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COFINAL FAMILIES OF BOREL EQUIVALENCE RELATIONS

AND QUASIORDERS

CHRISTIAN ROSENDAL

Abstract. Families of Borel equivalence relations and quasiorders that are cofinal with respect to the

Borel reducibility ordering, ≤B , are constructed. There is an analytic ideal on ù generating a complete

analytic equivalence relation and any Borel equivalence relation reduces to one generated by a Borel ideal.

Several Borel equivalence relations, among them Lipschitz isomorphism of compact metric spaces, are

shown to be Kó complete.

§1. Introduction. For R and S binary relations on Polish spaces X and Y , re-
spectively, one writes R ≤B S and says thatR Borel reduces to S, if there is a Borel
functionf : X → Y such that xRy ⇐⇒ f(x)Sf(y) (iff (f×f)−1(S) = R). Usu-
ally this ordering has been studied when R and S both are equivalence relations,
but recently it has turned out that the study of quasiorders, i.e., reflexive, transitive
relations, is important for the structure theory of ≤B on analytic equivalence rela-
tions. For R a quasiorder on X one denotes by ≡R the corresponding equivalence
relation, x ≡R y ⇐⇒ xRy ∧ yRx. Then R ≤B S can be seen as saying that there
is a function, admitting a Borel lifting, from X/ ≡R into Y/ ≡S that embeds the
partial ordering induced by R into the partial ordering induced by S. This means
that the objects in X are simpler to classify with respect to R than the objects in
Y with respect to S. It becomes more explicit when both R and S are equivalence
relations, where R ≤B S implies that Y objects modulo S provide complete invari-
ants for X objects with respect to R-equivalence. And furthermore, the invariants
can be calculated in a Borel manner from the initial objects.
A classical example of this is the Stone representation of (countable) Boolean
algebras by compact (Polish) spaces up to homeomorphism. This shows that the
isomorphism relation of countable Boolean algebras Borel reduces to homeomor-
phism of compact Polish spaces.
In the article [16], by Louveau and the author, it was shown that certain naturally
occurring quasiorders such as embeddability between binary relations on a count-
able set are analytic complete, i.e., Borel reduce any other analytic quasiorder. We
use these results to show that certain families of Borel quasiorders and equivalence
relations are cofinal with respect to ≤B .
Families of Borel equivalence relations, cofinal for the the ones reducing to
isomorphism of countable structures (that is, classified by countable structures),
were already given by Friedman and Stanley in [5]. Their main example is the
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class consisting of the relation of isomorphism between trees of bounded height
less than î, with î running over the countable ordinals. But, as has been known
for long, these families fail to reduce even quite simple Borel equivalence relations.
A particular example of such an equivalence relation is E1 defined on Rù by

xE1y ⇐⇒ ∃N ∀n ≥ N xn = yn .

Our results are a happy generalisation of the analysis in [5] combined with the
completeness theorem in [16].
Given an ideal I on ù, there is a naturally associated equivalence relation EI on
2ù defined by xEI y ⇐⇒ x4y ∈ I . We construct an analytic ideal Imax generating
a complete analytic equivalence relation. This, combined with a rank argument,
shows that any Borel equivalence relation reduces to one generated by a Borel ideal.
Another class of equivalence relations that admits complete elements is that
ofKó ’s. One example was given by Kechris in [10] and many more by Louveau and
the author in [16]. These all had the disadvantage that they were presented in the
form ≡R, for some complete Kó quasiorder R. This in turn implies that they are
very difficult to reduce to anything else, unless this itself is given as the equivalence
relation associated to some quasiorder. The same is the case with complete analytic
equivalence relations, where it can even be shown thatE is complete iff E = ≡R for
some complete quasiorder R. So the only naturally occurring equivalence relations
known to be Kó complete were of the form: biembeddability of finitely branching
combinatorial trees or isometric biembeddability of certain classes of Polish metric
spaces. We remedy this by giving more handy versions of this important node of
the Borel reducibility ordering and subsequently apply our results to classification
problems in analysis. In particular, we show thatLipschitz isomorphism of compact
metric spaces is Kó complete.
The paper is organised as follows. In section 2 we give the construction of
the analytic ideal generating a complete analytic equivalence relation. Section 3
concerns operations on equivalence relations and quasiorders, some of which are
shown to lead to jumps in the Borel hierarchy. Generalising in section 4 the Scott
analysis of isomorphism to quasiorders, we show that a certain jump induces cofinal
families among quasiorders and equivalence relations. Finally, section 5 addresses
the problem of finding complete Kó equivalence relations.
Our general reference for descriptive set theory will be the book of Kechris [11]
whose notation will be adopted wholesale and which explains most of the common
notions used here, notably concerning trees, Borel sets, etc.
This paper was written while the author was a doctoral student at the University
of Paris 6. I am sincerely grateful to Alain Louveau, without whom this would not
have been. I also thank Olivier Guédon for showingme the proof of Lemma 27 and
the referee for a careful reading of the paper.

§2. A complete analytic ideal. We will show that there is an analytic ideal on
ù such that its induced equivalence relation on 2ù is complete analytic. This will
by a reflection argument imply that any Borel equivalence relation reduces to one
induced by a Borel ideal and thereby solve a problem of Kanovei. In fact, for our
purpose it will be easier to define the ideal on a countable set other than ù, namely
D, the complete tree on 2× ù.
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On ù<ù we define the following addition and ordering: for s, t ∈ ù<ù of the
same length let (s + t)(k) = s(k) + t(k). And for s, t ∈ ù<ù put

s ≤ t ⇔ |s | = |t| ∧ ∀k < |s | s(k) ≤ t(k).

We recall from [15] that a tree T on 2 × ù is called normal if for any u ∈ 2n and
s, t ∈ ùn such that s ≤ t, we have (u, s) ∈ T =⇒ (u, t) ∈ T .
The following relations defined on the class T of normal trees were shown to
be respectively a complete analytic quasiorder and a complete analytic equivalence
relation in [15, 16]:

T ≤∗
max S ⇐⇒ ∃ã ∈ ù

ù ∀n ∀u ∈ 2n ∀s ∈ ùn
[

(u, s) ∈ T → (u, s + ã � n) ∈ S
]

TE∗
maxS ⇐⇒ ∃ã ∈ ù

ù ∀n ∀u ∈ 2n ∀s ∈ ùn
[

(u, s) ∈ T → (u, s + ã � n) ∈ S
]

∧
[

(u, s) ∈ S → (u, s + ã � n) ∈ T
]

Let Imax be the analytic ideal onD generated by g
[

E∗
max

]

