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Abstract

We show that any Banach space contains a continuum of non-isomorphic subspaces or a
minimal subspace. We define an ergodic Banach spaceX as a space such thatE0 Borel reduces
to isomorphism on the set of subspaces ofX, and show that every Banach space is either ergodic
or contains a subspace with an unconditional basis which is complementably universal for the
family of its block-subspaces. We also use our methods to get uniformity results. We show that
an unconditional basis of a Banach space, of which every block-subspace is complemented,
must be asymptoticallyc0 or �p, and we deduce some new characterisations of the classical
spacesc0 and �p.
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1. Introduction

The following question was asked the authors by G. Godefroy: how many non-
isomorphic subspaces must a given Banach space contain? By the results of Gowers
[9,10] and Komorowski and Tomczak-Jaegermann[18] solving the homogeneous space
problem, ifX is not isomorphic to�2 then it must contain at least two non-isomorphic
subspaces. Except�2, no examples of spaces with only finitely, or even countably
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many, isomorphism classes of subspaces are known, so we may ask what the possible
number of non-isomorphic subspaces of a given Banach space is, supposing it being
non-isomorphic to�2. This question may also be asked in the setting of the classification
of analytic equivalence relations up to Borel reducibility. IfX is not isomorphic to�2,
when can we classify the relation of isomorphism on subspaces ofX?
Stated as above not much is known about our problem. Certainly, there is a number

of particular results scattered throughout the literature implying that particular spaces
have a great number of subspaces. For example, the spacesc0 and �p, p �= 2 haveℵ1
non-isomorphic subspaces[19]. But there seems to have been no results on the problem
in this generality. However, from Gowers’s dichotomy theorem[10], one easily sees
that a space without a minimal subspace must at least have uncountably many non-
isomorphic subspaces. Moreover, assuming the consistency of large cardinals, Bagaria
and Lopez-Abad[2] showed it to be consistent that any space without a minimal
subspace must contain 2ℵ0 many non-isomorphic subspaces. But firstly, this should be
a fact of ZFC, and secondly, one would like to have a more constructive result saying
that there is an uncountable Borel set of non-isomorphic subspaces.
A topological spaceX is said to be Polish if it is separable and its topology can be

generated by a complete metric. Its Borel subsets are those belonging to the smallest
�-algebra containing the open sets. A subset is analytic if it is the continuous direct
image of a Polish space or equivalently of a Borel set in a Polish space. All uncountable
Polish spaces turn out to be Borel isomorphic, i.e., isomorphic by a function that is
Borel bimeasurable.
A C-measurable set is one belonging to the smallest�-algebra containing the open

sets and closed under the Souslin operation, in particular all analytic sets areC-
measurable. AllC-measurable sets are universally measurable, i.e., measurable with
respect to any�-finite Borel measure on the space. Furthermore, they have the Baire
property, i.e., can be written on the formA = U�M, whereU is open andM is
meagre and are completely Ramsey. In fact they satisfy almost any regularity property
satisfied by Borel sets (see[17, 29.D] for more onC-measurable sets) Moreover, as
C-measurable functions are closed under composition, these form a useful extension of
the class of Borel functions.
Most results contained in this article are centered around the notion of Borel re-

ducibility. This notion turns out to be extremely useful as a mean of measuring com-
plexity in analysis. It also gives another refined view of cardinality, in that it provides
us with a notion of the number of classes of an equivalence relation before everything
gets muddled up by the well-orderings provided by the axiom of choice.

Definition 1. Suppose thatE andF are analytic equivalence relations on Polish spaces
X andY, respectively. Then we writeE�BF iff there is a Borel functionf : X −→ Y ,
such thatxEy ←→ f (x)Ff (y). Moreover, we denote byE ∼B F the fact that the
relations are Borel bireducible, i.e.,E�BF andF�BE.

