) and such that d(u2k1,F0) < δ2k1 . We then pick a
term u2k1+1 of (vn) such that (u0, . . . , u2k1 , u2k1+1) ∈ T . We continue in the same fashion.

At infinity, we then have a block sequence (un) ∈ A# and integers k0 < k1 < · · · such that
d(u2n,F0) < δ2n if and only if n = ki for some i and such that for every i, u2ki+1 is a term
of (vn). Let now (wn) ∈ A be such that ‖wn − un‖< δn. Then, as δn < dist(F0,F1)/3, we have
that w2n ∈ F0 if and only if n = ki for some i and w2n ∈ F1 otherwise. Moreover, as (wn) ∈A,

[w2ki+1]i∈N = [w2n+1]w2n∈F0 'K [w2n+1]w2n∈F1 = [w2n+1]n&=ki .

So by the choice of δn we have

[u2ki+1]i∈N '2 [w2ki+1]i∈N 'K [w2n+1]n&=ki '2 [u2n+1]n&=ki .

Since [u2n+1]n&=ki is a subspace of [zn] and (u2ki+1) a subsequence of (vn) this finishes the
proof. !

If, for some constant C, all subspaces of [en] contain a C-isomorphic copy of a subsequence
of (en), we say that (en) is subsequentially C-minimal. Our proof shows that condition (2) in
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Theorem 6.3 may be improved to “For some constant C the basic sequence (xn) is subsequen-
tially C-minimal”.

We notice that if (xn) is hereditarily subsequentially minimal, then there is some C and a
block sequence (vn) of (xn) such that (vn) is hereditarily subsequentially C-minimal with the
obvious definition. To see this, we first notice that by Proposition 6.2, (xn) can have no block
bases (yn) such that further block subspaces with disjoint ranges are incomparable. So, by the
proof of Theorem 6.3, for any block base (yn) there is a constant C and a further block basis (zn)

which is subsequentially C-minimal. A simple diagonalisation using Lemma 2.2 now shows that
by passing to a block (vn) the C can be made uniform. Recall that Gowers also proved that a
quasi minimal space must contain a further subspace which is C-quasi minimal [20].

We also indicate a variation on Theorem 6.3, relating the Casazza property to a slightly
stronger form of sequential minimality. This answers the original problem of Gowers left open
in [20], which was mentioned in Section 1. This variation is probably of less interest than The-
orem 6.3 because the Casazza property does not seem to imply tightness and also because the
stronger form of sequential minimality may look somewhat artificial (although it is satisfied by
Tsirelson’s space and is reminiscent of Schlumprecht’s notion of Class 1 space [40]).

We say that two block sequences (xn) and (yn) alternate if either x0 < y0 < x1 < y1 < · · · or
y0 < x0 < y1 < x1 < · · · .

Proposition 6.5. Let E be a Banach space with a basis (en). Then there exists a block sequence
(xn) with one of the following properties, which are exclusive and both possible:

(1) [xn] has the Casazza property, i.e., no alternating block sequences in [xn] are equivalent.
(2) There exists a family B of block sequences saturating [xn] and such that any two block

sequences in B have subsequences which alternate and are equivalent.

In particular, in case (2), E contains a block subspace U = [un] such that for every block se-
quence of U , there is a further block sequence equivalent to, and alternating with, a subsequence
of (un).

Proof. If (en) does not have a block sequence satisfying (1), then any block sequence of (en) has
a further block sequence in A = {(yn) | (y2n)∼ (y2n+1)}. Let # be small enough so that A# = A.
By Gowers’ theorem, let (xn) be some block sequence of (en) so that II has a winning strategy
to play in A# whenever plays a block sequence of (xn). Let T be the associated tree given by
Lemma 6.4. By construction, for any block sequence (zn) of (xn), we may find a further block
sequence (vn) such that for any (y0, . . . , ym) ∈ T , there exists some vn with (y0, . . . , ym, vn) ∈ T .
We set f ((zn)) = (vn) and B = {f ((zn)) | (zn) ! (xn)}. Given (vn) and (wn) in B, it is then clear
that we may find subsequences (v′n) and (w′n) so that (v′0,w

′
0, v

′
1,w

′
1, . . .) ∈ T , and therefore (v′n)

and (w′n) are equivalent. !