, where g(T, S) := T M S.
We claim that the identity mapping is a reduction of E∗

max to EImax , i.e., where
x, y ∈ 2D are EImax-equivalent iff their symmetric difference is in Imax.
Proof of claim: By the definition of the ideal it is clear thatTE∗

maxS =⇒ T M S ∈
Imax.
Notice that due to the normality of the trees, if (u, s) ∈ T M S, (u, t) /∈ T M S
and s ≤ t ≤ v, then (u, v) /∈ T M S.
Suppose thatT M S ∈ Imax. Then there are T1, . . . , Tk , S1, . . . , Sk ∈ T such that

T M S ⊆
⋃k
i=1 Ti M Si and TiE∗

maxSi as witnessed by ãi .
Let n be given. We will show that if (u, s) ∈ T M S, u ∈ 2n, s ∈ ùn, then

(u, s+
∑k
i=1 ãi � n) /∈ T M S, which is enough to show thatTE∗

maxS, as witnessed by
∑k
i=1 ãi . In fact, it suffices to show that if (u, s) ∈ T M S, then (u, s + t) /∈ T M S

for some t ≤
∑k
i=1 ãi � n. So suppose not. Since (u, s) ∈ T M S, there is

some i1 ∈ {1, . . . , k} such that (u, s) ∈ Ti1 M Si1 and therefore (u, s + ãi1 � n) /∈
Ti1 M Si1 . As (u, s + ãi1 � n) ∈ T M S, there is some i2 ∈ {1, . . . , k} \ {i1} such
that (u, s + ãi1 � n) ∈Ti2 M Si2 and again (u, s + ãi1 � n + ãi2 � n) /∈ Ti2 M Si2 . This

continues until we eventually find that (u, s +
∑k
j=1 ãij � n) = (u, s +

∑k
i=1 ãi � n) ∈

T M S. But (u, s +
∑k
i=1 ãi � n) /∈

⋃k
i=1 Ti M Si which is a contradiction.

We have proved:

Theorem 1. EImax is a complete analytic equivalence relation.

Suppose that I is an analytic ideal on ù andC ⊆ 2ù an analytic set disjoint from
I and define the following property on P (2ù)×P (2ù):

Φ(A,B)⇐⇒ A ∩ C = ∅ ∧ ∀x ⊆ y ⊆ ù (y ∈ A→ x /∈ B) ∧

∀x, y ⊆ ù (x ∈ A ∧ y ∈ A→ x ∪ y /∈ B)

Then Φ is Π11 on Σ
1
1, hereditary and continuous upwards in the second variable.

Moreover, Φ(I, {I ), so by the second reflection theorem (see [11, (35.16)]) there is
some Borel set J ⊇ I satisfying Φ(J, {J ). J is therefore a Borel ideal containing
I and disjoint from C . This shows that if I =

⋂

ù1
Bî are the complements of the

Borel sets constituting {I , then for a closed unbounded set of î < ù1, Bî is a Borel
ideal.

Theorem 2. AnyBorel equivalence relation reduces to one induced by a Borel ideal.
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Proof. Suppose E is a Borel equivalence relation on a Polish space X and
f : X → 2D is a Borel reduction of E to EImax . Let Iî , î < ù1, be an increasing
enumeration of those of the complements of the constituents of Imax that are Borel
ideals, and notice that if xEy, then f(x) M f(y) ∈ Imax ⊆ Iî . On the other hand,
{

f(x) M f(y)
∣

∣ ¬xEy
}

is an analytic set disjoint from Imax and hence also disjoint
from some Iî . Therefore,

xEy ⇐⇒ f(x) M f(y) ∈ Imax ⇐⇒ f(x) M f(y) ∈ Iî ⇐⇒ f(x)EIîf(y)

So E Borel reduces to EIî by f. a

Kanovei asked ([8, Question 1] and [9, Question 1]), building on work by Greg
Hjorth, if all Borel ideals were Borel stable, which, in particular, would imply that
T2, a.k.a. =+, i.e., equality of countable sets of reals would not Borel reduce to any
Borel ideal. Theorem 2 shows this not to be the case.

§3. Operations on quasiorders and equivalence relations. We will in this section
define what we call operations on equivalence relations and quasiorders, though we
will only be interested in definable relations, e.g., Borel or analytic. The operations
we consider will be of the type R 7→ R′, associating to each either equivalence
relation or quasiorder another equivalence relation or quasiorder. This could be
for example the infinite power of the first relation. But a natural constraint on the
operation will be that of preserving≤B , i.e., R ≤B S =⇒ R′ ≤B S ′. This constraint
will then guarantee that the operation will be an operation on the degrees, that is,
will induce an operation on the ∼B classes. We can therefore speak about jumps,
as those operations that are strictly increasing with respect to ≤B , i.e., such that
R <B R

′

Let us mention first the very important Borel anti-diagonalisation result of Har-
vey Friedman (see the article by L. Stanley [18]):

Theorem 3. (Friedman) Let E be a Borel equivalence relation on a Polish space
X, and define another equivalence relation E+ on Xù as follows:

~xE+~y ⇐⇒ ∀n ∃m, k (xnEym ∧ ynExk)

Then for any Borel functionG : Xù → X such that ~xE+~y =⇒ G(~x)E G(~y), there is
an ~x and an n < ù with G(~x)Exn .

The + operation in fact naturally defines a jump operation on Borel equivalence
relations and it is shown by Friedman and Stanley in [5, section (1.2)] that if one
begins with identity of reals and defines the transfinite iterates of the jump by
taking infinite products at limit ordinals, then the corresponding hierarchy will be
≤B -cofinal among Borel equivalence relations that Borel reduce to a Borel action
of the infinite symmetric group S∞. But unfortunately already E1 escapes this
picture, as it does not reduce to any relation in this hierarchy, in fact, it does not
even Borel reduce to any Polish group action (see Kechris and Louveau [12]). So
we are far from having a cofinal family. This we can remedy now that we know
that biembeddability of countable combinatorial trees is analytic complete. So our
goal here is to extend the analysis done by Friedman and Stanley in [5] and [4]
to quasiorders in order to get cofinal families of Borel equivalence relations and
quasiorders.
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Definition 4. LetR be aBorel quasiorder on a Polish spaceX and define another
quasiorder Rcf on Xù as follows: ~xRcf~y ⇐⇒ ∀n ∃m xnRym , i.e., if ~y is R-cofinal
with ~x.

First we deduce the following result essentially contained in [5] (see section
(1.2.2)):

Proposition 5. SupposeR is a Borel quasiorder on a Polish spaceX andf : Xù →
X is a Borel function such that

f(~x)Rf(~y) =⇒ ~xRcf~y,

~x(≡R)
+~y =⇒ f(~x) ≡R f(~y).

Then for any ~x ∈ Xù there is an n < ù with f(~x)Rxn.