ThenE�BF means that there is an injection fromX/E into Y/F admitting a Borel
lifting. Intuitively, this says that the objects inX are simpler to classify with respect
to E than the objects inY with respect toF. Or again thatY objects moduloF provide
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complete invariants forX objects with respect toE-equivalence, and furthermore, these
invariants can be calculated in a Borel manner from the initial objects.
We call an equivalence relationE on a Polish spaceX smoothif it Borel reduces to

the identity relation onR, or in fact to the identity relation on any uncountable Polish
space. This is easily seen to be equivalent to admitting a countable separating family
(An) of Borel sets, i.e., such that for anyx, y ∈ X we havexEy ⇐⇒ ∀n (x ∈ An ←
→ y ∈ An).
A Borel probability measure� on X is called E-ergodic if for any �-measurable
A ⊂ X that is E-invariant, i.e.,x ∈ A ∧ xEy −→ y ∈ A, either �(A) = 0 or
�(A) = 1. We call� E-non-atomicif every equivalence class has measure 0.
Suppose� was E-ergodic and(An) a separating family forE. Then by ergod-

icity and the fact that theAn are invariant eitherAn or Acn has measure 1, so⋂ {
An |�(An) = 1} ∩ ⋂ {

Acn |�(An) = 0} is anE class of full measure and� is atomic.
So a smooth equivalence relation cannot carry an ergodic, non-atomic probability mea-
sure.
The minimal non-smooth Borel equivalence relation is the relation of eventual agree-

ment of infinite binary sequences,E0. This is defined on 2N = {0,1}N by

xE0y ←→ ∃n ∀m�n xm = ym

To see thatE0 is non-smooth just notice that the usual coin-flipping measure on 2N is
E0 non-atomic and ergodic by the zero-one law. Furthermore, any perfect set of almost
disjoint infinite subsets ofN shows thatE0 has a perfect set of classes.
If E is an equivalence relation on a setX andA ⊂ X, then we callA a transversal

for E on X if it intersects everyE-equivalence class in exactly one point. We notice that
if E is an equivalence relation andA a transversal forE, both of them analytic, then
E is smooth. An analytic equivalence relation is said to have aperfect set of classes
if there is an uncountable Borel set consisting of pairwise inequivalent elements. This
is a very rigid notion that does not depend on the cardinality of the continuum and
is stronger that just demanding that it should have uncountable many classes. In fact
there are analytic equivalence relations that have an uncountable set of classes, but in
models violating the continuum hypothesis do not have 2ℵ0 many classes.
Our general reference for descriptive set theory and Ramsey theory is[17] of which

we adopt the notation wholesale. A friendly introduction to modern combinatorial set
theory can be found in[14].
It is natural to try to distinguish some class of Banach spaces by a condition on

the number of non-isomorphic subspaces. A step up from homogeneity would be when
the subspaces would at least admit some classification in terms of real numbers, i.e.,
something resembling type or entropy. This would say that in some sense the space
could not be too wild and one would expect such a space to have more regularity
properties than those of a more generic space, in particular than those of a hereditarily
indecomposable space.
A number of results in the 1970s and 1990s showed that there was essentially no

hope for a general isomorphic classification of Banach spaces, nor even for finding
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nice subspaces of a certain type. The first of these result were Tsirelson’s construction
of a Banach space not containing any copies ofc0 or �p (see[4]) and the proof by
Enflo that not every separable Banach space has a basis (see[19]). The second amount
of evidence came with the construction of a space without any unconditional basic
sequence by Gowers and Maurey[11]. There were, however two more encouraging
results, namely the solution to the homogeneous space problem and Gowers’s dichotomy
[10] saying that either a Banach space contains a hereditarily indecomposable subspace
or a subspace with an unconditional basis, that is, either a very rigid space (with few
isomorphisms and projections) or a somewhat nice space (with many isomorphisms and
projections).
We isolate another class of separable Banach spaces, namely those on which the

isomorphism relation between subspaces does not reduceE0, the non-ergodic ones,
in particular this class includes those admitting classification by real numbers, and
show that if a space belongs to this class, then it must satisfy some useful regularity
properties.
Let BX be the space of closed linear subspaces of a Banach spaceX, equipped with

its Effros–Borel structure (see[17] or [6]). We note that isomorphism is analytic on
B2
X. Let us define a Banach spaceX to be ergodic if the relationE0 Borel reduces

