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Abstract

We show that any Banach space contains a continuum of non-isomorphic subspaces or a
minimal subspace. We define an ergodic Banach spaas a space such th@p Borel reduces
to isomorphism on the set of subspaces<pind show that every Banach space is either ergodic
or contains a subspace with an unconditional basis which is complementably universal for the
family of its block-subspaces. We also use our methods to get uniformity results. We show that
an unconditional basis of a Banach space, of which every block-subspace is complemented,
must be asymptoticallyg or £,, and we deduce some new characterisations of the classical
spacescg and £,.
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1. Introduction

The following question was asked the authors by G. Godefroy: how many non-
isomorphic subspaces must a given Banach space contain? By the results of Gowers
[9,10] and Komorowski and Tomczak-Jaegermdh8] solving the homogeneous space
problem, if X is not isomorphic taZ, then it must contain at least two non-isomorphic
subspaces. Excepty, no examples of spaces with only finitely, or even countably
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many, isomorphism classes of subspaces are known, so we may ask what the possible
number of non-isomorphic subspaces of a given Banach space is, supposing it being
non-isomorphic td,. This question may also be asked in the setting of the classification

of analytic equivalence relations up to Borel reducibilityXfis not isomorphic tols,

when can we classify the relation of isomorphism on subspace€ of

Stated as above not much is known about our problem. Certainly, there is a number
of particular results scattered throughout the literature implying that particular spaces
have a great number of subspaces. For example, the spaeesl £,, p # 2 haveR;
non-isomorphic subspac§k9]. But there seems to have been no results on the problem
in this generality. However, from Gowers’s dichotomy theorftfi], one easily sees
that a space without a minimal subspace must at least have uncountably many non-
isomorphic subspaces. Moreover, assuming the consistency of large cardinals, Bagaria
and Lopez-Abad[2] showed it to be consistent that any space without a minimal
subspace must contai'2many non-isomorphic subspaces. But firstly, this should be
a fact of ZFC, and secondly, one would like to have a more constructive result saying
that there is an uncountable Borel set of non-isomorphic subspaces.

A topological spaceX is said to be Polish if it is separable and its topology can be
generated by a complete metric. Its Borel subsets are those belonging to the smallest
g-algebra containing the open sets. A subset is analytic if it is the continuous direct
image of a Polish space or equivalently of a Borel set in a Polish space. All uncountable
Polish spaces turn out to be Borel isomorphic, i.e., isomorphic by a function that is
Borel bimeasurable.

A C-measurable set is one belonging to the smalteatgebra containing the open
sets and closed under the Souslin operation, in particular all analytic set€-are
measurable. AllC-measurable sets are universally measurable, i.e., measurable with
respect to any-finite Borel measure on the space. Furthermore, they have the Baire
property, i.e., can be written on the forth = UAM, whereU is open andM is
meagre and are completely Ramsey. In fact they satisfy almost any regularity property
satisfied by Borel sets (sg&7, 29.D] for more onC-measurable sets) Moreover, as
C-measurable functions are closed under composition, these form a useful extension of
the class of Borel functions.

Most results contained in this article are centered around the notion of Borel re-
ducibility. This notion turns out to be extremely useful as a mean of measuring com-
plexity in analysis. It also gives another refined view of cardinality, in that it provides
us with a notion of the number of classes of an equivalence relation before everything
gets muddled up by the well-orderings provided by the axiom of choice.

Definition 1. Suppose thaE and F are analytic equivalence relations on Polish spaces
X andY, respectively. Then we writ& < g F iff there is a Borel functionf : X — Y,
such thatxEy <— f(x)Ff(y). Moreover, we denote by ~p F the fact that the
relations are Borel bireducible, i.e<gF and F <gE.

Then E < g F means that there is an injection froky E into Y/F admitting a Borel
lifting. Intuitively, this says that the objects iK are simpler to classify with respect
to E than the objects ity with respect toF. Or again thaly objects moduld= provide
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complete invariants foK objects with respect t&-equivalence, and furthermore, these
invariants can be calculated in a Borel manner from the initial objects.

We call an equivalence relatida on a Polish spac& smoothif it Borel reduces to
the identity relation orR, or in fact to the identity relation on any uncountable Polish
space. This is easily seen to be equivalent to admitting a countable separating family
(A,) of Borel sets, i.e., such that for any y € X we havexEy <= Vn (x € A,, <
— Yy € Ay).

A Borel probability measureu on X is called E-ergodic if for any pu-measurable
A C X that is E-invariant, i.e.,.x € A A xEy — y € A, either uy(A) = 0 or
u(A) = 1. We call u E-non-atomicif every equivalence class has measure 0.

Supposeu was E-ergodic and(A,) a separating family forE. Then by ergod-
icity and the fact that thed, are invariant eitherA, or AS has measure 1, so
N{An I1(An) = 13NN {AS |u(Ay) = 0} is anE class of full measure and is atomic.
So a smooth equivalence relation cannot carry an ergodic, non-atomic probability mea-
sure.

The minimal non-smooth Borel equivalence relation is the relation of eventual agree-
ment of infinite binary sequencegp. This is defined on 2 = {0, 1}N by

xEgy <«— 3dn VYm>=n x, =y,

To see thatEg is non-smooth just notice that the usual coin-flipping measure"oiis2
Eo non-atomic and ergodic by the zero-one law. Furthermore, any perfect set of almost
disjoint infinite subsets oN shows thatEg has a perfect set of classes.

If E is an equivalence relation on a sétand A C X, then we callA a transversal
for E on Xif it intersects everye-equivalence class in exactly one point. We notice that
if E is an equivalence relation ard a transversal fol, both of them analytic, then
E is smooth. An analytic equivalence relation is said to haveedectset of classes
if there is an uncountable Borel set consisting of pairwise inequivalent elements. This
is a very rigid notion that does not depend on the cardinality of the continuum and
is stronger that just demanding that it should have uncountable many classes. In fact
there are analytic equivalence relations that have an uncountable set of classes, but in
models violating the continuum hypothesis do not haVe any classes.

Our general reference for descriptive set theory and Ramsey thefity]i®f which
we adopt the notation wholesale. A friendly introduction to modern combinatorial set
theory can be found if14].

It is natural to try to distinguish some class of Banach spaces by a condition on
the number of non-isomorphic subspaces. A step up from homogeneity would be when
the subspaces would at least admit some classification in terms of real numbers, i.e.,
something resembling type or entropy. This would say that in some sense the space
could not be too wild and one would expect such a space to have more regularity
properties than those of a more generic space, in particular than those of a hereditarily
indecomposable space.

A number of results in the 1970s and 1990s showed that there was essentially no
hope for a general isomorphic classification of Banach spaces, nor even for finding



262 V. Ferenczi, C. Rosendal/Advances in Mathematics 195 (2005) 259-282

nice subspaces of a certain type. The first of these result were Tsirelson’s construction
of a Banach space not containing any copies@fr £, (see[4]) and the proof by

Enflo that not every separable Banach space has a basifl@gerhe second amount

of evidence came with the construction of a space without any unconditional basic
sequence by Gowers and Maurgyl]. There were, however two more encouraging
results, namely the solution to the homogeneous space problem and Gowers’s dichotomy
[10] saying that either a Banach space contains a hereditarily indecomposable subspace
or a subspace with an unconditional basis, that is, either a very rigid space (with few
isomorphisms and projections) or a somewhat nice space (with many isomorphisms and
projections).

We isolate another class of separable Banach spaces, namely those on which the
isomorphism relation between subspaces does not refigcahe non-ergodic ones,
in particular this class includes those admitting classification by real numbers, and
show that if a space belongs to this class, then it must satisfy some useful regularity
properties.