Proof. Assume towards a contradiction that there is some ~u ∈ Xù with
∀i ¬f~uRui . Let

B :=
{

f~x
∣

∣ ~x ∈ Xù ∧ ∀i ¬f~xRxi
}

3 f~u

So

f~x ≡R f~z ∈ B =⇒ ∀n ∃m xnRzm ∧ ∀i ¬f~zRzi ∧ f~x ≡R f~z

=⇒ ∀i ¬f~xRxi =⇒ f~x ∈ B.

We now define a Borel function G : (Xù)ù → Xù by

G((~xm))n =











f~u if n = 0,

f~xn−1 if f~xn−1 ∈ B and n > 0,

f~u otherwise.

Notice that for each X = (~xn) ∈ (X
ù)ù , each entry of the sequence G(X ) belongs

to the set B and, moreover, f~u is the first term of G(X ).

Now, if for some X = (~xn), Z = (~zn) ∈ (Xù)ù , we have X (≡R)+
+
Z, then

∀n ∃m, k ~xn(≡R)
+~zm ∧ ~zn(≡R)

+~xk .

And for such n,m, k we have f~xn ≡R f~zm ∧ f~zn ≡R f~xk , whence f~xn ∈ B ⇐⇒
f~zm ∈ B and f~zn ∈ B ⇐⇒ f~xk ∈ B .

This implies that if X (≡R)+
+
Z and f~xn is a term in the sequence G(X ), then

there is m such that f~xn ≡R f~zm , whence also f~zm is a term in G(Z). Similarly

the other way around. In other words, if X (≡R)+
+
Z, then also G(X )(≡R)+G(Z).

Thus, G and (≡R)
+ verify the hypothesis in Friedman‘s theorem and there are

therefore an X = (~xm) ∈ (Xù)ù and an n such that G(X )(≡R)+~xn .
Now either f~xn ∈ B , whereby f~xn is a term in G(X ) and therefore both

∀i ¬f~xnRxin and ∃i f~xnRx
i
n, which is impossible. Or f~xn /∈ B , whence

∃i f~xnRxin. But, by definition of n, there is a k such that f~xk ∈ G(X ) ⊆ B
and x in ≡R f~xk , or x

i
n ≡R f~u.

In the first case, we havef~xnRxin ≡R f~xk and ~xnR
cf~xk . This means in particular

that ∃j f~xk ≡R x
i
nRx

j
k , which contradicts that f~xk ∈ B . And in the second

case, we have again f~xnRxin ≡R f~u, and thus ~xnR
cf~u, whereby ∃j f~u ≡R xinRuj ,

contradicting that ~u ∈ B and thus finishing the proof. a

Let us see an application of this result:
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Proposition 6. Let R be a Borel quasiorder on a Polish space X. Suppose that R
admits two incompatible elements a, b, i.e., ∀x ¬(xRa ∧ xRb). Then R <B Rcf.

Proof. Suppose that f : Xù → X is a Borel reduction of Rcf to R. Then for
any ~x ∈ Xù there is an n with f~xRxn. So in particular f(a

ù)Ra, f(bù)Rb
and f(abù)Ra ∨ f(abù)Rb. But since aùRcfabù and bùRcfabù , we have
f(aù)Rf(abù) and f(bù)Rf(abù) whereby either f(aù)Ra, f(aù)Rb or
f(bù)Ra, f(bù)Rb, which is a contradiction.
For the reduction just send x to xù . a

It is necessary to have some additional hypothesis on R to get the above result.
For if R is simply the reverse ordering on ù then it is easy to see that any sequence
of naturals is classified with respect to Rcf by its maximal element.
Furthermore, if R has two incompatible elements a and b then aù and bù are
Rcf incompatible. The same holds for infinite products, if one of the factors admits
two incompatible elements. So we get an increasing hierarchy by taking transfinite
iterations, where limits are defined by infinite sums or products.

Definition 7. Suppose R is a Borel quasiorder on a Polish space X. Let for
~x, ~y ∈ Xù :

~xRcfi~y ⇐⇒ ∀n ∃m, k ymRxnRyk ,

~xRsub~y ⇐⇒ ∀n ∃m xn ≡R ym .

Notice that Rcf, Rcfi and Rsub are all operations on quasiorders according to our
definition.

Proposition 8. Suppose that R is a Borel quasiorder on a Polish space X and S is
a Borel quasiorder onXù with (≡R)+ ⊆ S ⊆ Rcfi. If≡R has more than one class, then
S �B R. In particular, this holds for both S = Rcfi and S = Rsub, as ≡Rsub= (≡R)

+.

Proof. If f : Xù → X is a Borel reduction of S to R, one has

f~xRf~y ⇐⇒ ~xS~y =⇒ ~xRcfi~y =⇒ ~xRcf~y

and

~x(≡R)
+~y =⇒ ~x ≡S ~y =⇒ f~x ≡R f~y.

f thus verifies the conditions of Proposition 5, whereby for any ~x ∈ Xù there is an
n such that f~xRxn .
Therefore, for any x, we have f(f(xù)ù)Rf(xù) and

f(f(xù)ù)Rf(xù) =⇒ f(xù)ùSxù =⇒ f(xù)ùRcfixù =⇒ f(xù) ≡R x,

and hence for any ~y ∈ Xù , f~y ≡R f((f~y)ù) and

f~y ≡R f((f~y)
ù) =⇒ ~yS(f~y)ù =⇒ ~yRcfi(f~y)ù =⇒ ∀n yn ≡R f~y.

Which means that≡R can only have one class. a

§4. Scott derivations and cofinal families ofBorel quasiorders. We intend to extend
the Scott analysis of isomorphism to an analogue analysis of the embeddability
relation. To avoid confusion, we note that by embeddability we simply mean
isomorphism with a substructure and reserve the notation v for this. All our
structures will be countably infinite and can therefore always be taken to have
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domain ù; we let s, t, u, v be variables for elements of ù<ù and A,B variables for
relations on ù, i.e., subsets of ù × ù.

Definition 9. We define for all î < ù1 a relationvî between elements (A, s) and
(B, t) as follows:

• (A, s) v0 (B, t)⇐⇒ |s | = |t|∧∀i, j
[

A(si , sj)↔ B(ti , tj )∧si = sj ↔ ti = tj
]

,

• (A, s) vî+1 (B, t) ⇐⇒ ∀n ∃m (A, s ˆn) vî (B, t ˆm),
• (A, s) vë (B, t)⇐⇒ ∀î < ë (A, s) vî (B, t) for ë a limit ordinal.

Moreover, let A vî B ⇐⇒ (A, ∅) vî (B, ∅).