We may also observe that there is no apparent relation between tightness by range and tight-
ness with constants. Indeed Tsirelson’s space is tight with constants and sequentially minimal.
Similarly, Example 4.7 is tight by support and therefore by range, but is locally minimal. Using
the techniques of [3], one can construct a space combining the two forms of tightness.

Example 6.6. (See [14].) There exists a space with a basis which is tight with constants and tight
by range.
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Finally, if a space X is locally minimal and equipped with a basis which is tight by support and
therefore unconditional (such as Example 4.7), then the reader will easily check the following.
The canonical basis of X⊕X is tight (for a block subspace Y = [yn] of X⊕X use the sequence
of intervals associated to the ranges of yn with respect to the canonical 2-dimensional decom-
position of X ⊕X), but neither tight by range nor with constants. However, a more interesting
question remains open: does there exist a tight space which does not contain a basic sequence
which is tight by range or with constants?

There is a natural strengthening of sequential minimality that has been considered in the
literature, namely, the blocking principle (also known as the shift property in [7]) due to Casazza,
Johnson, and Tzafriri [6]. It is known that for a normalized unconditional basis (en) the following
properties are equivalent (see, e.g., [12]).

(1) Any block sequence (xn) spans a complemented subspace of [en].
(2) For any block sequence (xn), (x2n)∼ (x2n+1).
(3) For any block sequence (xn) and integers kn ∈ suppxn, (xn)∼ (ekn).

Moreover, any of the above properties necessarily hold uniformly. We say that (en) satisfies the
blocking principle if the above properties hold for (en). The following proposition can be proved
along the lines of the proof of the minimality of T ∗ in [6] (Theorem 14).

Proposition 6.7. Let (en) be an unconditional basis satisfying the blocking principle and span-
ning a locally minimal space. Then (en) spans a minimal space.

Thus, by the 5th dichotomy (Theorem 4.4), we have

Corollary 6.8. Let (en) be an unconditional basis satisfying the blocking principle. Then there is
a subsequence (fn) of (en) such that either [fn] is minimal or (fn) is tight with constants.

7. Chains and strong antichains

The results in this section are in response to a question of Gowers from his fundamental
study [20] and concern what types of quasi orders can be realised as the set of (infinite-
dimensional) subspaces of a fixed Banach space under the relation of isomorphic embeddability.

Problem 7.1. (See Problem 7.9. in [20].) Given a Banach space X, let P(X) be the set of all
equivalence classes of subspaces of X, partially ordered by isomorphic embeddability. For which
posets P does there exist a Banach space X such that every subspace Y of X contains a further
subspace Z with P(Z) = P ?

Gowers noticed himself that by a simple diagonalisation argument any such poset P(X) must
either have a minimal element, corresponding to a minimal space, or be uncountable. We shall
now use our notion of tightness to show how to attack this problem in a uniform way and improve
on several previous results.

Suppose X is a separable Banach space and let SB(X) denote the set of all closed linear
subspaces of X. We equip SB(X) with the so-called Effros–Borel structure, which is the σ -
algebra generated by sets on the form

{Y ∈ SB(X)
∣∣ Y ∩U &= ∅},
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where U is an open subset of X. In this way, SB(X) becomes a standard Borel space, i.e., iso-
morphic as a measurable space to the real line equipped with its Borel algebra. We refer to the
measurable subsets of SB(X) as Borel sets. Let also SB∞(X) be the subset of SB(X) consisting
of all infinite-dimensional subspaces of X. Then SB∞(X) is a Borel subset of SB(X) and hence
a standard Borel space in its own right.