to isomorphism on subspaces ofX. In [6,24], the authors studied spaces generated by
subsequences of a spaceX with a basis: forX a Banach space with an unconditional
basis, eitherX is ergodic orX is isomorphic to its hyperplanes, to its square, and more
generally to any direct sumX⊕Y whereY is generated by a subsequence of the basis,
and satisfies other regularity properties.
Note that it is easily checked that Gowers’s construction of a space with a basis,

such that no disjointly supported subspaces are isomorphic ([8,12]), provides an exam-
ple of a space for which the complexity of isomorphism on subspaces generated by
subsequences is exactlyE0.
In the main part of this article, we shall consider a Banach space with a basis, and

restrict our attention to subspaces generated by block-bases. As long as we consider only
block-subspaces, there are more examples of spaces with low complexity, for example
�p, 1�p < +∞ or c0 has only one class of isomorphism for block-subspaces. After
noting a few facts about the number of non-isomorphic subspaces of a Banach space,
that come as consequences of Gowers’s dichotomy theorem (Lemma2 to Theorem
4), we prove that block-subspaces in a non-ergodic Banach space satisfy regularity
properties (Theorems9, 12, Corollary 10). We then show how our methods yield
uniformity results (Propositions16, 17). We find new characterisations of the classical
spacesc0 and �p (Corollary 20, Proposition21). Finally, we show how to generalise
our results to subspaces with a finite-dimensional decomposition on the basis (Theorem
22, Proposition23).

2. A dichotomy for minimality of Banach spaces

Let us recall a definition of H. Rosenthal: we say that a spaceX is minimal if
X embeds in any of its subspaces. Minimality is hereditary. In the context of block-
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subspaces, there are two natural definitions: we define a spaceX with a basis to be
block-minimalif every block-subspace ofX has a further block-subspace isomorphic to
X; it is equivalence block-minimalif every block-subspace ofX has a further block-
subspace equivalent toX. The second property is hereditary, but the first one is not, so
we also define ahereditarily block-minimalspace as a spaceX with a basis such that
any of its block-subspaces is block-minimal.
Let X be a Banach space with a basis{ei}. If y = (yn)n∈N is a block-sequence

of X, we denote byY = [yn]n∈N = [y] the closed linear span ofy. For two finite
or infinite block-basesz and y of {ei}, write z�y if z is a blocking ofy (and write
Z�Y for the corresponding subspaces). Ify = (yi)i∈N, z = (zi)i∈N andN ∈ N, write
z�∗y iff there is anN such that(zi)i�N�y (and writeZ�∗Y for the corresponding
subspaces). Ifs = (s1, . . . , sn) and t = (t1, . . . , tk) are two finite block-bases, i.e.,
supp(si) < supp(si+1) and supp(ti) < supp(ti+1), then we writes4t iff s is an initial
segment oft, i.e.,n�k andsi = ti for i�n. In that case we writet\s for (tn+1, . . . , tk).
If s is a finite block-basis andy is a finite or infinite block-basis supported afters,
denote bys y the concatenation ofs and y.
We denote bybb(X) the set of normalised block-bases onX. This set can be equipped

with the product topology of the norm topology onX, in which case it becomes a Polish
space that we denote bybbN(X).
Sometimes we want to work with blocks with rational coordinates, though we no

longer can demand these to be normalised (by rational, we shall always mean an element
of Q+ iQ in the case of a complex Banach space). We identify the set of such blocks
with the setQ<N∗ of finite, not identically zero, sequences of rational numbers. We shall
denote by(Q<N∗ )N the set of (not necessarily successive) infinite sequences of rational
blocks. Again when needed we will giveQ<N∗ the discrete topology and(Q<N∗ )N

the product topology. The set of rational block-bases may be seen as a subset of
(Q<N∗ )N and is denoted bybbQ. The set of finite rational block-bases is then denoted
by f bbQ.
Finally for the topology that interests us the most: letQ be the set of normalised

blocks of the basis that are a multiple of some block with rational coordinates; we
denote bybbd(X) the set of block-bases of vectors inQ, equipped with the product
topology of the discrete topology onQ. As Q is countable, this topology is Polish and
epsilon matters may be forgotten until the applications; when we deal with isomorphism
classes, they are not relevant since a small enough perturbation preserves the class.
Note also that the canonical embedding ofbbd(X) into BX is Borel, and this allows us
to forget about the Effros–Borel structure when checking ergodicity. Unless specified
otherwise, from now on we work with this topology.
We first prove a Lemma about uniformity for these properties. ForC�1, we say

that a spaceX with a basis isC block-minimal(resp., C equivalence block-minimal)
if any block-subspace ofX has a further block-subspace which isC-isomorphic (resp.,
C-equivalent) toX.