The following is the exact analogue of Scott’s theorem for isomorphism (for an
excellent survey of this result see the article of Barwise [1]) and is proved the same
way.

Theorem 10 (Scott). If A,B ⊂ ù × ù, there is an α < ù1 such that

∀â > α ∀s, t ∈ ù<ù (A, s) vα (B, t) ⇐⇒ (A, s) vâ (B, t).

Moreover, A v B ⇐⇒ ∀α < ù1 A vα B .

It is of course meaningful to restrict v and vî to a certain class of relations on
ù, as for example the class of combinatorial trees, which we denote by T.
We need the following parametrised version of the basic result on Borel deriva-
tives, (confer (34.13) in [11]):
Let Y be a standard Borel space and X = P (C ), for some denumerable set C ,
and D : Y × X → X a Borel function, such that for any y ∈ Y, Dy is a derivation

on X. Then ΩD :=
{

(y,X ) ∈ Y × X
∣

∣ D∞
y (X ) = ∅

}

is Π11 and (y,X ) 7→ |X |Dy is

a Π11-rank on ΩD .

Theorem 11. Let R be a Borel quasiorder on a Polish space Z. Then R ≤B vα on
T for some α < ù1.

Proof. Let T :=
{

(s, t) ∈ ù<ù×ù<ù
∣

∣ |s | = |t|
}

, which is the full tree onù×ù
and X := P (T ).
D : T2 × X→ X is the parametrised Borel derivative defined by:

D(A,B,X ) =
{

(s, t) ∈ X
∣

∣ ∀i, j < |s |
[

(si = sj ↔ ti = tj) ∧ (A(si , sj)↔ B(ti , tj))
]

∧ ∀n ∃m (s ˆn, t ˆm) ∈ X
}

(1)

Now, for any A,B ∈ T, X, Y ∈ X, if X ⊆ Y , then DA,B(X ) ⊆ DA,B(Y ) and
DA,B(X ) ⊆ X . So D is clearly a parametrised Borel derivative. Therefore, ΩD :=
{

(A,B,X ) ∈ T2×X
∣

∣ D∞
A,B(X ) = ∅

}

isΠ11 and (A,B,X ) 7→ |X |DA,B is aΠ
1
1-rank on

ΩD . Since the derivative clearly corresponds to the Scott analysis of embeddability,
we have A v B if and only if D∞

A,B(T ) 6= ∅, that is, if and only if (A,B, T ) /∈ ΩD .
Let nowf : Z→ T be a Borel reduction ofR tov. This can be found asv onT is
a complete analytic quasiorder, as shown by Louveau and the author in [16, section
(1.2)]. Then, as R is Borel, (f × f)

[

{R
]

⊆ {
{

(A,B)
∣

∣ A v B
}

is analytic, so

(f × f)
[

{R
]

× {T} ⊆ ΩD must be of bounded rank α. So by construction of the
derivative ¬xRy ⇐⇒ ¬fx v fy ⇐⇒ (fx,fy, T ) ∈ ΩD ⇐⇒ Dα(fx,fy, T ) =
∅ ⇐⇒ ¬fx vα fy. a
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Definition 12. Let R be a Borel quasiorder on a Polish space X. Then for all
î < ù1 we define a Borel quasiorder Rî on a Polish space Yî as follows:

• R0 := R andY0 := X.
• If Rî is defined on Yî , let Yî+1 := Yùî and Rî+1 := R

cf

î .
• If Rî is defined on Yî for all î < ë, where ë is a limit ordinal, then Yë :=

∏

î<ëYî and ~xRë~y ⇐⇒ ∀î < ù1 xîRîyî .

Let now X := T× ù<ù . Then the following is easily shown.

Lemma 13. Suppose that (X,vî) ≤B (Y, R), for some Borel quasiorder R on
a Polish space Y. Then (X,vî+1) ≤B (Y

ù , Rcf ).

Proof. Letf be the given reduction. Then (A, S) vî (B, t)⇐⇒f(A, s)Rf(B, t).
So

(A, s) vî+1 (B, t)⇐⇒ ∀n ∃m (A, s ˆn) vî (B, t ˆm)⇐⇒

∀n ∃m f(A, s ˆn)Rf(B, t ˆm)⇐⇒ (f(A, s ˆk))k<ùR
cf(f(B, t ˆk))k<ù

And g : (A, s) 7→ (f(A, s ˆk))k<ù is the desired reduction. a

Lemma 14. Suppose that for all î < ë (ë < ù1 a limit ordinal ) (X,vî) ≤B
(Yî , Rî), for some Borel quasiorder R on a Polish space Y. Then (X,vë) ≤B
(Yë, Rë).

Proof. Let fî be the respective Borel reductions. Then

(A, s) vë (B, t) ⇐⇒ ∀î < ë (A, s) vî (B, t)⇐⇒

∀î < ë fî(A, s)Rîfî(B, t) ⇐⇒ (fî(A, s))î<ëRë(fî(B, t))î<ë.

And g : (A, s) 7→ (fî(A, s))îë is the desired reduction. a

Notice that (X,v0) ≤B (ù,=). For (X,v0) is easily seen to be a Borel equiv-
alence relation with a countable number of classes. This is because a pair (A, s)
is completely characterised with respect to v0 by the quantifier-free diagram of s
over A.

Corollary 15. If R is a Borel quasiorder having an infinite antichain then Rî ,
î < ù1 is≤B cofinal among Borel quasiorders. Therefore also≡Rî , î < ù1, is cofinal
among Borel equivalence relations.

We also mention (as was noticed by A. Louveau) that the above result can be
put on its head. Namely, if instead of varying the quasiorder, we vary the domain,
keeping the quasiorder fixed, we also get a cofinal family. More specifically, let Trù
be the set of subtrees of the full tree on ù and define the following relation on it:
TRS if and only if ∃f : T → S, which is lexicographically strictly increasing. Of
courseR is only analytic, but, if one restricts it to the set of trees of some bounded
countable height, it becomes Borel, and varying the height up through the countable
ordinals, one gets a cofinal family of Borel quasiorders. This is easily shown by
a transfinite induction using the preceding results. On the contrary, we cannot claim
that the relation of embedding between trees of bounded height is Borel. This is
highly doubtful as the general marriage problem or the problem of finding injective
choice functions is analytic, non Borel. This problem is avoided in the definition of
R above, as one demands f to be increasing and not only injective.
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§5. Complete Kó equivalence relations. We begin by elaborating some useful
notation introduced by Hjorth and Kechris in [7].