Definition 7.2. Suppose that X is a separable Banach space and E is an analytic equivalence
relation on a Polish space Z . We say that X has an E-antichain, if there is a Borel function
f : Z → SB(X) such that for x, y ∈Z

(1) if xEy, then f (x) and f (y) are biembeddable,
(2) if x/Ey, then f (x) and f (y) are incomparable.

We say that X has a strong E-antichain if there is a Borel function f : Z → SB(X) such that for
x, y ∈Z

(1) if xEy, then f (x) and f (y) are isomorphic,
(2) if x/Ey, then f (x) and f (y) are incomparable.

For example, if =R is the equivalence relation of identity on R, then =R-antichains and strong
=R-antichains simply correspond to a perfect antichain in the usual sense, i.e., an uncountable
Borel set of pairwise incomparable subspaces. Also, having a strong E-antichain implies, in
particular, that E Borel reduces to the isomorphism relation between the subspaces of X.

The main result of [11] reformulated in this language states that if EΣ1
1

denotes the complete
analytic equivalence relation, then C[0,1] has a strong EΣ1

1
-antichain.

We will now prove a result that simultaneously improves on two results due respectively to
the first and the second author. In [12], the authors proved that a Banach space not containing a
minimal space must contain a perfect set of non-isomorphic subspaces. This result was improved
by Rosendal in [37], in which it was shown that if a space does not contain a minimal subspace
it must contain a perfect set of pairwise incomparable spaces. And Ferenczi proved in [10] that
if X is a separable space without minimal subspaces, then E0 Borel reduces to the isomorphism
relation between the subspaces of X. Recall that E0 is the equivalence relation defined on 2N by
xE0y if and only if ∃m ∀n " m xn = yn.

Theorem 7.3. Let X be a separable Banach space. Then X either contains a minimal subspace
or has a strong E0-antichain.

Proof. Suppose X has no minimal subspace. By Theorem 3.13 and Lemma 3.11, we can find a
basic sequence (en) in X and a continuous function f : [N] →[ N] such that for all A,B ∈ [N],
if B is disjoint from an infinite number of intervals [f (A)2i , f (A)2i+1], then [en]n∈A does not
embed into [en]n∈B . We claim that there is a continuous function h : 2N→[N] such that

(1) if xE0y, then |h(x) \ h(y)| = |h(y) \ h(x)| <∞,
(2) if x/E0y, then [en]n∈h(x) and [en]n∈h(y) are incomparable spaces.

This will clearly finish the proof using the fact that subspaces of the same finite codimension in
a common superspace are isomorphic.
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We will construct a partition of N into intervals

I 0
0 < I 1

0 < I 2
0 < I 0

1 < I 1
1 < I 2

1 < · · ·

such that if we set J 0
n = I 0

n ∪ I 2
n and J 1

n = I 1
n , the following conditions hold:

(1) for all n, |J 0
n | = |J 1

n |,
(2) if s ∈ 2n, a = J

s0
0 ∪ J

s1
1 ∪ · · · ∪ J

sn−1
n−1 ∪ I 0

n , and A ∈ [a,N], then for some i,

[
f (A)2i , f (A)2i+1

]
⊆ I 0

n ,

(3) if s ∈ 2n, a = J
s0
0 ∪ J

s1
1 ∪ · · · ∪ J

sn−1
n−1 ∪ I 1

n , and A ∈ [a,N], then for some i,

[
f (A)2i , f (A)2i+1

]
⊆ I 1

n .

Assuming this is done, for x ∈ 2N we set h(x) = J
x0
0 ∪J

x1
1 ∪ · · · . Then for all n there is an i such

that

[
f

(
h(x)

)
2i

, f
(
h(x)

)
2i+1

]
⊆ J xn

n .

Therefore, if x/E0y, then h(y) = J
y0
0 ∪J

y1
1 ∪ · · · is disjoint from an infinite number of J

xn
n and

thus also from an infinite number of intervals [f (h(x))2i , f (h(x))2i+1], whence [en]n∈h(x) does
not embed into [en]n∈h(y). Similarly, [en]n∈h(y) does not embed into [en]n∈h(x).