Let By be the space of closed linear subspaces of a Banach Xpazpiipped with
its Effros—Borel structure (sef7] or [6]). We note that isomorphism is analytic on
B§(. Let us define a Banach spageto be ergodic if the relation Eg Borel reduces
to isomorphism on subspaces Xf In [6,24], the authors studied spaces generated by
subsequences of a spa¥ewith a basis: forX a Banach space with an unconditional
basis, eitheiX is ergodic orX is isomorphic to its hyperplanes, to its square, and more
generally to any direct sunY @Y whereY is generated by a subsequence of the basis,
and satisfies other regularity properties.

Note that it is easily checked that Gowers's construction of a space with a basis,
such that no disjointly supported subspaces are isomorf#it2]), provides an exam-
ple of a space for which the complexity of isomorphism on subspaces generated by
subsequences is exacthp.

In the main part of this article, we shall consider a Banach space with a basis, and
restrict our attention to subspaces generated by block-bases. As long as we consider only
block-subspaces, there are more examples of spaces with low complexity, for example
£y, 1< p < 400 or cg has only one class of isomorphism for block-subspaces. After
noting a few facts about the number of non-isomorphic subspaces of a Banach space,
that come as consequences of Gowers's dichotomy theorem (LeIntoaTheorem
4), we prove that block-subspaces in a non-ergodic Banach space satisfy regularity
properties (Theorem®, 12, Corollary 10). We then show how our methods yield
uniformity results (Proposition46, 17). We find new characterisations of the classical
spacesco and £, (Corollary 20, Proposition21). Finally, we show how to generalise
our results to subspaces with a finite-dimensional decomposition on the basis (Theorem
22, Proposition23).

2. A dichotomy for minimality of Banach spaces

Let us recall a definition of H. Rosenthal: we say that a spdcis minimal if
X embeds in any of its subspaces. Minimality is hereditary. In the context of block-
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subspaces, there are two natural definitions: we define a spaeith a basis to be
block-minimalif every block-subspace of has a further block-subspace isomorphic to
X; it is equivalence block-minimaf every block-subspace oX has a further block-
subspace equivalent %6. The second property is hereditary, but the first one is not, so
we also define dereditarily block-minimalspace as a spacé with a basis such that
any of its block-subspaces is block-minimal.

Let X be a Banach space with a bagis}. If y = (y,).en IS @ block-sequence
of X, we denote byY = [y,],en = [y] the closed linear span of. For two finite
or infinite block-basexz andy of {e;}, write z<y if z is a blocking ofy (and write
Z LY for the corresponding subspaces)ylE (vi)iens 2 = (zi)ieny @nd N € N, write
z< ¥y iff there is anN such that(z;); >y <y (and write Z <*Y for the corresponding
subspaces). Ik = (s1,...,s,) andt = (t1,..., 1) are two finite block-bases, i.e.,
supp(s;) < supp(si+1) andsupp(t;) < supp(ti+1), then we writes<z iff sis an initial
segment of, i.e.,n <k ands; = ¢; for i <n. In that case we write\s for (z,41, ..., t%).

If sis a finite block-basis ang is a finite or infinite block-basis supported after
denote bys™y the concatenation of andy.

We denote byb(X) the set of normalised block-bases ¥nThis set can be equipped
with the product topology of the norm topology o in which case it becomes a Polish
space that we denote iy (X).

Sometimes we want to work with blocks with rational coordinates, though we no
longer can demand these to be normalised (by rational, we shall always mean an element
of @Q+iQ in the case of a complex Banach space). We identify the set of such blocks
with the set@jN of finite, not identically zero, sequences of rational numbers. We shall
denote by(@):N)N the set of (not necessarily successive) infinite sequences of rational
blocks. Again when needed we will giv®*<N the discrete topology an(i@:N)N
the product topology. The set of rational block-bases may be seen as a subset of
(<I;D:’\‘)N and is denoted bybg. The set of finite rational block-bases is then denoted
by fbbg.

Finally for the topology that interests us the most: @tbe the set of normalised
blocks of the basis that are a multiple of some block with rational coordinates; we
denote bybb,(X) the set of block-bases of vectors @, equipped with the product
topology of the discrete topology a@. As Q is countable, this topology is Polish and
epsilon matters may be forgotten until the applications; when we deal with isomorphism
classes, they are not relevant since a small enough perturbation preserves the class.
Note also that the canonical embeddingbdf; (X) into By is Borel, and this allows us
to forget about the Effros—Borel structure when checking ergodicity. Unless specified
otherwise, from now on we work with this topology.

We first prove a Lemma about uniformity for these properties. €or1l, we say
that a spaceX with a basis isC block-minimal(resp, C equivalence block-minimal
if any block-subspace oX has a further block-subspace whichGsisomorphic (resp.,
C-equivalent) toX.

Lemma 2. (i) Let X be a Banach space with a basis and assume @edsivalence
block-minimal. Then there exists>1 such that X is C(equivalenci block-minimal
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(i) Supposele,} is a basis in a Banach spacsuch that any subsequence {ef;}
has a block-sequence equivalent{tq}. Then there is a subsequengg,} of {e,} and
a constantC > 1, such that any subsequence{gf,} has a block-sequence C-equivalent
to {eu}.

Proof. We will only prove (i) as the proof of (ii) is similar. Let for € N ¢(n) denote
a constant such that anycodimensional subspaces of any Banach spacec@re
isomorphic[6, Lemma 3] Let X be block-minimal. We want to construct by induction
a decreasing sequence of block-subspaXgsn >1 and successive block-vectoxg
such that the first vectors ok, are x1,...,x,-1 and such that no block-subspace
of X, is n isomorphic toX. Assume we may carry out the induction: then for all
n € N, no block-subspace dfx,],cn IS n-isomorphic toX, and this contradicts the
block-minimality of X. So the induction must stop at sonme meaning that every
block-subspace o¥, whose first vectors are;, ..., x, has a further block-subspace
n isomorphic toX. Then by definition ofc(n), every block-subspace ok, has a
further block-subspacec(n) isomorphic toX. By block-minimality we may assume
that X, is K-isomorphic toX for someK. Take now any block-subspadeof X, it is
K-isomorphic to a subspace dof,; by standard perturbation arguments, we may find
a block-subspace of which is 2K-equivalent to a block-subspace #f,, and by the
above, an even further block-subspac€ 2quivalent to anc(n)-isomorphic copy of
X; so finallyY has a block-subspacek2ic(n) isomorphic toX and so,X is 2Knc(n)
block-minimal.

We may use the same proof for equivalence block-minimality, using instea¢:pf
a constantd(n) = (1 + (n + 1)¢)?, such that any two normalised block-sequences
differing by only then first vectors arei(n)-equivalent ¢ stands for the constant of the
basis). O

Let us recall a version of the Gowers's ganig, y shown to be equivalent to
Gowers’s original game by Bagaria and Lopez-Ab&d: Player | plays in thekth
move a normalised block-vectgy, of Y such thaty,_1 < y; and Player Il responds by
either doing nothing or playing a normalised block-vecto€ [y;y1, ..., y¢] if i was
the last move where she played a vector. Player Il wins the game if in the end she
has produced an infinite sequen@ag);<n Which is a block-sequence . If Player Il
has a winning strategy foG 4,y we say that she has a winning strategy for Gowers’s
game inY for producing block-sequences m Gowers proved that iA is analytic in
bby (X), such that any normalised block-sequence contains a further normalised block-
sequence irA, then Il has a winning strategy in sonyeto produce a block-sequence
arbitrarily close to a block-sequence An

As an application of Gowers’s theorem one can mention tha i§ (equivalence)
block-minimal, then there is a consta@t such that for every block-subspae< X,
Player Il has a winning strategy for Gowers's game in sofm€Y for producing
block-sequences spanning a sp&:esomorphic toX (respectively,C-equivalent to the
basis ofX).