Definition 16. Suppose that E ⊆ F and R ⊆ S are binary relations on Polish
spaces X and Y respectively. Write (E, F ) ≤B (R,S) iff there is a Borel function
f : X → Y , such that xEy =⇒ f(x)Rf(y) and ¬xFy =⇒ ¬f(x)Sf(y). This is
surely a transitive relation. Furthermore, whenwriting simplyE for the pair (E,E),
the relation coincides with the usual Borel reducibility relation.

Let C = {(An) ∈ P (ù)ù
∣

∣ ∀n An ⊆ An+1} seen as a compact subset of (2ù)ù .
On C we define the following relations:

(An) ≤Kó (Bn)⇐⇒ ∃n ∀m Am ⊆ Bn+m ,

(An)H (Bn)⇐⇒ ∃n ∀m
[

Am ⊆ Bn+m ∧ Bm ⊆ An+m
]

,

(An)F (Bn)⇐⇒ ∃n
[

A0 ⊆ Bn ∨ B0 ⊆ An
]

.

Let us recall the following result:

Theorem 17 (Kechris [10], Louveau-Rosendal [16]). The relation ≤Kó is a com-
plete Kó quasiorder andH is a complete Kó equivalence relation.

Proof. Obviously both ≤Kó andH are Kó relations.
Suppose R is a Kó quasiorder on a Polish space Y and let ∆ = {(y, y)

∣

∣ y ∈ Y}.

Then, as ∆ is closed inY 2, the set ∆∩Y 2 = ∆ is aKó set homeomorphic toY , i.e., Y
is Kó . So we can write Y as an increasing union of compact subsets Yn ⊆ Y . Write
also R as an increasing union of compact relations Fn ⊆ Y

2 and define inductively:

• R0 = ∆ ∩ Y 20 ,
• (x, y) ∈ Rn+1 ⇐⇒

x, y ∈ Yn ∧
{

(x, y) ∈ Fn ∨ ∃z ∈ Yn
(

(x, z) ∈ Rn ∧ (z, y) ∈ Rn
)}

.

One easily sees that (Rn) is an increasing sequence of compact relations, such that
Rn ◦Rn ⊆ Rn+1 and R =

⋃

Rn .
Now fix some basis {Un} for the topology of Y and define for each n ∈ N the
function fn : Y → P (ù) by

fn(x) = {k ∈ N
∣

∣ Rxn ∩Uk 6= ∅}.

As Rn is compact, fn is Borel and fn(x) ⊆ fn+1(x).
Now, if xRy, then for some n, xRny, and therefore for any z ∈ Y , if zRkx, then
zRmax (n,k)+1y. This shows that R

x
k ⊆ R

y
n+1+k and fk(x) ⊆ fn+1+k(y) for all k.

Conversely, suppose for some n and all k, fk(x) ⊆ fn+k(y). Take k big enough
such that xRkx and notice that x ∈ R

x
k ⊆ R

y
n+k , so xRn+ky and xRy.

Thus, φ : x 7→ (fn(x)) is a reduction ofR to≤Kó . Furthermore, ifR was actually
an equivalence relation, the reduction would also be a reduction of R toH . a

Suppose in the proof above that R = H . Then, as C is compact, we can let
R0 = ∆ and one sees that φ reduces H to (H,F ).
H is problematic in the sense that it is presented as the equivalence relation
associated with a quasiorder and not primarily as the equivalence relation itself.
So, in practice, for showing that some equivalence relation is Kó complete, it is
not of much use, unless the latter is also presented as the equivalence associated
with some other complete Kó quasiorder. This will be remedied here. We will
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give several, hopefully more handy, versions of this important degree of Borel
equivalence relations.

Definition 18. • Let X0 :=
∏

n≥1 n, where n =
{

0, . . . , n − 1
}

, and define
EKó by

αEKóâ ⇐⇒ ∃N ∀k |α(k)− â(k)| ≤ N.

• See [ù]ù as the space of strictly increasing sequences of integers and define O
by

(an)O (bn)⇐⇒ ∃N ∀n
[

#(k | an < bk < an+1) ≤ N ∧

#(k | bn < ak < bn+1) ≤ N
]

.

• For ~x, ~y ∈ Rù let
~xE`∞~y ⇐⇒ ~x − ~y ∈ `∞.

O is called the oscillation relation of sequences of integers. It is StevoTodorcevic’s
favourite counter example to Ramsey properties for the product, which by itself, of
course, is sufficient motivation to classify it.
We say that a relation is essentially of some class Γ if it Borel reduces to some
relation of class Γ. It will useful to have some general forms of Kó equivalences in
mind:
(i) Let (Xn, dn) be a sequence of Polish metric spaces and let for α, â ∈

∏

Xn:

αEâ ⇐⇒ ∃N ∀k dk(α(k), â(k)) ≤ N.

Then E ≤B H .
To see this, let α 7→ (Aαm), where A

α
m :=

{

â ∈
∏

Xn
∣

∣ ∀k dk(α(k), â(k)) ≤ m
}

is closed. Then, as dk is a metric, if ∀k dk(α(k), â(k)) ≤ N , we have A
α
k ⊆ A

â
k+N .

Conversely, if Aα0 = {α} ⊆ A
â
N , then ∀k dk(α(k), â(k)) ≤ N and αEâ . But now

one just replaces each Aαm by the set of indices of basic open sets it intersects, which
ends the proof.
(ii) Suppose that (fn) is a sequence of functions from ù to ù closed under
compositions. Then the following is a quasiorder onP (ù)

ù
and is essentially Kó :

(An) ≤ ~f (Bn)⇐⇒ ∃N ∀n An ⊆ BfN (n)

The same holds if we replaceP (ù)
ù
byF (X )ù for some Polish space X . Further-

more, the corresponding equivalence relation is of course also essentially Kó .

Proposition 19. EKó ,O andE`∞ are Borel bireducible with the completeKó equiv-
alence relation.

Proof. We will see that they are bireducible withH .
Clearly EKó ≤B E`∞ and E`∞ is essentially Kó by (i) above. Also, O easily
extends to a Kó equivalence relation on all of 2ù.
To show that H ≤B EKó , take g : ù × ù ←→ N \ {0} such that (g−1(p))2 < p,

∀p ∈ N \ {0}. Suppose that A = (Ak) is a given increasing sequence of subsets
of ù. Then xA is defined as follows: if g(n, k) = p and q ≤ k is minimal such that
n ∈ Aq , or q = k and n /∈ Ak , let xA(p) = q.
We now claim that A 7→ xA is a reduction of (H,F ) to EKó .
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To see this, suppose that¬(Ak)F (Bk) and∀k ∃nk ∈ A0\Bk . ThenxA(g(nk , k)) =
0 and xB(g(nk , k)) = k for all k, so clearly xB is not bounded by xA+N for anyN ,
and therefore ¬xAEKóxB .
On the other hand, to show that (Ak)H (Bk) =⇒ xAEKóxB , assume that Ak ⊆
Bk+N , ∀k, and let p = g(n, k) be given. We see that if n ∈ Ai , then n ∈ Bi+N and
xB (p) ≤ i +N . So if xA(p) ≤ i , then xB (p) ≤ i +N . That is, xB ≤ xA +N . The
same proof applies in the other direction.
Finally, we reduce EKó to O : Let (nk) be the sequence such that nk+1 − nk = k,
n0 = 0 and x 7→ Ax ⊆ ù be given by

Ax ∩ [nk , nk+1[= {nk , nk + 1, . . . , nk + x(k)}.