On the other hand, if xE0y, then clearly |h(x) \ h(y)| = |h(y) \ h(x)| <∞.
It therefore only remains to construct the intervals I i

n. So suppose by induction that I 0
0 <

I 1
0 < I 2

0 < · · · < I 0
n−1 < I 1

n−1 < I 2
n−1 have been chosen (the initial step being n = 0) such that

the conditions are satisfied. Let m = maxJ 0
n−1 + 1 = max I 2

n−1 + 1. For each s ∈ 2n and a =
J

s0
0 ∪ J

s1
1 ∪ · · · ∪ J

sn−1
n−1 , there are by continuity of f some ks > m, some interval m ! Ms ! ks

and an integer is such that for all A ∈ [a ∪ [m,ks],N], we have

[
f (A)2is , f (A)2is+1

]
= Ms.

Let now k = maxs∈2n ks and I 0
n = [m,k]. Then if s ∈ 2n and a = J

s0
0 ∪ · · · ∪ J

sn−1
n−1 , we have for

all A ∈ [a ∪ I 0
n ,N] some i such that

[
f (A)2i , f (A)2i+1

]
⊆ I 0

n .

Again for each s ∈ 2n and a = J
s0
0 ∪ J

s1
1 ∪ · · · ∪ J

sn−1
n−1 there are by continuity of f some

ls > k+1, some interval k+1 ! Ls ! ls and an integer js such that for all A ∈ [a∪[k+1, ls],N],
we have

[
f (A)2js , f (A)2js+1

]
= Ls.
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Let now l = maxs∈2n ls + k and I 1
n = [k + 1, l]. Then if s ∈ 2n and a = J

s0
0 ∪ · · · ∪J

sn−1
n−1 , we have

for all A ∈ [a ∪ I 1
n ,N] some j such that

[
f (A)2j , f (A)2j+1

]
⊆ I 1

n .

Finally, we simply let I 2
n = [l + 1, l + |I 1

n | −| I 0
n |]. This finishes the construction. !

Definition 7.4. We define a quasi order ⊆∗ and a partial order ⊆0 on the space [N] of infinite
subsets of N by the following conditions:

A⊆∗ B ⇔ A \ B is finite

and

A⊆0 B ⇔
(
A = B or ∃n ∈ B \ A: A⊆ B ∪ [0, n[

)
.

Also, if (an) and (bn) are infinite sequences of integers, we let

(an) !∗ (bn) ⇔ ∀∞n an ! bn.

We notice that ⊆0 is a partial order refining the quasi order ⊆∗, namely, whenever A⊆∗ B we
let A⊆0 B if B "∗ A or A = B or A>B admits a greatest element which belongs to B .

Proposition 7.5.

(1) Any closed partial order on a Polish space Borel embeds into ⊆0.
(2) Any partial order on a set of size at most ℵ1 embeds into ⊆0.
(3) The quasi order ⊆∗ embeds into ⊆0, but does not Borel embed.
(4) And finally ⊆0 Borel embeds into ⊆∗.

Proof. (1) By an unpublished result of A. Louveau [29], any closed partial order on a Polish
space Borel embeds into (P (N),⊆). And if we let (Jn) be a partition of N into countable many
infinite subsets, we see that (P (N),⊆) Borel embeds into ⊆∗ and ⊆0 by the mapping A 6→⋃

n∈A Jn.
(2) & (3) It is well known that any partial order of size at most ℵ1 embeds into ⊆∗ and if we

let s : [N]→[ N] be any function such that |A>B| <∞ ⇔ s(A) = s(B) and |A> s(A)| <∞,
i.e., s is a selector for E0, then s embeds ⊆∗ into ⊆0. To see that there cannot be a Borel embed-
ding of ⊆∗ into ⊆0, we notice that if h : [N] →[ N] was a Borel function such that A⊆∗ B ⇔
h(A)⊆0 h(B), then, in particular, |A> B| is finite ⇔ h(A) = h(B), contradicting that E0 is a
non-smooth equivalence relation on [N].