We recall that a space with a basis is said todomsi-minimalif any two block-
subspaces have further isomorphic block-subspaces. On the contrary, two spaces are said
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to betotally incomparableif no subspace of the first one is isomorphic to a subspace
of the second. Using his dichotomy theorem, Gow@®] proved the following result
about Banach spaces.

Theorem 3 (Gowers’s “trichotomy”). Let X be a Banach space. Then X either contains

¢ a hereditarily indecomposable subspace

e a subspace with an unconditional basis such that no disjointly supported block-
subspaces are isomorphic

e a subspace with an unconditional basis which is quasi-minimal

Using his game we prove:

Theorem 4. Let X be a separable Banach space. Then

(i) X is ergodic or contains a quasi-minimal subspace with an unconditional .basis
(i) X contains a perfect set of mutually totally incomparable subspaces or a quasi-
minimal subspace
(iii) X contains a perfect set of non-isomorphic subspaces or a block-minimal subspace
with an unconditional basis

Proof. First notice that because of the hereditary nature of the properties, each of
the subspaces above may be chosen to be spanned by block-bases of a given basis.
Rosendal proved that any hereditarily indecomposable Banach 3pecergodic, and

this can be proved using subspaces generated by subsequences of a basic sequence in
[24]. Following Bossard (who studied the particular case of a space defined by Gowers
[1]), we may prove that a spaeésuch that no disjointly supported block-subspaces are
isomorphic is ergodic (map € 2V to [e2n+a(n)lneN, Where(e,) is the unconditional

basis ofX). This takes care of (i).

A space such that no disjointly supported block-subspaces are isomorphic contains
2N totally incomparable block-subspaces (take subspaces generated by subsequences of
the basis corresponding to a perfect set of almost disjoint infinite subseéty. gflso
any hereditarily indecomposable space is quasi-minimal, so (ii) follows.

Finally, for the proof of (iii) we will first show that the statement we want to prove
is 3. This will be done by showing that given a block-minimal spatethere is a
further block-subspac¥ such that forZ <Y we can find continuously iZ an X’'<Z
and an isomorphism o’ with X. The proof uses ideas of coding with asymptotic
sets which are at the basis of many recent constructions such as the space of Gowers
and Maurey[11], and more specifically some ideas of Lopez-Ahad].

By Shoenfield’s absoluteness theorem ($&8, Theorem 25.20pr [16, Theorem
13.15) it will then be sufficient to show the statement under Martin’s axiom and the
negation of the continuum hypothesis. This was almost done by Bagaria and Lopez-
Abad who showed it to be consistent relative to the existence of a weakly compact
cardinal, sed2], but we will see that it can be done in a simple manner directly from
MA+—-CH.
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Note first that having a perfect set of non-isomorphic subspaces or containing a copy
of ¢g are boch%, and that ifX contains a copy otg then it has a block-sequence
equivalent to the unit vector basis of, in which case the theorem holds. If on the
contrary it does not containg then by passing to a subspace, by the solution to the
distortion problem by Odell and Schlumprecht, we may assume that it contains two
closed, positively separated, asymptotic subsets of the unit spherand A; [22].
Suppose that’ = [y]< X is block-minimal. Fix a bijectiont betweenN and @:N,
the set of finite sequences of rational nhumbers not identically zero. Then fox any
07%010"10%21... in 2N there is associated a unique sequetd@g), n(n1), t(nz),...)
in (@:N)N. Furthermore, any element Q@:N)N gives a unique sequence of block-
vectors ofY simply by taking the corresponding finite linear combinations.

Let D := {(z,) € bby(X) |(za) <y A VYnz, € AgU A1 A 3%n z, € A1} which is
Borel in bby(X). Then if (z,) € D it codes a unique infinite sequence of block-
vectors (not necessarily consecutive) Yf by first letting (z,) — o € 2N where
a(n) = 1 «— z, € A1 and then composing with the other coding. Notice that this
coding is continuous frond to (@), when QN is taken discrete.

Let E be the set of(z,) <y such that(z2,+1) € D and the function sending2,)
to the sequence of block-vectors fcoded by(z2,41) is an isomorphism ofz2,1,en
with Y.

E is clearly Borel inbby (X) and we claim that any block-sequence contains a further
block-sequence . For suppose thai<y is given. Then we first construct a further
block-sequencez,) such thatzs,+1 € Ag and z3,4+2 € A1. By block-minimality of
Y there are a block-sequence,) of (z3,) isomorphic toY and a sequence e 2V
coding a sequence of block-vectans,) of Y such thatx, — y, is an isomorphism of
[x,] with Y (a standard perturbation argument shows that we can always take, our
to be a finite rational combination o).

Now in betweenx, and x,;1 there arezz,+1 and zz,i2, SO we can code: by
a corresponding subsequengg) of these such that, < z, < x,+1. The combined
sequence is then iB. So by Gowers’s theorem there is for afty> 0 a winning strategy
t for 1l for producing blocks inE, in someY’<Y. By choosingA small enough and
modifying T a bit we can suppose that the vectors of odd index played by Il are in
AgUA1. So if A is chosen small enough, a perturbation argument showg tisan fact
a strategy for playing blocks i&. By changing the strategy again we can suppose that
Il responds to block-bases ib,;(Y’) by block-bases ibb,(Y’). So finally we see that
X has a block-minimal subspace iff there dfé=[y’] andY = [y] with Y/ <Y <X
and a continuous functiotfi, f2) = f : bbg(Y') —> bby(Y') x (<I;D,f’\1)N such that for
all z<y', fa(z) codes a sequenc@w,) of blocks ofY such that[w,],cn = Y, and
f1(z2) = (v,) <z with v, — w, being an isomorphism betweén,],cn andy.

The statement is thereforB:, and to finish the proof we now need the following
lemma:

Lemma 5 (M Ag—centered)- LEL A C bbg be linearly ordered underxC™* of cardinality
strictly less than the continuum. Then there is ap € bbg such thatxo<*y for all
y € A.
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Proof. For s € fbbg and y € bbg, denote by(s, y) the set of block-bases ihbg
of the form s~z for z<y. Let P = {(s,y)|s € fbbg A y € A}, ordered by the
inclusion. As a preliminary remark, note that(if, z) C (s, y), thens<¢, r\ s <y, and
z<*y. Conversely, ifs € fbbg and z<*y, then extensions$ of s, with 7\ s<z far
enough, are such that, z) C (s, y).

Put D, = {(s,y) € Plls|=>n} and D, = {(t,2) € P [z<*y}. Then D, and D,, for
y € A, are dense irP, i.e., any element irP has a minorant irD, (resp.,D,). To see
that D,, is dense, just take for any give@, y) € P some extension’ of s such that
s"\s<y and|s’|>n, then(s’, y) € D, and(s’, y) C (s, y). On the other hand, to see
that D, is dense fory € A, suppose(s, z) € P is given. Then as\ is linearly ordered
by <*, let w be the minimum ofz andy. By the preliminary remark(s’, w) C (s, z)
for a long enough extensios of s such thats’ \ s<w, and asw<*y, (s',w) is
in Dy.

Let Py = {(s, y) |y € A}, which is centered irP, i.e., every finite subset P, has
a common minorant ir?. This follows from the same argument as above, using the
preliminary remark. So sinceis supposed to be rational, we see tfrats o-centered,
i.e., a countable union of centered subsets. Notice thatas 20, there are less than
continuum many dense sef$, and D,. S0 by M Ag_centerea there is a filterG on P
intersecting each of these sets.

Suppose that(s, y) and (r,z) € G then asG is a filter, they have a common
minorant (v, w) € G, but thens<v andr<v, so eithers<r or t<s. Thereforey,, :=
U {s € fbbg |3y (s, y) € G} is a block-basis. Furthermore & intersects all ofD,
for n € N we see thaty,, is an infinite block-basis.