Now just enumerate Ax in increasing order and one obtains the reduction. a

We will now briefly investigate the structure of our newly found candidate for
a canonical complete Kó equivalence relation. For that we need the notions of
isomorphism and invariant embedding.
Let for E and F Borel equivalence relations on Polish spaces X and Y respec-
tively: E vB F if there is an injective Borel reductionf ofE to F . E viB F if thef
can be chosen injective and such that f[X ] is F -invariant (i.e., F -saturated). And,
moreover, E ∼= F (E is isomorphic to F ) if it can be chosen bijective. When we
replace the indexB by a c it means that the reduction can furthermore be taken con-
tinuous. IfG is a Borel subset ofX , we write E�G for the Borel equivalence relation
E∩G×G . The setG is called a complete section provided it intersects everyE-class.

Lemma 20. For E a Borel equivalence relation on a Polish space X , we have
EKó ≤B E iff EKó ≤c E.

Proof. This is easiest to see using O . For notice that EKó ≤c O and that if
f : [ù]ù → X is a Borel reduction of O to E, then f is continuous on some [A]ù

for A ∈ [ù]ù . But obviously O is continuously isomorphic to O �[A]ù . a

We notice also that if E is a Kó equivalence relation on a compact Polish space
X , then the reduction of E to EKó given by the proof of Theorem 17 is injective.
A Borel equivalence relation E is called uniformly continuous if E ∼= E × I2ù ,
where I2ù = 2ù × 2ù.

Lemma 21. EKó is uniformly continuous.

Proof. Let for n > 1, I n1 , . . . , I
n
kn
be a partition of n into intervals of cardinality

2 or 3. For x, y ∈ X0 let xFy iff ∀n > 1 ∀i x(n) ∈ I ni ↔ y(n) ∈ I
n
i . Then F

is smooth with a continuous selector (taking the lexicographically least element)
s and all the classes of F have continuum size. Let p : X0 × 2ù → X0 be defined
by p(x, z) = s(x) + z (pointwise addition). Then xFy → p(x, z) = p(y, z) and
y 6= v → p(x, y) 6= p(x, v). So by Proposition 3.4 of Kechris and Louveau [12],
EKó is uniformly continuous. a

Proposition 22. LetE be a uniformly continuousKó equivalence relation on a com-
pact metric space X , bireducible with EKó . Then E ∼= EKó .

Proof. We notice that since E vB EKó and E is uniformly continuous, E v
i
B

EKó by Lemma 3.2 in Kechris and Louveau [12]. Also as EKó ≤B E we have
EKó vB E × I2ù and therefore again EKó v

i
B E × I2ù

∼= E. The result now follows
by a Schröder-Bernstein argument. a
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Though heuristically there can be a big difference between the presentation of an
equivalence relation as, for example, an isomorphism relation and the equivalence
relation associated to a quasiorder, we will now see that Kó quasiorders are in fact
somewhat inevitable when dealing with equivalence relations.

Proposition 23. ABorel equivalence relationE on aPolish spaceX isKó complete
iff E = ≡S for some complete Kó quasiorder S on X .

Proof. Notice first that as the diagonal ∆(X ) is a closed subset of E it is Kó
and the space X is therefore also Kó . Let f : X0 → X be a continuous reduction
of EKó to E and let R be defined on X0 by xRy iff there is an N such that for
all n x(n) ≤ y(n) +N . One sees from the proof of Proposition 19 that R reduces
≤Kó and is therefore Kó complete. Put P = (f × f)[R] which is then Kó by the
continuity of f. Let for x, y ∈ X :

xSy ⇔ ∃z, v ∈ X (zEx ∧ vEy ∧ zPv) ∨ xEy.

As X and P are Kó , so is S. Moreover, one can check that S is a quasiorder,
reduces R and ≡S = E. a

This is the analogue of a similar result for complete Σ11 equivalence relations
from [16].
Two metric spaces (X, dX ) and (Y, dY ) are said to be Lipschitz isomorphic (or
Lipschitz homeomorphic, in symbols (X, dX ) ∼L (Y, dY )) if there are a homeomor-
phism f : X ←→ Y and a constant c ≥ 1, such that for all x, y ∈ X 1

c dX (x, y) ≤
dY (fx,fy) ≤ cdX (x, y). Write (X, dX ) ∼cL (Y, dY ) if it holds for the constant c.
Note that such a function will preserve Cauchy sequences in both directions, and
therefore to check whether two Polish metric spaces are Lipschitz isomorphic it is
enough to verify that they have Lipschitz isomorphic countable dense subsets.
This implies that if one sees Polish metric spaces as the set of closed subspaces of
some universal Polish metric space, as, for example, the Urysohn space U (confer
the articles by Clemens, Gao and Kechris [3, 6]), then the notion of Lipschitz
isomorphism becomes analytic in the Effros Borel structure.

Theorem 24. Lipschitz isomorphism of compact metric spaces is Borel bireducible
with EKó .

Proof. We commence by reducing Lipschitz isomorphism to some Kó equiva-
lence of the form (ii) following Definition 18. This will follow along the lines of
Gromov’s proof that isometry of compact metric spaces is smooth.
Notice that if f : (K, dK ) ←→ (L, dL) is a c-Lipschitz isomorphism, then any
t-net inK (i.e., a set such that any point inK is of distance less than t to some point
in the set) will be sent to a ct-net in L.
If ~x ∈ Kn, we let b(~x) be the distance matrix [dK (xi , xj)] ∈ Rn×n. Moreover, we
let Dn,t(K) ⊂ Rn×n be the set of distance matrices of n-tuples that are t-nets in K .
Suppose that A = [aij ] ∈ Rn×n. Then a d -perturbation, d ≥ 1, of A is a matrix
[dijaij ], where

1
d ≤ dij ≤ d .