(4) To see that ⊆0 Borel embeds into ⊆∗, we define for an infinite subset A of N a sequence
of integers g(A) = (an) by

an =
∑

i∈A∩[0,n]
2i .
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Suppose now that g(A) = (an) and g(B) = (bn). Then for each n,

an = bn ⇔ A∩ [0, n] = B ∩ [0, n]

and

an < bn ⇔ ∃m ∈ B \ A, m ! n, A∩ [0, n] ⊆ B ∪ [0,m[.

Thus, we have an = bn for infinitely many n if and only if A = B , and if an < bn for infinitely
many n, then either B \ A is infinite or for some m ∈ B \ A we have A⊆ B ∪ [0,m[. Moreover,
if B \ A is infinite, then for infinitely many n, an < bn. So

B "∗ A ⇒ (bn) #∗ (an) ⇒ (B "∗ A or A⊆0 B),

and thus by contraposition

(bn) !∗ (an) ⇒ B ⊆∗ A.

Also, if (bn) #∗ (an), then B "∗ A or A⊆0 B , so if moreover B ⊆0 A, we would have A⊆0 B

and hence A = B , contradicting g(B) = (bn) #∗ (an) = g(A). Thus,

B ⊆0 A ⇒ (bn) !∗ (an).

To see that also

(bn) !∗ (an) ⇒ B ⊆0 A,

notice that if (bn) !∗ (an) but B "0 A, then, as B ⊆∗ A, we must have A ⊆0 B and hence
(an) !∗ (bn). But then an = bn for almost all n and thus A = B , contradicting B "0 A. There-
fore,

B ⊆0 A ⇔ (bn) !∗ (an),

and we thus have a Borel embedding of ⊆0 into the quasi order !∗ on the space NN. It is well
known and easy to see that this latter Borel embeds into ⊆∗ and hence so does ⊆0. !

Proposition 7.6. Any Banach space without a minimal subspace contains a subspace with an
F.D.D. (Fn) satisfying one of the two following properties:

(a) if A,B ⊆N are infinite, then

∑

n∈A

Fn '
∑

n∈B

Fn ⇔ A⊆∗ B,

(b) if A,B ⊆N are infinite, then

∑

n∈A

Fn '
∑

n∈B

Fn ⇔ A⊆0 B.
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Proof. Suppose X is a Banach space without a minimal subspace. Then by Theorem 3.13, we
can find a continuously tight basic sequence (en) in X. Using the infinite Ramsey theorem for
analytic sets, we can also find an infinite set D ⊆N such that

(i) either for all infinite B ⊆D, [ei]i∈B embeds into its hyperplanes,
(ii) or for all B ⊆D, [ei]i∈B is not isomorphic to a proper subspace.

And, by Lemma 3.11, we can after renumbering the sequence (en)n∈D as (en)n∈N suppose that
there is a continuous function f : [N]→[ N] that for A,B ∈ [N], if B is disjoint from an infinite
number of intervals [f (A)2i , f (A)2i+1], then [en]n∈A does not embed into [en]n∈B .

We now construct a partition of N into intervals

I0 < I1 < I2 < · · ·

such that the following conditions hold:

– for all n, |I0 ∪ · · · ∪ In−1| < |In|,
– if A ∈ [N] and In ⊆A, then for some i,

[
f (A)2i , f (A)2i+1

]
⊆ In.

Suppose by induction that I0 < I1 < · · · < In−1 have been chosen such that the conditions are
satisfied. Let m = max In−1 + 1. For each a ⊆ [0,m[ there are by continuity of f some la > m,
some interval m ! Ma ! la and an integer ia such that for all A ∈ [a ∪ [m, la],N], we have

[
f (A)2ia , f (A)2ia+1

]
= Ma.