We now prove thaty,, <*y for all y € A. SinceG intersectsD,, without loss of
generality we may assume that, y) € G for somes. Then ys \ s <y. For if 1<y
and (¢,z) € G, take (v, w) € G such that(v,w) C (¢,z) and (v,z) C (s, y), then
S, 1<SU<Yyso andz \ s<v \ s <y, and therefore as was arbitraryyo, \ s <y.

Suppose now thaX does not have a perfect set of non-isomorphic subspaces. Then
by Burgess’s theorem (sd&7, (35.21)), it has at mostt; many isomorphism classes
of subspaces, and in particular as we are supposing the continuum hypothesis not to
hold, less than continuum many. L&X¢):_., be an enumeration of an element from
each class. Then if none of these are minimal, we can construct inductively’ a
decreasing sequence:):_,, of rational block-subspace such th&t does not embed
into Yz and using the above Lemma find sortig, diagonalising the whole sequence.
By taking, e.g., the subsequence consisting of every second term of the bdsis of
one can suppose that,, embeds into every term of the sequen@®e):..,, and that
therefore in particula,,, is isomorphic to noX¢, ¢ < wg, which is impossible. This
finishes the proof of the theorem[]

We remark that ifX does not contain a minimal subspace, there is in fact a perfect
set of subspaces such each two of them do not both embed into each other. This is
slightly stronger than saying that they are non-isomorphic.
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3. Residual isomorphism classes of block-subspaces
We recall our result froni6,24] in a slightly modified form.

Theorem 6. Let X be a Banach space with a badig}. Then Eg Borel reduces to
isomorphism on subspaces spanned by subsequences of the dratisre exists a
sequence€ F,), >1 of successive finite subsets ffsuch that for any infinite subset N
of N, if NN[min(F,), max(F,)] = F, for infinitely many s, then the spacée;];cn is
isomorphic to X. It follows that if X is non-ergodic with an unconditional baglien
it is isomorphic to its hyperplaneso its square and more generally to @ Y for any
subspace Y spanned by a subsequence of the. basis

Indeed, by[6], improved in[24], either Eq Borel reduces to isomorphism on sub-
spaces spanned by subsequences of the basis, or the set of infinite subssfzaohing
a space isomorphic 4 is residual in 2'; the characterisation in terms of finite subsets
of N is then a classical characterisation of residual subsetsMo{s2e[17], or the
remark at the end of Lemma 7 i®]). Both proofs are similar to (and simpler than)
the following proofs of PropositiorY and PropositiorB8 for block-subspaces. The last
part of the theorem is specific to the case of subspaces spanned by subsequences and
is also proved in6].

We now wish to extend this result to the set of block-bases, for which it is useful
to use the Polish spadg,(X). Unless stated otherwise this is the topology referred
to.

As before, the notation = (x,),en Will be used to denote an infinite block-sequence;

x will denote a finite block-sequence, and its length as a sequenceypp(x) the

union of the supports of the terms &f For two finite block-sequences and ¥, write

X < y to mean that they are successive. For a sequence of successive finite block-
sequencesy;);c;, we denote the concatenation of the block-sequences by..” x,

if the sequence is finite of; x5 ... if it is infinite, and we denote byupp(X;,i € I)

the support of the concatenation, py];<; the closed linear span of the concatenation.
For a finite block-sequenceé = (x1, ..., x,), we denote byN (X) the set of elements

of bby(X) whose firstn vectors are(xy, ..., x,).

Proposition 7. Let X be a Banach space with a Schauder basis. Then either X is
ergodic or there existsk >1 such that a residual set of block-sequences i (X)
span spaces mutually K-isomorphic

Proof. The relation of isomorphism is either meagre or non-meagrkbjr(X)?. First
assume that it is meagre. L@V,),cn be a decreasing sequence of dense open subsets
of bby(X)? so thatn,cn U, does not intersect. We build by induction successive finite
blocks {@%, n € N} and {a}, n € N} such that for alln, |a%| = |a|, and supp(a’) <
supp(&,iﬂ) for all (i, j) € 22. For oo € 2N, we let x(x) be the concatenated infinite
block-sequenceiy® ~al™ ~.... And for n € N and f € 2", we let i(f) be the

concatenated finite block-sequerﬁ{éo) 7 &fﬁfl). We require furthermore of the



V. Ferenczi, C. Rosendal/Advances in Mathematics 195 (2005) 259-282 269

sequence$&,?} and {d,}} that for eachn € N, eachp and ' in 27,
N@E(B0) x N(E(S™ 1) C U,

Before explaining the construction, let us check that with these conditions, the map
o — x() realises a Borel reduction afg to (bby(X), ~). Indeed, whemnxEpo/, the
corresponding sequences differ by at most finitely many vectors, and since we took
care that|a,?| = |Ez,}| for all n, x() andx(«') span isomorphic subspaces. On the other
hand, whenx and o’ are notEp-related, without loss of generality there is an infinite
set| such that for alli € I, a(i) = 0 and /(i) = 1, it follows that for alli € I,
(x (), x (o)) belongs toU;, and so by choice of th&,s, (x(x), x(«')) does not belong
to ~.

Now let us see at step how to construct the sequences: given a girfg in (22,
using the fact that/, is dense and open, the paitfy), X(f;) may be extended to a
pair of finite successive block-sequences which are of the f(dmﬁo)AZo,i(ﬁg)AZO)
with N(X(Bp)"Z0) x N(E(By)"Zy) C Uy, and we may require thatupp(x(fy)) U
supp(X(Bp)) < supp(Zo) U supp(Zy). Given an other paify, f1 in (2")2, the pair
(i(ﬁl)“z“o,i(ﬁ’l)“zg) may be extended to a pair of finite successive block-sequences
(X(B) "z, X(BD"Z)) such thatN (¥ (fy)"Z1) x N(F(S) "z} C U,. Here with our
notationz; extendsZop and z} extendsz;. Repeat this(2")? times to getZa_1, %y, 4
such that for allp and 8’ in 27,

NE(P) " Zar—1) x N(X(B) " Zp_q) C Uy.

Finally extend(Zar—1, Zju ;) to (a0, al) such that|al| = |al|; we still have that, for

n

all Bandp’ in 2*, N(x()~a%) x N@E()~a}) c U,, i.e. with our notation,
NE(B~0) x N(E(S 1) C U,.

Now assume the relation of isomorphism is non-meagrgbjiX)2. As the relation
is analytic it has the Baire property ahd,(X) is Polish, so by Kuratowski—-Ularfi7,
Theorem 8.41] there must be some non-meagre section, that is, some isomorphism
class A is non-meagre. Fix a block-sequengen this class, then clearly, for some
constantC, the setAc¢ of blocks-sequences spanning a sp&cisomorphic to[x] is
non-meagre. Now being analytic, this set has the Baire property, so is residual in some
basic open set, of the form N (x), for some finite block-sequence

We now prove thatAd; is residual inbby(X) for k = Cc(2maxsupp(x))); The
conclusion of the proposition then holds fé& = k2. Recall that forn € N, c(n)
denotes a constant such for any Banach sp&cany n-codimensional subspaces of
X are c(n)-isomorphic[6, Lemma 3] So let us assum& = N(y) is some basic
open set inbby(X) such thatA; is meagre inV. We may assume thaty| > |x|
and write y = 77 with ¥ < 7 and |X’|< max(supp(x)). Chooses and v to be
finite sequences of blocks such thatv > z, |iz| = |X’| and |9| = |X|, and such that
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be the basic open se{(x’~z7 7). Again A¢ is residual inU’ while A; is meagre
in V.