Lemma 2. (i) Let X be a Banach space with a basis and assume X is(equivalence)
block-minimal. Then there existsC�1 such that X is C(equivalence) block-minimal.
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(ii) Suppose{en} is a basis in a Banach space, such that any subsequence of{en}
has a block-sequence equivalent to{en}. Then there is a subsequence{fn} of {en} and
a constantC�1, such that any subsequence of{fn} has a block-sequence C-equivalent
to {en}.

Proof. We will only prove (i) as the proof of (ii) is similar. Let forn ∈ N c(n) denote
a constant such that anyn-codimensional subspaces of any Banach space arec(n)-
isomorphic[6, Lemma 3]. Let X be block-minimal. We want to construct by induction
a decreasing sequence of block-subspacesXn, n�1 and successive block-vectorsxn
such that the first vectors ofXn are x1, . . . , xn−1 and such that no block-subspace
of Xn is n isomorphic toX. Assume we may carry out the induction: then for all
n ∈ N, no block-subspace of[xn]n∈N is n-isomorphic toX, and this contradicts the
block-minimality of X. So the induction must stop at somen, meaning that every
block-subspace ofXn whose first vectors arex1, . . . , xn has a further block-subspace
n isomorphic toX. Then by definition ofc(n), every block-subspace ofXn has a
further block-subspacenc(n) isomorphic toX. By block-minimality we may assume
that Xn is K-isomorphic toX for someK. Take now any block-subspaceY of X, it is
K-isomorphic to a subspace ofXn; by standard perturbation arguments, we may find
a block-subspace ofY which is 2K-equivalent to a block-subspace ofXn, and by the
above, an even further block-subspace 2K equivalent to anc(n)-isomorphic copy of
X; so finallyY has a block-subspace 2Knc(n) isomorphic toX and so,X is 2Knc(n)
block-minimal.
We may use the same proof for equivalence block-minimality, using instead ofc(n)

a constantd(n) = (1 + (n + 1)c)2, such that any two normalised block-sequences
differing by only then first vectors ared(n)-equivalent (c stands for the constant of the
basis). �
Let us recall a version of the Gowers’s gameGA,Y shown to be equivalent to

Gowers’s original game by Bagaria and Lopez-Abad[2]: Player I plays in thekth
move a normalised block-vectoryk of Y such thatyk−1 < yk and Player II responds by
either doing nothing or playing a normalised block-vectorx ∈ [yi+1, . . . , yk] if i was
the last move where she played a vector. Player II wins the game if in the end she
has produced an infinite sequence(xk)k∈N which is a block-sequence inA. If Player II
has a winning strategy forGA,Y we say that she has a winning strategy for Gowers’s
game inY for producing block-sequences inA. Gowers proved that ifA is analytic in
bbN(X), such that any normalised block-sequence contains a further normalised block-
sequence inA, then II has a winning strategy in someY to produce a block-sequence
arbitrarily close to a block-sequence inA.
As an application of Gowers’s theorem one can mention that ifX is (equivalence)

block-minimal, then there is a constantC, such that for every block-subspaceY�X,
Player II has a winning strategy for Gowers’s game in someZ�Y for producing
block-sequences spanning a spaceC-isomorphic toX (respectively,C-equivalent to the
basis ofX).
We recall that a space with a basis is said to bequasi-minimalif any two block-

subspaces have further isomorphic block-subspaces. On the contrary, two spaces are said
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to be totally incomparableif no subspace of the first one is isomorphic to a subspace
of the second. Using his dichotomy theorem, Gowers[10] proved the following result
about Banach spaces.