Let now l > maxa⊆[0,m[ la be such that |I0 ∪ · · · ∪ In−1| < l − m, and set In = [m, l[. Then if
a ⊆ [0,m[, we have for all A ∈ [a ∪ In,N] some i such that

[
f (A)2i , f (A)2i+1

]
⊆ In,

which ends the construction.
Let now Fn = [ei]i∈In . Clearly,

∑n−1
i=0 dimFi < dimFn, and if A\B is infinite and we let A∗ =⋃

n∈A In and B∗ = ⋃
n∈B In, then B∗ will be disjoint from an infinite number of the intervals

defined by f (A∗) and hence
∑

n∈A Fn = [en]n∈A∗ does not embed into
∑

n∈B Fn = [en]n∈B∗ .
In case of (i) we have that for all infinite C ⊆N,

(en)n∈C ' (en)n∈C′ ' (en)n∈C′′ ' (en)n∈C′′′ ' · · · ,

where D′ denotes D \ minD. So, in particular, for any infinite A⊆N,
∑

n∈A Fn embeds into all
of its finite codimensional subspaces and thus if A \ B is finite, then

∑
n∈A Fn '

∑
n∈B Fn. This

gives us (a).
In case (ii), if A⊆0 B but B "0 A, we have, as dimFn >

∑n−1
i=0 dimFi , that

∑
n∈A Fn embeds

as a proper subspace of
∑

n∈B Fn. Conversely, if
∑

n∈A Fn '
∑

n∈B Fn, then A \ B is finite and
so either A ⊆0 B or B ⊆0 A. But if B ⊆0 A and A "0 B , then

∑
n∈B Fn embeds as a proper

subspace into
∑

n∈A Fn and thus also into itself, contradicting (ii). Thus, A⊆0 B . So assuming
(ii) we have the equivalence in (b). !
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We may observe that Tsirelson’s space satisfies case (a) of Proposition 7.6, while case (b) is
verified by Gowers–Maurey’s space, or more generally by any space of type (1) to (4).

By Propositions 7.5 and 7.6 we now have the following result.

Theorem 7.7. Let X be an infinite-dimensional separable Banach space without a minimal
subspace and let SB∞(X) be the standard Borel space of infinite-dimensional subspaces of X

ordered by the relation' of isomorphic embeddability. Then ⊆0 Borel embeds into SB∞(X) and
by consequence

(a) any partial order of size at most ℵ1 embeds into SB∞(X),
(b) any closed partial order on a Polish space Borel embeds into SB∞(X).

We notice that this proves a strong dichotomy for the partial orders of Problem 7.1, namely,
either they must be of size 1 or must contain any partial order of size at most ℵ1 and any closed
partial order on a Polish space. In particular, in the second case we have well-ordered chains of
length ω1 and also R-chains. This completes the picture of [13].

8. Refining Gowers’ dichotomies

We recall the list of inevitable classes of subspaces contained in a Banach space given by
Gowers in [20]. Remember that a space is said to be quasi minimal if any two subspaces have
a common '-minorant, and strictly quasi minimal if it is quasi minimal but does not contain a
minimal subspace. Also two spaces are incomparable in case neither of them embeds into the
other, and totally incomparable if no space embeds into both of them.

Theorem 8.1. (See Gowers [20].) Let X be an infinite-dimensional Banach space. Then X con-
tains a subspace Y with one of the following properties, which are all possible and mutually
exclusive.

(i) Y is hereditarily indecomposable,
(ii) Y has an unconditional basis such that any two disjointly supported block subspaces are

incomparable,
(iii) Y has an unconditional basis and is strictly quasi minimal,
(iv) Y has an unconditional basis and is minimal.

Here the condition of (ii) that any two disjointly supported block subspaces are incomparable,
i.e., tightness by support, is equivalent to the condition that any two such subspaces are totally
incomparable or just non-isomorphic.