Now let T be the canonical map fron’ to V’. For all u in U’, T(u) differs
from at most x| + max(supp(x)) < 2maxsupp(x)) vectors fromu, so [T (u)] is
c(2max(supp(x))) isomorphic to[u]. Sincek = Cc(2 maxsupp(x))) it follows that
Ay is residual inV’ c V . The contradiction follows by choice of. [

By analogy with the definition of atomic measures, we may see Propositias
stating that a non-ergodic Banach spaces with a basis must be “atomic” for its block-
subspaces.

We now want to give a characterisation of residual subsetsbgfX). If A is a
subset ofbb,; (X) and A = (d,),en IS @ sequence of positive real numbers, we denote
by A the usual A-expansion ofA in bby;(X), that isx = (x,) € Ay iff there
existsy = (y,) € A such that|y, — x,|| <., Vn € N. Given a finite block-sequence
X =(x1,...,x,), we say that a (finite or infinite) block-sequen@g) passes through
X if there exists some integen such thatvl<i<n, yn+i = x;.

Proposition 8. Let A be residual inbb;(X). Then for allA > 0, there exist successive
finite block-sequencest,), n € N such that any element dfb;(X) passing trough
infinitely many of they,’s is in Ax.

Proof. Let (U,),en be a sequence of dense open sets, which we may assume to be
decreasing, such that,.nU, C A. Without loss of generality we may also assurhe
to be decreasing. In the following, block-vectors are always take, im the intention
of building elements obb;(X).

First, Up is open so there exist§ a finite block-sequence such that(Xg) C Up.
Now let us choose som¥; > max(supp(Xo)) and let us take an arbitrary block-vector
z1 such thatN1 = min(supp(z1)). Let F.1 be a finite set of finite block-sequences
forming andy,-net for all finite block-sequences supported befdteand let Fp1 be
a finite set of finite block-sequences forming &, -net for all finite block-sequences
supported afteffp and beforeN;. Let G1 = {X;'y,y € Fo1} and letF; = F_1 U G1.
Using the fact thatl/; is dense open, we may construct successively a finite block-
sequencex; which extendszi, so that misupp(X1)) = N1 > max(supp(xp)), and
such that for anyfl € Fy, N(ffil) is a subset ofU;.

Let us now write what happens at thé& step. We choose somg, > max(supp
(xx—1)) and an arbitrary block; whose support starts af;. We let F_; be a finite set
of finite block-sequences forming ainy,-net for all finite block-sequences supported
before N, and for alli < k, we let F;; be a finite set of finite block-sequences
forming andy,-net for all finite block-sequences supported afieand beforeNy. For
any I = {i1 < iz <--- < i, =k}, we let G; be the set of finite block-sequencés
passing through every in I, such that the finite sequence of blocks zosupported
before x;, is in F.;, and such that for alli < m, the finite sequence of blocks of
Z supported betweevi,»j and Xija is in Fijijiq- And we let F; be the union of all
G over all possible subsets df., 2, ..., k} containingk. Using the fact that; is
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dense open, we may construct successively a finite block-sequgnehich extends
zk, SO that mitsupp(%r)) = Ny > max(supp(¥—1)), and such that for any; € Fy,
N(f %) is a subset olU.

Repeat this construction by induction, and now zebe a block-sequence passing
through x,, for n in an infinite set{ni, k € N}. We may writez = y5" X, 1 X, - -,
where jg is supported beforg,, (we may assume thaty > 0) and fork > 0, y; is
supported betweef,, , andx,,.

Let fo € F-,, be dn,, distant from o, and for anyk > 0, let fx € Fu_in, bE

dn,, distant from3y;. Then it is clear thaz is A distant from f = f % fi %, -
Indeed, consider a term, of the block-sequence: If it appears as a term of some
finite sequencex,, then its distance to the corresponding blogk of f is 0. If it
appears as a term of somg then it is less thardy, -distant from the blockf,, and
Ny > max(supp(z,)) >n, SO it is less thar,-distant from f,.

It remains to check thaf is in 4. But for all K, the finite sequencgx =
fo %o~ fC Xn, is an element ofGyy...n) SO is an element offy; it follows
that N(gk) is a subset olU,, and so thaf is in U, . Finally, f is in NgenUy,, SO is
in A O

Conversely, given successive blocks, the set of block-sequences passing through
infinitely many of thex,’s is residual: for a givenxy,, “(yi)ren passes through,”
is open and (yx)ren passes through infinitely many of theg,’s” is equivalent to
“Yvm € N,3n > m € N : (y) passes througli,”, so is G5, and clearly dense. If
the setA considered is an isomorphism class, then it is invariant under small enough
A-perturbations, and so we get an equivalendeis residual iff there exist successive
finite block-sequencegx,), n € N such that any element dfb,(X) passing through
infinitely many of thex,’s is in A.

Finally, as any element abb(X) is arbitrarily close to an element @b, (X), the
following theorem holds:

Theorem 9. Let X be a Banach space with a basis. Then either X is ergodic or
there existsk > 1, and a sequence of successive finite block-sequefigésuch that

all block-sequences passing through infinitely many of {hg's span mutually K-
isomorphic subspaces

If in addition the basis is unconditional, then we may use the projections to get
further properties of the residual class.

Corollary 10. Let X be a non-ergodic Banach space with an unconditional basis.
Denote by A an element of the residual class of isomorphishbjiiX). Then for any
block-subspace Y of, X4 ~ A@ Y. If X is hereditarily block-minimalthen all residual
classes inbb,(Y), for block-subspaces Y of, dre isomorphic

Proof. Let {¢;} be the unconditional basis of and let{x,} be given by Theoren®.
Consider an arbitrary block-subspacef X. Its natural basis is unconditional afd=
[vilien is not ergodic as well. Let, by Theore) (F,,),>1 be successive finite subsets
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of N such that for any infinite subs@ of N, if N N [min(F,), max(F,)] = F, for
infinitely many n’s, then the spacgy;];cy is isomorphic toY. Passing to subsequences
we may assume that for afl in N, X, < Ujer, supp(yi) < Xp41. Then

A > [XnlpeN @ [yilicu,enr, ~ADY.

If now X is hereditarily block-minimal, an® belongs to the residual class b, (Y),
for Y <X, then by the abovel ~ A @ B; but alsoA is block-minimal so some copy
of A embeds as a block-subspaceYofso B~ B ® A. [

A Banach space is said to mmuntably homogeneous it has at most countably
many non-isomorphic subspaces. By Theoréna countably homogeneous space has
a block-minimal subspace with an unconditional basis, and one easily diagonalises to
get a hereditarily block-minimal subspace.

Proposition 11. Let X be a countably homogeneotsreditarily block-minimal Banach
space with an unconditional basis. Then elements in the residual class of isomorphism
for bby(X) are isomorphic to a(possibly infinit¢ direct sum of an element of each
class

Proof. We write the proof in the denumerable case. We partioim a direct sum of
subspaces(,, n € N by partitioning the basis. So eact), embeds intaX. For eachn,
choose a representativg, of the nth isomorphism class which is a block &f, (it is
possible becaus¥, is block-minimal as well). By applications of Gowers’s theorem in
eachX,, we may pick each vector forming the basis of edghfar enough, to ensure
that E = ), ®E, is a block-subspace oK. We show thatE is in the residual
class A. Indeed, ifm is such thatE,, € A, thenE ~ E,, ® Zn#m ®E, ~ E, by
Corollary 10. O

It follows from the proof above that for any two block-subspageandB of X, A& B
may be embedded as a block-subspac;dfe., under the assumptions of Proposition
11, isomorphism classes of block-subspaceX dbrm a countable (commutative) semi-
group.