Let En,t,d (K) be the set of d -perturbations of elements in Dn,t(K). This is
a compact subset ofRn×n. Let alsoD = N∗×Q+×Q∩ [1,+∞[ and let the function

Θ: K (U) −→
∏

(n,t,d )∈D

Rn×n

be defined by Θ(K) = (En,t,d (K))(n,t,d )∈D. It is easily checked that Θ is Borel.
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We claim that (K, dk) ∼L (L, dL) if and only if

∃c ∈ Q ∩ [1,+∞[ ∀(n, t, d ) ∈ D En,t,d (K) ⊆ En,ct,cd (L).

For c ∈ Q ∩ [1,+∞[ let gc : D → D be defined by gc(n, t, d ) = (n, ct, cd ). The
functions gc , c ∈ Q ∩ [1,+∞[ are clearly closed under compositions, so given our
claim this shows ∼L to reduce to something of the form (ii).
So suppose (K, dK ) ∼L (L, dL), by some f of Lipschitz constant c. This implies
En,t,d (K) ⊆ Egc (n,t,d )(L) and En,t,d (L) ⊆ Egc (n,t,d )(K) and shows one direction.
Suppose on the other hand that En,t,d (K) ⊆ Egc (n,t,d )(L) for all n, t, d . Then
clearly (taking d = 1) for any t-net ~x ∈ K n there is a ct-net ~y ∈ Ln with ~x ∼cL ~y
(i.e., sending xi to yi ).
Let (xi ) be a countable dense set in K and take for all n a ~yn = {yn0 , . . . , y

n
n}

∈ Ln+1 such that

{x0, . . . , xn} ∼
c
L {y

n
0 , . . . , y

n
n}

and

dH ({y
n
0 , . . . , y

n
n }, L) < 2cdH ({x0, . . . , xn}, K).

Here dH ({x0, . . . , xn}, K) is simply the Hausdorff distance between {x0, . . . , xn}
and K , which in this case is the supremum of the distance of a point in K to
{x0, . . . , xn}, that is, in some sense {x0, . . . , xn}’s modulus of density.
Diagonalising and using the fact thatL is compact, one can find an infiniteA ⊂ ù
and yi ∈ L such that yni −→

n∈A
yi for all i . Then as {x0, . . . , xn} ∼cL {y

n
0 , . . . , y

n
n} we

have that (xi ) ∼cL (yi ), so K is c-Lipschitz isomorphic with a closed subset of L.
We shall see that it is surjective. Otherwise, as the image ofK is closed in L, there
is an open ball B(y, r) ⊆ L, (r > 0), not intersecting the image of K . Take n such
that {x0, . . . , xn} is a

r
6c -net and m ≥ n, m ∈ A, such that

∀i ≤ n dL(y
m
i , yi ) <

r

3
.

Using now that for all k

dH ({y
k
0 , . . . , y

k
k }, L) < 2cdH ({x0, . . . , xk}, K)

and, a fortiori, {x0, . . . , xm} is a
r
6c -net, one has that {y

m
0 , . . . , y

m
m } is a

r
3 -net. So

there is a j ≤ m with dL(ymj , y) <
r
3 .

Again by density there is an i ≤ n with dK (xi , xj) <
r
3c , whereby as

{x0, . . . , xm} ∼
c
L {y

m
0 , . . . , y

m
m }

one has dL(ymi , y
m
j ) <

r
3 . So

dL(y, yi ) ≤ dL(y, y
m
j ) + dL(y

m
j , y

m
i ) + dL(y

m
i , yi ) <

r

3
+
r

3
+
r

3
≤ r.

But this is impossible, as yi is in the image of K , and the image of K has therefore
to be L. This finishes the proof of the claim.
We are now left with showing that Lipschitz isomorphism is complete. This will
be done by rendering EKó more rigid.
We work inR2 and defineA = {0}× [0, 1], B = [0, 1]×{0} and for n ∈ N, k ∈ N∗

let C nk = {
1
k } × [0,

1
en ].
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Let now f : X0 →K (R2) be defined by: f~x = A ∪ B ∪
⋃

n∈N∗ C
~x(n)
n .

If now f~x ∼cL f~y, then, a fortiori, they are homeomorphic and it is therefore

easy to see, by checking the branching points, that C ~x(n)n must be sent bijectively to

C ~y(n)n . So, in particular,

e−x(k)

e−y(k)
= ey(k)−x(k) ≤ c,

e−y(k)

e−x(k)
= ex(k)−y(k) ≤ c.

Therefore, |y(k)− x(k)| ≤ log c and ~xEKó ~y.

For the other direction just send A to A, B to B and C ~x(n)n to C ~y(n)n . Then the
above calculation shows it to be a Lipschitz isomorphism in case ~xEKó ~y. a

We mention that one can in fact show that E1 Borel reduces to Lipschitz isomor-
phism of separable Banach spaces [17]. But in fact for the case of general Polish
metric spaces it is not difficult to show that Lipschitz isomorphism also reduces the
universal S∞ action.

Proposition 25. E∞
S∞
≤B ‘Lipschitz isomorphism of Polish metric spaces’.

Proof. We reduce isomorphism of countable combinatorial trees to∼L, knowing
that this relation is Borel bireducible with E∞

S∞
(see Friedman and Stanley [5,

theorem (1.1.1)]) . Here a countable combinatorial tree is simply a connected,
symmetric, irreflexive binary relation on ù without cycles.
First for any combinatorial treeT ⊂ ù×ù and any node inT we add two infinite
branches parting from the node. Call the tree so obtained T̃ .
Obviously T ' S =⇒ T̃ ' S̃ , but also T̃ ' S̃ =⇒ T ' S and any isomorphism
between T̃ and S̃ restricts to an isomorphism of T and S. This is so as any point
x ∈ T ⊂ T̃ has valency ≥ 3 in T̃ and any point x ∈ T̃ \ T has valency 2.
Correspondingly for S and S̃ .
Now replace any edge in T̃ by the line segment [0, 1] and equip the object, T ′, so
obtained with the geodesic distance. So T ′ is the R-tree spanned by T̃ . Then we
have the following:

∀x ∈ T̃ ⊆ T ′ ∀å, ä ∈ ]0, 1[
[

valency(x) = #∂B(x, å) = #∂B(x, ä)
]

.