Theorem 3 (Gowers’s “trichotomy”). Let X be a Banach space. Then X either contains

• a hereditarily indecomposable subspace,
• a subspace with an unconditional basis such that no disjointly supported block-
subspaces are isomorphic,

• a subspace with an unconditional basis which is quasi-minimal.

Using his game we prove:

Theorem 4. Let X be a separable Banach space. Then

(i) X is ergodic or contains a quasi-minimal subspace with an unconditional basis.
(ii) X contains a perfect set of mutually totally incomparable subspaces or a quasi-

minimal subspace.
(iii) X contains a perfect set of non-isomorphic subspaces or a block-minimal subspace

with an unconditional basis.

Proof. First notice that because of the hereditary nature of the properties, each of
the subspaces above may be chosen to be spanned by block-bases of a given basis.
Rosendal proved that any hereditarily indecomposable Banach spaceX is ergodic, and
this can be proved using subspaces generated by subsequences of a basic sequence inX
[24]. Following Bossard (who studied the particular case of a space defined by Gowers
[1]), we may prove that a spaceX such that no disjointly supported block-subspaces are
isomorphic is ergodic (map� ∈ 2N to [e2n+�(n)]n∈N, where (en) is the unconditional
basis ofX). This takes care of (i).
A space such that no disjointly supported block-subspaces are isomorphic contains

2N totally incomparable block-subspaces (take subspaces generated by subsequences of
the basis corresponding to a perfect set of almost disjoint infinite subsets ofN). Also
any hereditarily indecomposable space is quasi-minimal, so (ii) follows.
Finally, for the proof of (iii) we will first show that the statement we want to prove

is �1
2. This will be done by showing that given a block-minimal spaceX, there is a

further block-subspaceY such that forZ�Y we can find continuously inZ anX′�Z
and an isomorphism ofX′ with X. The proof uses ideas of coding with asymptotic
sets which are at the basis of many recent constructions such as the space of Gowers
and Maurey[11], and more specifically some ideas of Lopez-Abad[20].
By Shoenfield’s absoluteness theorem (see[13, Theorem 25.20]or [16, Theorem

13.15]) it will then be sufficient to show the statement under Martin’s axiom and the
negation of the continuum hypothesis. This was almost done by Bagaria and Lopez-
Abad who showed it to be consistent relative to the existence of a weakly compact
cardinal, see[2], but we will see that it can be done in a simple manner directly from
MA+¬CH .
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Note first that having a perfect set of non-isomorphic subspaces or containing a copy
of c0 are both�1

2, and that ifX contains a copy ofc0 then it has a block-sequence
equivalent to the unit vector basis ofc0, in which case the theorem holds. If on the
contrary it does not containc0 then by passing to a subspace, by the solution to the
distortion problem by Odell and Schlumprecht, we may assume that it contains two
closed, positively separated, asymptotic subsets of the unit sphereA0 and A1 [22].
Suppose thatY = [y]�X is block-minimal. Fix a bijection� betweenN and Q<N∗ ,
the set of finite sequences of rational numbers not identically zero. Then for any� =
0n010n110n21 . . . in 2N there is associated a unique sequence(�(n0),�(n1),�(n2), . . .)
in (Q<N∗ )N. Furthermore, any element of(Q<N∗ )N gives a unique sequence of block-
vectors ofY simply by taking the corresponding finite linear combinations.
Let D := {(zn) ∈ bbN(X) |(zn)�y ∧ ∀n zn ∈ A0 ∪ A1 ∧ ∃∞n zn ∈ A1} which is

Borel in bbN(X). Then if (zn) ∈ D it codes a unique infinite sequence of block-
vectors (not necessarily consecutive) ofY, by first letting (zn)  → � ∈ 2N where
�(n) = 1 ←→ zn ∈ A1 and then composing with the other coding. Notice that this
coding is continuous fromD to (Q<N∗ )N, whenQ<N∗ is taken discrete.
Let E be the set of(zn)�y such that(z2n+1) ∈ D and the function sending(z2n)

to the sequence of block-vectors ofY coded by(z2n+1) is an isomorphism of[z2n]n∈N

with Y.
E is clearly Borel inbbN(X) and we claim that any block-sequence contains a further