Theorem 1.1 improves the list of Gowers in case (iii). Indeed, any strictly quasi minimal space
contains a tight subspace, but the space S(T (p)), 1 < p < +∞ is strictly quasi minimal and not
tight: it is saturated with subspaces of T (p), which is strictly quasi minimal, and, as was already
observed, it is not tight because its canonical basis is symmetric.

Concerning case (i), properties of HI spaces imply that any such space contains a tight sub-
space, but it remains open whether every HI space with a basis is tight.

Question 8.2. Is every HI space with a basis tight?
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Using Theorems 1.1 and 1.4, we refine the list of inevitable spaces of Gowers to 6 main classes
as follows.

Theorem 8.3. Let X be an infinite-dimensional Banach space. Then X contains a subspace Y

with one of the following properties, which are all mutually exclusive.

(1) Y is hereditarily indecomposable and has a basis such that any two block subspaces with
disjoint ranges are incomparable,

(2) Y is hereditarily indecomposable and has a basis which is tight and sequentially minimal,
(3) Y has an unconditional basis such that any two disjointly supported block subspaces are

incomparable,
(4) Y has an unconditional basis such that any two block subspaces with disjoint ranges are

incomparable, and is quasi minimal,
(5) Y has an unconditional basis which is tight and sequentially minimal,
(6) Y has an unconditional basis and is minimal.

We conjecture that the space of Gowers and Maurey is of type (1), although we have no proof
of this fact. Instead, in [14] we prove that an asymptotically unconditional HI space constructed
by Gowers [18] is of type (1).

We do not know whether type (2) spaces exist. If they do, they may be thought of as HI
versions of type (5) spaces, i.e., of Tsirelson like spaces, so one might look for an example in the
family initiated by the HI asymptotically !1 space of Argyros and Deliyanni, whose “ground”
space is a mixed Tsirelson’s space based on the sequence of Schreier families [2].

The first example of type (3) was built by Gowers [17] and further analysed in [22]. Other
examples are constructed in [14].

Type (4) means that for any two block subspaces Y and Z with disjoint ranges, Y does not
embed into Z, but some further block subspace Y ′ of Y does (Y ′ therefore has disjoint support
but not disjoint range from Z). It is unknown whether there exist spaces of type (4). Gowers
sketched the proof of a weaker result, namely the existence of a strictly quasi minimal space with
an unconditional basis and with the Casazza property, i.e., such that for no block sequence the
sequence of odd vectors is equivalent to the sequence of even vectors, but his example was never
actually checked. Alternatively, results of [26, Section 4] suggest that a mixed Tsirelson space
example might be looked for.

The main example of a space of type (5) is Tsirelson’s space. Actually since spaces of type
(1) to (4) are either HI or satisfy the Casazza property, they are never isomorphic to a proper
subspace. Therefore, for example, spaces with a basis saturated with block subspaces isomorphic
to their hyperplanes must contain a subspace of type (5) or (6). So our results may reinforce
the idea that Tsirelson’s space is the canonical example of classical space without a minimal
subspace.

It is worth noting that as a consequence of the theorem of James, spaces of type (3), (4) and
(5) are always reflexive.

Using some of the additional dichotomies, one can of course refine this picture even further.
We shall briefly consider how this can be done using the 5th dichotomy plus a stabilisation
theorem of A. Tcaciuc [41] generalising a result of [15].

We state a slightly stronger version of the theorem of Tcaciuc than what is proved in his paper
and also point out that there is an unjustified use of a recent result of Junge, Kutzarova and Odell
in his paper; their result only holds for 1 ! p <∞. Tcaciuc’s theorem states that any Banach
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space contains either a strongly asymptotically !p subspace, 1 ! p ! +∞, or a subspace Y such
that

∀M ∃n ∀U1, . . . ,U2n ⊆ Y ∃xi ∈ SUi (x2i−1)
n
i=1 !M (x2i )

n
i=1,

where the Ui range over infinite-dimensional subspaces of Y . The second property in this
dichotomy will be called uniform inhomogeneity. As strongly asymptotically !p bases are un-
conditional, while the HI property is equivalent to uniform inhomogeneity with n = 2 for all M ,
Tcaciuc’s dichotomy is only relevant for spaces with an unconditional basis.