Consider the property that every block-subspdaatisfiesA ~ A®Y. We may think
of this property as an algebraic property characterising large subspaces in the sense that
a large subspace should intuitively “contain” other subspaces, and more importantly, a
space should have at most one large subspace (héeaifd A’ satisfy the property,
A~ AdA ~ A'M). Notice that asX is not ergodic, all block-subspaces are isomorphic
to their squares by Ferenczi and Roseri@@land so the property above is equivalent
to saying that every block ok embeds complementably # (i.e. A is complementably
universal forbb(X)). Generally, a spacA is said to be complementably universal for
a classC of Banach spaces if every element ©fis isomorphic to a complemented
subspace oK. It is known that no separable Banach space is complementably universal
for the class of all separable Banach spad&$9,(Theorem 2.d.9] but there exists a
Banach spac&y with an unconditional basis which is complementably universal for
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the class of all Banach spaces with an unconditional b@dk and so for the class
of its block-subspaces in particular.
Combining Theoremt and Corollary10, we get

Theorem 12. Any Banach space is ergodic or contains a subspace with an uncondi-
tional basis which is complementably universal for the family of its block-subspaces

We now study this property in more detail. We also see how Thedemay be
used to obtain uniformity results.

Definition 13. Let X andY be Banach spaces such théthas a Schauder basig.is
said to be complementably universal fob(X) if every block-subspace ok embeds
complementably irY.

Lemma 14. Let X be a Banach space. Any Banach space complementably universal
for bb(X) is decomposable

Proof. Let A be complementably universal fégb(X) and indecomposable. First note
that X embeds complementably #, so must be isomorphic to a finite-codimensional
subspace of. As well, any block-subspace &fis isomorphic to a finite-codimensional
subspace oA and so none of them is decomposable either. It follows easily that no
subspace ofX is decomposable. In other wordX, is hereditarily indecomposable. It
follows also thatX is isomorphic to a proper (infinite-dimensional) subspace, and this
is a contradiction with properties of hereditarily indecomposable spaces.

To quantify the property of complementable universality, let us defiaey (Y) =
inf KK’, where the infimum runs over all couplék, K’) such thatyY is K-isomorphic
to a K’-complemented subspace Xf Of coursedecx (Y) = +oo iff Y does not embed
complementably inX. We shall say that a spack is C-complementably universal
for bb(X) if every block-subspace oK is K-isomorphic to someK’-complemented
subspace oA, for someK and K’ such thatk K’ < C, that is, if sug < y deca(Y)<C.

Lemma 15. Assume AB, C are Banach spaces with bases. Then

decs(C)<deca(B)?decy(C).

Proof. Let ¢ be positive. LetPg be a projection defined oB and apc be an isomor-
phism from Pz(B) onto C such that||PB||.||oc3c||.||oc§é||<decB(C) + ¢. Let P4 be
a projection defined o\ and x4 be an isomorphism fronP4(A) onto B such that
IPall-locac - locy 3 | <deca(B) +e.

We let P = oc;}BPBaABPA, defined onA,; it is easily checked tha® is a projection.
We let o = apcaap: it is an isomorphism fromP(A) onto C. Then

deca(C)<|IP|.llall.|o | < (deca(B) + &)*(decs(C) +2). O
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Proposition 16. Let X be a Banach space with a Schauder basis and let A be comple-
mentably universal fobb(X). Then there exist€ > 1 such that every finite-dimensional
block-subspace of X C-embeds complementably.in A

Proof. First it is clear that it is enough to restrict ourselves to elementgefX) with

the previously defined topology. We let fbre N, A; denote the set of block-subspaces
of X which arek-isomorphic to somé-complemented subspace Af Now it is clear

that one of the4; must be non-meagre. This set is analytic, so has the Baire property,
so is residual in some basic open &gtof the form N (i2). We now show thatdg is
residual forK = kc(2maxsupp(ir)). Otherwise, as in Proposition, we may assume
Ak is meagre inV = N(¥), and A; is residual inU’ = N(x) where X extendsi,

1X| <2 max(supp(i)) and maXsupp(x)) = max(supp(y)).

Now let T be the canonical map frory’ to V. For allu in U’, T (u) differs from
at mostg <2 max(supp(it)) vectors fromu, so the spacéTl (u)] is c(2 maX(supp(ii))
isomorphic to[u]. So T(u) is in Agx wheneveru is in A. It follows that Ax is
residual inV, a contradiction.

Now consider any finite-dimensional spaEegenerated by a finite block-sequence
of A, F =[x1,...,x,]: it may be extended to a block-sequence= (x;);en in Ak,
that isdeca([x]) < K2. But alsodec,(F) <c, wherec is the constant of the basis, so
by Lemmals, decs(F)<cK* O

Proposition 17. Let X be a space with an unconditional basis. If A is complementably
universal forbb(X) and isomorphic to its squay¢hen A is C-complementably universal
for bb(X) for someC >1.

Proof. The first part of the proof is as above to g€te N such thatAg, the set of
block-subspaces of which areK-isomorphic to somé&-complemented subspace &f
is residual. So by Propositio8, there exists a sequendg of successive finite blocks
such that any block passing through infinitely many of fje is in Axk.

Let now Y = [y,].en = [y] be an arbitrary block-subspace ¥f We may define a
sequencey;) of finite block-sequences with;"y5" ... =y and a subsequence 0},
denoted{x;}, such that for alli,

supp(Vi—1) < supp(X;) < supp(Ji+1).

We letw = y7 %5 y5 ... andw’ = Xy, %5 ... It is clear thatYy = [J2_1]ien
is c-complemented ifw], wherec is the constant of unconditionality of the basis;
S0 decy) (Y1) <c. But we know thatdec 4 ([w]) <4K?2, so by Lemmal5, dec4 (Y1) <
16K%c. Likewise if we denote[Js]ieny by Y2 and use[w’], we prove that
deca(Y2) <16K%c. It follows that Y1 @ Y, satisfiesdecag,a(Y1 @ Y2) <(16K%c)?
(here @1 denotes thef¢s-sum) , and, ifD is such thatA is D isomorphic to its
squareA @1 A, thatdeca(Y)<2°D%K8:3. O
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In view of the fact that by Theorerf, any unconditional basic sequence in a non-
ergodic Banach space spans a space isomorphic to its square, the previous proposition
may be applied to Theorerh2: a non-ergodic Banach space contains a subspace
with an unconditional basis which igniformly complementably universal fasb(X).

4. Asymptotically £, spaces

Consider now spaces with a basis with the stronger property that every block-
subspace is complemented. It is well-known that every block-subspadg of co
is complemented, and the same is true for spaeg>] @¢"),, the relevant case
beings # p (see[19]), or for Tsirelson’s spaceg,) (see[4]). All these examples are
asymptotically¢, or ¢, and we shall now see that this is not by chance.

We recall the definition of an asymptotically, space with a basis. Consider the
so-called asymptotic gamdan X, where Player | plays integerg:;) and Player Il
plays successive unit vectors) in X such thatsupp(xy) > ny for all k. ThenX is
asymptoticallyZ, if there exists a constar@ such that for any: € N, Player | has a
winning strategy in the asymptotic game of lengtlor forcing Il to play a sequence
C-equivalent to the unit basis df,. The similar definition holds fotg.

Our reference for asymptotic structure in Banach spaces will be the paper of Maurey
et al. [21]. Note that there are two natural notions of asymptotic structure for Banach
spaces: the first is associated to the set of finite-codimensional subspaXesand
the second to tail subspaces Xftaken with a given basis. Our definition obviously
corresponds to the second notion. Note also that, if formally slightly different from the
definition in [21] (Definition 1.7), our definition is easily seen to be equivalent to it
(use[21, Definition 1.3.3 and Proposition 1)5]

We start by a uniformity result similar to Propositidrr, for Banach spaces with a
basis for which every block-subspace is complemented.