block-sequence inE. For suppose thatz�y is given. Then we first construct a further
block-sequence(zn) such thatz3n+1 ∈ A0 and z3n+2 ∈ A1. By block-minimality of
Y there are a block-sequence(xn) of (z3n) isomorphic toY and a sequence� ∈ 2N

coding a sequence of block-vectors(yn) of Y such thatxn  → yn is an isomorphism of
[xn] with Y (a standard perturbation argument shows that we can always take ouryn
to be a finite rational combination onY).
Now in betweenxn and xn+1 there arez3m+1 and z3m+2, so we can code� by

a corresponding subsequence(z′n) of these such thatxn < z′n < xn+1. The combined
sequence is then inE. So by Gowers’s theorem there is for any� > 0 a winning strategy
� for II for producing blocks inE� in someY ′�Y . By choosing� small enough and
modifying � a bit we can suppose that the vectors of odd index played by II are in
A0∪A1. So if � is chosen small enough, a perturbation argument shows that� is in fact
a strategy for playing blocks inE. By changing the strategy again we can suppose that
II responds to block-bases inbbd(Y ′) by block-bases inbbd(Y ′). So finally we see that
X has a block-minimal subspace iff there areY ′ = [y′] and Y = [y] with Y ′�Y�X
and a continuous function(f1, f2) = f : bbd(Y ′) −→ bbd(Y

′)× (Q<N∗ )N such that for
all z�y′, f2(z) codes a sequence(wn) of blocks ofY such that[wn]n∈N = Y , and
f1(z) = (vn)�z with vn  → wn being an isomorphism between[vn]n∈N andY.
The statement is therefore�1

2, and to finish the proof we now need the following
lemma:

Lemma 5 (MA�−centered ). Let A ⊂ bbQ be linearly ordered under�∗ of cardinality
strictly less than the continuum. Then there is any∞ ∈ bbQ such thatx0�∗y for all
y ∈ A.
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Proof. For s ∈ f bbQ and y ∈ bbQ, denote by(s, y) the set of block-bases inbbQ

of the form s z for z�y. Let P = {
(s, y)

∣∣s ∈ f bbQ ∧ y ∈ A}
, ordered by the

inclusion. As a preliminary remark, note that if(t, z) ⊂ (s, y), then s4t , t \ s�y, and
z�∗y. Conversely, ifs ∈ f bbQ and z�∗y, then extensionst of s, with t \ s�z far
enough, are such that(t, z) ⊂ (s, y).
Put Dn = {(s, y) ∈ P ||s|�n} andDy = {(t, z) ∈ P |z�∗y} . ThenDn andDy , for

y ∈ A, are dense inP, i.e., any element inP has a minorant inDn (resp.,Dy). To see
that Dn is dense, just take for any given(s, y) ∈ P some extensions′ of s such that
s′ \ s�y and |s′|�n, then (s′, y) ∈ Dn and (s′, y) ⊂ (s, y). On the other hand, to see
thatDy is dense fory ∈ A, suppose(s, z) ∈ P is given. Then asA is linearly ordered
by �∗, let w be the minimum ofz and y. By the preliminary remark,(s′, w) ⊂ (s, z)
for a long enough extensions′ of s such thats′ \ s�w, and asw�∗y, (s′, w) is
in Dy .
Let Ps = {(s, y) |y ∈ A} , which is centered inP, i.e., every finite subset ofPs has

a common minorant inP. This follows from the same argument as above, using the
preliminary remark. So sinces is supposed to be rational, we see thatP is �-centered,
i.e., a countable union of centered subsets. Notice that as|A| < 2ℵ0, there are less than
continuum many dense setsDn andDy . So byMA�−centered there is a filterG on P
intersecting each of these sets.
Suppose that(s, y) and (t, z) ∈ G then asG is a filter, they have a common

minorant (v,w) ∈ G, but thens4v and t4v, so eithers4t or t4s. Thereforey∞ :=⋃ {
s ∈ f bbQ |∃y (s, y) ∈ G} is a block-basis. Furthermore asG intersects all ofDn

for n ∈ N we see thaty∞ is an infinite block-basis.
We now prove thaty∞�∗y for all y ∈ A. SinceG intersectsDy , without loss of