When combining Theorem 8.3, Tcaciuc’s result, Proposition 4.2 (see also [9]), the 5th di-
chotomy, the fact that asymptotically !∞ spaces are locally minimal, and the classical theorem
of James, we obtain 19 inevitable classes of spaces and examples for 8 of them. The class (2) is
divided into two subclasses and the class (4) into four subclasses, which are not made explicit
here for lack of an example of space of type (2) or (4) to begin with. Recall that the spaces con-
tained in any of the 12 subclasses of type (1)–(4) are never isomorphic to their proper subspaces,
and in this sense these subclasses may be labeled “exotic”. On the contrary “classical”, “pure”
spaces must belong to one of the 7 subclasses of type (5)–(6).

Theorem 8.4. Any infinite-dimensional Banach space contains a subspace with a basis of one of
the following types:

Type Properties Examples

(1a) HI, tight by range and with constants ?
(1b) HI, tight by range, locally minimal G∗

(2) HI, tight, sequentially minimal ?

(3a) tight by support and with constants, uniformly inhomogeneous ?
(3b) tight by support, locally minimal, uniformly inhomogeneous G∗u
(3c) tight by support, strongly asymptotically !p, 1 ! p <∞ Xu

(3d) tight by support, strongly asymptotically !∞ X∗u

(4) unconditional basis, quasi minimal, tight by range ?

(5a) unconditional basis, tight with constants, sequentially minimal, ?
uniformly inhomogeneous

(5b) unconditional basis, tight, sequentially and locally minimal, ?
uniformly inhomogeneous

(5c) tight with constants, sequentially minimal, T , T (p)

strongly asymptotically !p, 1 ! p <∞
(5d) tight, sequentially minimal, strongly asymptotically !∞ ?

(6a) unconditional basis, minimal, uniformly inhomogeneous S

(6b) minimal, reflexive, strongly asymptotically !∞ T ∗

(6c) isomorphic to c0 or lp, 1 ! p <∞ c0, !p

We know of no space close to being of type (5a) or (5b). A candidate for (5d) could be
the dual of some partly modified mixed Tsirelson’s space not satisfying the blocking principle
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(see [26]). Schlumprecht’s space S [39] does not contain an asymptotically !p subspace, there-
fore it contains a uniformly inhomogeneous subspace, which implies by minimality that S itself
is of type (6a). The definition and analysis of the spaces G∗, G∗u, Xu and X∗u can be found in [14].

For completeness we should mention that R. Wagner has also proved a dichotomy between
asymptotic unconditionality and a strong form of the HI property [43]. His result could be used
to further refine the cases of type (1) and (2).

9. Open problems

Problem 9.1.

(1) Does there exist a tight Banach space admitting a basis which is not tight?
(2) Does there exist a tight, locally block minimal and unconditional basis?
(3) Find a locally minimal and tight Banach space with finite cotype.
(4) Does there exist a tight Banach space which does not contain a basic sequence that is

either tight by range or tight with constants? In other words, does there exist a locally and
sequentially minimal space without a minimal subspace?

(5) Suppose [en] is sequentially minimal. Does there exist a block basis all of whose subse-
quences are subsequentially minimal?

(6) Is every HI space with a basis tight?
(7) Is every tight basis continuously tight?
(8) Do there exist spaces of type (2), (4), (5a), (5b), (5d)?
(9) Suppose (en) is tight with constants. Does (en) have a block sequence that is (strongly)

asymptotically !p for some 1 ! p <∞?
(10) Does there exist a separable HI space X such that ⊆∗ Borel embeds into SB∞(X)?
(11) If X is a separable Banach space without a minimal subspace, does ⊆∗ Borel embed into

SB∞(X)? What about more complicated quasi orders, in particular, the complete analytic
quasi order !Σ1

1
?
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