Proposition 18. Let X be a space with an unconditional basis}, and assume that
every block-subspace of X is complemented. Then there e&xists such that every
block-subspace of X is C-complemented

Proof. Without loss of generality, assunie;} is 1-unconditional. Given any finite or
infinite block-sequencéx,} of X, we define for any: € N, E,, = [¢;, min(supp(x,)) <i

< max(supp(x,))]. We note that by[19], 1.c.8, Remark 1, the projection onfe,]
may be chosen to be block-diagonal with respecEjo(just replaceP by >, EyPEx,
and the norm of the projection is preserved).

We shall prove that if for som€ and everyn € N, [x1, ..., x,] is C-complemented
by a block-diagonal projection with respect f9,, then [x,],cn IS C-complemented
(by a block-diagonal projection with respect f,). The proposition follows by an
easy induction.

So let for eacln € N, P, be a projection ox1, ..., x,,], of norm less tharC, which
is block-diagonal with respect to thg;’s. Passing to a diagonal subsequence we may
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assume that for eack Ei(P,)|g, converges to some projectiof; defined fromEj
onto the 1-dimensional space generatedcpyDefineQ on X by Ox = ", . QkExx.
It is easy to check tha is a projection ontdx,],en Of norm less tharC. [

A few comments before the next proposition. Our original proof of Propositi®n
was similar to the one of Propositidly. We are thankful to the referee for indicating
to us that a much more direct proof existed. The property of complementation for
block-subspaces is too regular to require the strength of the theorem of Baire.

We then used Theorem 5.3 [A1] to conclude thaX must be asymptoticallyg or
£,. However, the referee showed us thaiXifdoes not containg, there is a chain of
classical properties equivalent to our property, which imply %a$ asymptoticallycg
or £, by a more direct and more informative proof. We write this chain of equivalences
in the next proposition.

Let X be a Banach space with a bagis}. Given a block-subspade;,] of X, where
{x,} is supposed normalised, we let as beforesfar N, E,, = [e;, min(supp(x,)) <i <
max(supp(x,))]. We shall callcanonical projection ontdx,],cn @ projectionP de-
fined onX by Px =}, .y X (Eyx)x,, Where for alln € N, x € E; is a norm 1
functional such thak(x,) = 1.

Finally, following [3], we say that a finite-dimensional decomposit®n= )", Ex
of a Banach space &bsoluteif there exists a consta@ such that for every,,, y, € E,
such that for alln € N, ||y, || <|lx,|l, it follows that || Y, .y Yl <SCI D, eny Xl

Proposition 19. Let X be a Banach space with an unconditional bdgj$ which does
not contain a copy otg. The following are equivalent

(i) every block-subspace of X is complemented
(i) every block-subspackr,],cn Of X is complemented by any canonical projection
onto [x,]ueN,
(iii) {e;} has the shift propertyi.e. for any normalised block-sequen¢e,} of {e;},
{xn}lnen is equivalent tofx,1}uen,
(iv) every blockingE, = [e;,r,<i < ryy1] of {e;} (where (r,) is an increasing
sequence of integerss absolute

Proof. (iii) = (iv) is immediate and was already observed by Casazza and Kalton in
[3]. From (iv) we get that any choices of functionals in the definition of a canonical
projection will give a bounded projection, so (ii) follows, aqid) = (i) is trivial.
Assume (i). Let{x,}.eN, {¥nlnen be normalised block-sequences such that for all
neN, x, <y, <x,+1. We prove that{x,} and{y,} are equivalent and (iii) follows.
Following the method of Lindenstrauss and Tzaftjti9] Theorem 2.a.10, we apply
their Lemma 2.a.11: iy, u,x» converges, then for any sequengg converging
t0 0, > ,cny Anlt,yn CONverges. Iy u,y, does not converge, we easily construct
a block-sequence ofy,} which is equivalent to the canonical basis @f (see the
proof of Theorem 2.a.10), sap embeds inX, a contradiction. By the same proof, if

Y neN Mpyn converges, then so dogs, .y i,xn. O
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Corollary 20. Let X be a Banach space with an unconditional b&gig, such that
every block-subspace of X is complemented. Then X is asymptotigalty?,, 1< p <
+00.

Proof. First assumeg does not embed iX. We apply Propositiorl9, and we note that
uniformity of the constants of equivalence is easily obtained in (iii). Krivine's theorem
implies that£, (or co) is asymptotic inX ([21, Remark 1.6.3] that is, for alle > 0
andn € N, Player Il has a winning strategy in the asymptotic game of lemgtbr
producing a sequence+le equivalent to the basis df, (or [5,). This, in combination
with (iii), implies very directly thatX is asymptoticallyco or ¢, (this was already
essentially observed by Kalton ji5]).

If co embeds inX, let {u,} be a normalised block-basic sequenceXirwhich is
equivalent to the canonical basis @f. We again apply Lemma 2.a.11 frofh9]: we
deduce easily that ifu,, } is any subsequence i, }, and{v;} a normalised block-basic
sequence irX, such that for alli e N, u,, <v; < u,,,, then{v;} is equivalent to the
unit vector basis otg. Furthermore, by an easy induction, there is uniformity in the
equivalence of these sequendes with the basis okg. From this, it is straightforward
to see thatX is asymptoticallycg. O

We now pass to a proposition of independent interest concerning asymptotigally
or ¢, spaces.

Proposition 21. Let {¢;} be a basic sequence asymptoticallyor ¢, such that every
subsequence dfe;} has a block-sequence equivalent {g} (in particular, if {e;} is
subsymmetric or equivalence-block-minijndathen {¢;} is equivalent to the unit basis
of cg or £,.

Proof. Let p be such that{e;};cny is asymptotically?, (the case ofcg is similar).
Assume every subsequence {ef} has a block-sequence equivalent {t§}. Then as
shown in Lemm&2 we may (by passing to a subsequence) assume that for €onie
every subsequence ¢é;} has a block-sequendg-equivalent to{e;}.

We fix n € N and build a winning strategy for Player Il in the asymptotic game
of infinite length for producing a block-sequenc€-2quivalent to(e;). This strat-
egy may then be opposed to a winning strategy for Player | for producing length
n block-sequences’-equivalent to the unit basis od‘;’,. We get thates, ..., e, Is
2CC’-equivalent tof’, for all n which will conclude the proof.

Let A = {(n) € NIV : 3(xx) € bby(X) Vk nax < xx < nax1r A () ~€ (ex)}. We
claim that any sequenae;) € [NV contains a further subsequence.n for we can
suppose thatly =lmx, mory1[# @ for all k and therefore takdy;,) ~C (e;) with
supp(y;) C |JI,. Then in betweerny; and y;;1 there areny; 1 := mor41 andng; 2 :=
mo42, Whereby (ng) € A. So by the infinite Ramsey theorem there is some infinite
A c N such that[A]N c A and there is aC-measurablef : [AIN — bby(X)
choosing witnesseéx;) for being in A.
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Let A = (6,), 9, > 0 be such that if two normalised block-sequences are less
than A apart, then they are 2-equivalent. We choose inductively< m; < n;;1
and setsB; ¢ N such thatn;, m; € B; C B;_1/m;—1 and such that for allC, D €
[tnj,mjr, o omjeomy}, Bja] (< ... < ji) we havel| f(C)(k) — f(D)()I| < k.
This can be done as the unit sphere[@f AL Emy, _1] is compact.

Now in the asymptotic game of |nf|n|te Iength we can demand that | plays numbers
from the sequencé:;) and then Il replies ta;,, ..., n; played by | with some:;, <
x <mj, such that for allC € [{nj,,mj,,...,nj,m;}, Bj+1] we have| f(C)(k) — x|
< 51(-

Then in the end of the infinite game, supposing that | has playgg) and I
has followed the above strategy responding (by), we haven; < x; < mj,. Let
k) = fnj, mj N, then|xg — yell < S and (xe) ~2 (y) ~C (e;), so Il wins. O

B. Sari drew our attention to the fact that the d@él of Tsirelson’s space is a good
illustration of Proposition21: it is asymptoticallycg, and is minimal[4], but by the
Proposition cannot be equivalence block-minimal.