generality we may assume that(s, y) ∈ G for somes. Then y∞ \ s�y. For if t4y∞
and (t, z) ∈ G, take (v,w) ∈ G such that(v,w) ⊂ (t, z) and (v, z) ⊂ (s, y), then
s, t4v4y∞ and t \ s4v \ s�y, and therefore ast was arbitraryy∞ \ s�y.
Suppose now thatX does not have a perfect set of non-isomorphic subspaces. Then

by Burgess’s theorem (see[17, (35.21)]), it has at mostℵ1 many isomorphism classes
of subspaces, and in particular as we are supposing the continuum hypothesis not to
hold, less than continuum many. Let(X�)�<�1 be an enumeration of an element from
each class. Then if none of these are minimal, we can construct inductively a�∗
decreasing sequence(Y�)�<�1 of rational block-subspace such thatX� does not embed
into Y� and using the above Lemma find someY�1 diagonalising the whole sequence.
By taking, e.g., the subsequence consisting of every second term of the basis ofY�1

one can suppose thatY�1 embeds into every term of the sequence(Y�)�<�1 and that
therefore in particularY�1 is isomorphic to noX�, � < �1, which is impossible. This
finishes the proof of the theorem.�

We remark that ifX does not contain a minimal subspace, there is in fact a perfect
set of subspaces such each two of them do not both embed into each other. This is
slightly stronger than saying that they are non-isomorphic.
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3. Residual isomorphism classes of block-subspaces

We recall our result from[6,24] in a slightly modified form.

Theorem 6. Let X be a Banach space with a basis{ei}. ThenE0 Borel reduces to
isomorphism on subspaces spanned by subsequences of the basis, or there exists a
sequence(Fn)n�1 of successive finite subsets ofN such that for any infinite subset N
of N, if N ∩[min(Fn),max(Fn)] = Fn for infinitely many n’s, then the space[ei]i∈N is
isomorphic to X. It follows that if X is non-ergodic with an unconditional basis, then
it is isomorphic to its hyperplanes, to its square, and more generally toX⊕Y for any
subspace Y spanned by a subsequence of the basis.

Indeed, by[6], improved in [24], eitherE0 Borel reduces to isomorphism on sub-
spaces spanned by subsequences of the basis, or the set of infinite subsets ofN spanning
a space isomorphic toX is residual in 2N; the characterisation in terms of finite subsets
of N is then a classical characterisation of residual subsets of 2N (see [17], or the
remark at the end of Lemma 7 in[6]). Both proofs are similar to (and simpler than)
the following proofs of Proposition7 and Proposition8 for block-subspaces. The last
part of the theorem is specific to the case of subspaces spanned by subsequences and
is also proved in[6].
We now wish to extend this result to the set of block-bases, for which it is useful

to use the Polish spacebbd(X). Unless stated otherwise this is the topology referred
to.
As before, the notationx = (xn)n∈N will be used to denote an infinite block-sequence;
x̃ will denote a finite block-sequence, and|x̃| its length as a sequence,supp(x̃) the
union of the supports of the terms ofx̃. For two finite block-sequences̃x and ỹ, write
x̃ < ỹ to mean that they are successive. For a sequence of successive finite block-
sequences(x̃i)i∈I , we denote the concatenation of the block-sequences byx̃ 1 . . .

 x̃n
if the sequence is finite or̃x 1 x̃

 
2 . . . if it is infinite, and we denote bysupp(x̃i , i ∈ I )

the support of the concatenation, by[x̃i]i∈I the closed linear span of the concatenation.
For a finite block-sequencẽx = (x1, . . . , xn), we denote byN(x̃) the set of elements
of bbd(X) whose firstn vectors are(x1, . . . , xn).

Proposition 7. Let X be a Banach space with a Schauder basis. Then either X is
ergodic, or there existsK�1 such that a residual set of block-sequences inbbd(X)
span spaces mutually K-isomorphic.