The valency of a point x ∈ T̃ ⊆ T ′ is therefore the smallest natural number such
that x has a neighborhood basis consisting of sets whose boundary is exactly of that
cardinality.
This means that the valency is a topological invariant for the points in T̃ and is
therefore preserved under Lipschitz isomorphism. Moreover, anyLipschitz isomor-
phism between T ′ and S ′ will of course send the branching points to the branching
points and therefore finally send T to S. But the points in T ′ and S ′ are uniquely
path connected, so this path will also preserved. So all in all this implies that the
Lipschitz isomorphism restricts to an isomorphism of T and S. a

This of course gives an indication of Lipschitz isomorphism being monstrously
complicated and it seems to be the best candidate for an isomorphism relation being
analytic complete. For we know both that it reduces relatively complicated Polish
group actions and that it cannot itself reduce to a Polish group action as it reduces
EKó and therefore E1. But our methods for showing something to be analytic
complete are yet not sufficiently developed for direct attack on this problem.
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We finish by classifying the relation of equivalence of Schauder bases. Our space
of bases will be chosen as Bossard does in [2], where a basis is seen as a subsequence
of the universal basis, {un}ù, constructed by Pełczynski. That is, anySchauder basis
is equivalent to a subsequence of Pełczynski’s basis and can therefore be identified
with some {un}A, A ∈ [ù]ù . We note that Bossard in the above mentioned paper
shows that E0 Borel reduces to equivalence of bases.

Proposition 26. Equivalence of Schauder bases is Borel bireducible with EKó .

The following lemma is classical and was shown to me by Olivier Guédon.

Lemma 27. For 1 < p < q <∞ and n ∈ N, we have

sup
(‖(x1, . . . , xn)‖p
‖(x1, . . . , xn)‖q

∣

∣

∣
x1, . . . , xn ∈ R

)

=
(1p + · · ·+ 1p)1/p

(1q + · · ·+ 1q)1/q
= n

1
p−

1
q .

Proof. Let tp = q and t′ be its conjugate exponent, i.e., 1t+
1
t′ = 1. So

1
pt′ =

1
p−

1
q

and t′ = q
q−p and by Holder’s inequality one has for positive a1, . . . , an

(

∑

api

)1/p

=
(

∑

api · 1
)1/p

≤
[(

∑

apti

)1/t(∑

1t
′
)1/t′]1/p

=

(

∑

aqi

)1/q

· n1/pt
′

=
(

∑

aqi

)1/q

· n1/p−1/q .

So the supremum of the difference of the norms is attained on the diagonal
(a1, . . . , an) = (1, . . . , 1). a

And now to the proof of the proposition.

Proof. First we show that equivalence of bases, ∼, Borel reduces to EKó .
For ~s ∈ (Q ∩ [−1, 1])<ù , c ≥ 1 and A = {a0, a1, a2, · · · }< ∈ [ù]ù put

d (A, ~s) = ‖s0ua0 + · · ·+ s|s|−1ua|s|−1‖,

D(A, ~s, c) =
[1

c
d (A, ~s), cd (A, ~s)

]

.

So if A ∼ B , there is an r ∈ Q ∩ [1,+∞[ such that for all ~s ∈ (Q ∩ [−1, 1])<ù and
c ≥ 1

D(A, ~s, c) ⊆ D(B, ~s , rc),

D(B, ~s, c) ⊆ D(A, ~s, rc).

On the other hand, if this is the case, then, in particular,

d (A, ~s) ∈ D(A, ~s, 1) ⊆ D(B, ~s, r).

Therefore, ∀~s ∈ (Q ∩ [−1, 1])<ù , we have

1

r
‖s0ub0 + · · ·+ s|s|−1ub|s|−1‖ ≤ ‖s0ua0 + · · ·+ s|s|−1ua|s|−1‖

≤ r‖s0ub0 + · · ·+ s|s|−1ub|s|−1‖

and the two sequences are equivalent. This shows that∼ is of the form (?).
For the other direction one notices that Lemma 27 permits us to choose for each
k an n and 1 < p0 < · · · < pk−1 < ∞, such that the constant of equivalence
between `npi and `

n
pj , i < j, is exactly 2

j−i . Do this and call them n(k) and

1 ≤ p(k, 0) < · · · < p(k, k − 1) ≤ ∞ respectively. The mapping
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~x 7→
(

`n(0)
p(0,x0)

⊕ `n(1)
p(1,x1)

⊕ `n(2)
p(2,x2)

⊕ · · ·
)

`1

is then a reduction from EKó on X0 to the relation of equivalence of Schauder
bases. a

Let us end with a list of problems left open:

Problem 28. • Determine the complexity of Lipschitz isomorphism of Polish
metric spaces. In particular, is it Σ11-complete?

• Are all Fó equivalence relations Borel reducible to EKó ?
• Moremodestly, are all Borel equivalence relations withKó classes Borel reducible
to EKó ?

• (Louveau) What about Fó equivalence relations that can be written as
⋃

Fn,
where the Fn are closed symmetric relations with F0 = ∆ and Fn ◦ Fn ⊆ Fn+1?
Notice that in this case there is a natural C -measurable reduction to EKó .

REFERENCES

[1] J. Barwise, Back and forth through infinitary logic, Studies in model theory, Mathematical Asso-
ciation of America, 1973.
[2] B. Bossard, A coding of separable Banach spaces. Analytic and coanalytic families of Banach

spaces, Fundamenta Mathematicae, vol. 172 (2002), pp. 117–152.
[3] J. Clemens, S. Gao, andA. Kechris,Polish metric spaces: their classification and isometry groups,

The Bulletin of Symbolic Logic, vol. 7 (2001), pp. 361–375.
[4] H.Friedman,Borel and Baire reducibility, FundamentaMathematicae, vol. 164 (2000), pp. 61–69.
[5] H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable structures, this

Journal, vol. 54 (1989), pp. 894–914.
[6] S. Gao and A. Kechris, On the classification of Polish metric spaces up to isometry, vol. 161,

Memoirs of the American Mathematical Society, no. 766, 2003.
[7] G. Hjorth and A. Kechris, Analytic equivalence relations and Ulm-type classifications, this

Journal, vol. 60 (1995), pp. 1273–1300.
[8] V. Kanovei, Varia of ideals and ERs, forthcoming book.
[9] V. Kanovei and M. Reeken, Some new results on Borel irreducibility of equivalence relations,

Izvestiya: Mathematics, vol. 67 (2003), no. 1.
[10] A.Kechris,Lectures on definable group actions and equivalence relations, circulated notes (1994).
[11] , Classical descriptive set theory, Springer, 1995.
[12] A. Kechris and A. Louveau, The classification of hypersmooth Borel equivalence relations,

Journal of the American Mathematical Society, vol. 10 (1997), no. 1, pp. 215–242.
[13] A. Louveau, Analytic partial orders, preprint.
[14] , On the Borel reducibility ordering, preprint.
[15] A. Louveau and C. Rosendal, Relations d’equivalence analytiques completes, Comptes Rendus

de l’Académie des Sciences. Série I, vol. 333 (2001), pp. 903–906.
[16] , Complete analytic equivalence relations, vol. 357 (2005), pp. 4839–4866.
[17] C. Rosendal, Etude descriptive de l’isomorphisme dans la classe des espaces de Banach, Ph.D.

thesis, Université Paris 6, 2003.
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