Lindenstrauss and Tzafriri have proved that if a Banach space has a symmetric basis
and all its block-subspaces are complemented, then this basis must be equivalent to
the canonical basis ofg or £, ([19, Theorem 2.a.19] An immediate combination
of Corollary 20 and Proposition21 improves their result: if a Banach space has an
unconditional basige;} such that all block-subspaces are complemented, and such that
every subsequence has a block-sequence equivalefat Jtothen {¢;} is equivalent to
the canonical basis afp or ¢,,.

5. Subspaces with a finite-dimensional decomposition

We now want to generalise the previous results, considering more general types of
subspaces. So we fiX to be a Banach space with a bagis} and we denote by
the constant of the basis.

We first notice that we could consider subspaces generated by disjointly supported
(but not necessarily successive) vectors, and get similar results: we find a residual
class characterised by a “passing through” property. It follows that in a non-ergodic
Banach space with an unconditional basis, subspaces generated by disjointly supported
vectors embed complementably in a given element of the residual class. We recall that
if a Banach space has an unconditional basis such that any subspace generated by
disjointly supported vectors is complemented, then the spacgas £, ([19, Theorem
2.a.10); however there does exist a spakg cited above[23], not isomorphic tocg
or £,, and such that every subspace generated by disjointly supported vectors embeds
complementably inXy.

Then we want to represent any subspaceXpfpossibly up to small perturbations,
on the basis{e,}, and get similar results as for the case of block-subspaces. We
shall call triangular sequences of blockhe normalised sequences of (possibly in-
finitely supported) vectors in the produ&t\'s, satisfying for allk, min(supp(xx)) <
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min(supp(xx+1)) equipped with the product of the norm topology ¥nThe set of tri-
angular sequences of blocks will be denotedtbBy Gaussian elimination method, it is
clear that any subspace ®fmay be seen as the closed linear space generated by some
sequence oft. Once again it is possible to discretise the problem by considering the set
tty of sequences of vectors @ such that for alk, min(supp(xx)) < min(supp(xg+1)),

and by showing that for any € ¢+ and anye > 0, there exists in tz; such that{x;]

is 1+ g-isomorphic to[x].

Our usual method does generalise to this setting. However, the characterisation of
a residual set turns out to be only expressed in terms of particular subspattes of
namely those with a finite-dimensional decomposition on the basis (or FDD). So it
gives more information, and it is actually easier, to work directly with spaces with a
finite-dimensional decomposition on the basis.

Note that a space with a FDD on the basis must have the bounded approxima-
tion property. So our methods only allow us to study subspaces with that prop-
erty. In fact, it is easy to check that the set of sequences,inspanning a space
with an FDD on the basis is residual m;, and so, the set of spaces without the
(bounded) approximation property is meagre in our topology, which explains why with
our methods, we do not seem to be able to “see” spaces without the approximation
property.

We say that two finite-dimensional spadesind G are successiveand write F < G,
if for any x € F, y € G, x andy are successive. A space withfiaite-dimensional
decomposition on the basis a space of the forn®;cn Ex, With successive, finite-
dimensional space&y; such a spaceasses through B E; = E for somek. We
let fdd be the set of infinite sequences of successive finite-dimensional subspaces,
and fdd,; be the set of infinite sequences of successive finite-dimensional subspaces
which are spanned by a collection of vectors with rational coordinates—equipped
with the product of the discrete topology on the set of finite collections of rational
vectors.

Theorem 22. Let X be a Banach space with a basis. Then either X is ergodithere
existsK > 1, and a sequence of successive finite-dimensional spgcesich all spaces
with finite-dimensional decomposition on the basis passing through infinitely masy
are mutually K-isomorphic

Proof. Most of the previous proof may be taken word by word; instead of working
with block-subspaces, i.e. subspaces with 1-dimensional decomposition on the basis,
we work with subspaces with arbitrary FDD on the basis; we just have to define the
A-expansion of a subspace with a FDD on the basis using an appropriate distance
between finite-dimensional subspaces. We then end up with characterisation in terms of
“passing through” some finite sequences of finite-dimensional spges € N}, and

this may be simplified to get Theoref®, noting that we may choose these sequences
to be of length 1 (replace eadty = (E},...,E") by E}®...® E"). O

If the basis is unconditional then we can use the many projections to get additional
results concerning the residual class.
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Proposition 23. Let X have an unconditional basis and be non-ergodic. Let A belong to
the residual class irfdd,;. Then every subspace with a finite-dimensional decomposition
on the basis embeds complementably in A. Either A fails to have l.u.s.t. or X4s C
saturated

Proof. Let (F,) be given by Theoren22 and letY = > @B, be an arbitrary space
with a finite-dimensional decomposition on the basis. Passing to a subsequei#;g, of
we may assume that there is a partition fin successive intervalg;,i € N, such
that for alli,

’
Fi1< Bi = @neJ; Bn < Fit1.

We have that

1= (Xon), = (Eorma), o (Ter),,

and so it follows that

roy=(Yorma) o (Xos), o (Lorm), o (X orm)
® ZEB 2=l keN ® Z@ %) reN ® Z@ 2 keN ® Z@ %=1/ en
~APAxA.

For the last part of the Proposition, X is C-¢2 saturated for ncC, then it follows
from the Theorem of Komorowski and Tomczak-Jaegerm4h8,25] for a survey and
an improved result) thaX has a finitely supported subspatg without n-l.u.s.t. for
eachn: indeed Komorowski—Tomczak-Jaegermann’s result takes care of the finite cotype
case, and ifX has not finite cotype then it contairf§ 's uniformly, and so a finitely
supported if you wish, finite-dimensional space withadtu.s.t. (see the remark after
Theorem 2.3. if25], and e.g[7]). We may by Theoren22 extendL, to a space with
a finite-dimensional decomposition on the basis whiclKigssomorphic toA. Then if
c is the unconditional constant of the basfs,must fail n/cK-l.u.s.t. and as was
arbitrary, A fails l.u.s.t. O

Note that it is a consequence of the solution of Gowers and Komorowski-Tomczak
to the Homogeneous Banach Space Problem, that the following strengthening holds: a
Banach space isomorphic to all its subspaces with a FDD must be isomorphic to
This can also be seen as a consequence of the previous Proposition (combined with
Gowers’s dichotomy theorem). Note also that by results of Kadec and PelcZ{Sski
Theorem 2.d.8]there exists a Banach space which is complementably universal for
the set of Banach spaces with the Bounded Approximation Property; but as mentioned
before, there is no complementably universal space for the class of separable Banach
spaces. The Bounded Approximation Property seems to draw the fine line for positive
results with our methods.
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We conjecture that, is the only non-ergodic Banach space. However, we are not
even able to prove thatp and ¢,, p # 2 are ergodic—although it is known that
those spaces have at leasgt non-isomorphic subspacé$9]. To answer this question,
evidently one would have to consider other types of subspaces than those generated
by successive blocks, or disjointly supported blocks; one could consider spaces of the
form ( ,J{;"i ®B,),, With carefully chosen finite-dimension&}, so that this direct sum
is isomorphic to a subspace éf,, and play with the possible choices f0B,) (see
[19, Proposition 2.d.7]

On the other hand, it is more relevant to restrict the question of ergodicity to block-
subspaces, if one is looking for a significant dichotomy between “regular” and “wild”
spaces with a basis: in this setting, and £, are, as they should be, on the regular
(i.e. non-ergodic) side of the dichotomy.

Remark. After this article was submitted, the first author and E.M. Galfgjoproved
that the spacegp and£,, 1<p < 2, are ergodic, reinforcing the conjecture thatis
the only non-ergodic Banach space. The caséofp > 2 is still open.
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