Proof. The relation of isomorphism is either meagre or non-meagre inbbd(X)2. First
assume that it is meagre. Let(Un)n∈N be a decreasing sequence of dense open subsets
of bbd(X)2 so that∩n∈NUn does not intersect#. We build by induction successive finite
blocks {ã0n, n ∈ N} and {ã1n, n ∈ N} such that for alln, |ã0n| = |ã1n|, and supp(ãin) <
supp(ã

j
n+1) for all (i, j) ∈ 22. For � ∈ 2N, we let x(�) be the concatenated infinite

block-sequencẽa�(0)0
 ã

�(1)
1

 . . .. And for n ∈ N and � ∈ 2n, we let x̃(�) be the

concatenated finite block-sequenceã�(0)0
 . . . ã

�(n−1)
n−1 . We require furthermore of the



V. Ferenczi, C. Rosendal /Advances in Mathematics 195 (2005) 259–282 269

sequences{ã0n} and {ã1n} that for eachn ∈ N, each� and �′ in 2n,

N(x̃(� 0))×N(x̃(�′ 1)) ⊂ Un.

Before explaining the construction, let us check that with these conditions, the map
�  → x(�) realises a Borel reduction ofE0 to (bbd(X),#). Indeed, when�E0�′, the
corresponding sequences differ by at most finitely many vectors, and since we took
care that|ã0n| = |ã1n| for all n, x(�) andx(�′) span isomorphic subspaces. On the other
hand, when� and �′ are notE0-related, without loss of generality there is an infinite
set I such that for alli ∈ I , �(i) = 0 and �′(i) = 1; it follows that for all i ∈ I ,
(x(�), x(�′)) belongs toUi , and so by choice of theU ′

ns, (x(�), x(�
′)) does not belong

to #.
Now let us see at stepn how to construct the sequences: given a pair�0,�

′
0 in (2

n)2,
using the fact thatUn is dense and open, the pairx̃(�0), x̃(�

′
0) may be extended to a

pair of finite successive block-sequences which are of the form(x̃(�0)
 z̃0, x̃(�

′
0)
 z̃′0)

with N(x̃(�0)
 z̃0) × N(x̃(�′

0)
 z̃′0)) ⊂ Un, and we may require thatsupp(x̃(�0)) ∪

supp(x̃(�′
0)) < supp(z̃0) ∪ supp(z̃′0). Given an other pair�1,�

′
1 in (2n)2, the pair

(x̃(�1)
 z̃0, x̃(�

′
1)
 z̃′0) may be extended to a pair of finite successive block-sequences

(x̃(�1)
 z̃1, x̃(�

′
1)
 z̃′1) such thatN(x̃(�1)

 z̃1) × N(x̃(�′
1)
 z̃′1) ⊂ Un. Here with our

notation z̃1 extendsz̃0 and z̃′1 extendsz̃′0. Repeat this(2n)2 times to getz̃4n−1, z̃′4n−1
such that for all� and �′ in 2n,

N(x̃(�) z̃4n−1)×N(x̃(�′) z̃′4n−1) ⊂ Un.

Finally extend(z̃4n−1, z̃′4n−1) to (ã0n, ã1n) such that|ã0n| = |ã1n|; we still have that, for
all � and �′ in 2n, N(x̃(�) ã0n)×N(x̃(�′) ã1n) ⊂ Un, i.e. with our notation,

N(x̃(� 0))×N(x̃(�′ 1)) ⊂ Un.

Now assume the relation of isomorphism is non-meagre inbbd(X)2. As the relation
is analytic it has the Baire property andbbd(X) is Polish, so by Kuratowski–Ulam[17,
Theorem 8.41], there must be some non-meagre section, that is, some isomorphism
classA is non-meagre. Fix a block-sequencex in this class, then clearly, for some
constantC, the setAC of blocks-sequences spanning a spaceC-isomorphic to[x] is
non-meagre. Now being analytic, this set has the Baire property, so is residual in some
basic open setU, of the formN(x̃), for some finite block-sequencẽx.
We now prove thatAk is residual inbbd(X) for k = Cc(2max(supp(x̃))); The

conclusion of the proposition then holds forK = k2. Recall that forn ∈ N, c(n)
denotes a constant such for any Banach spaceX, any n-codimensional subspaces of
X are c(n)-isomorphic [6, Lemma 3]. So let us assumeV = N(ỹ) is some basic
open set inbbd(X) such thatAk is meagre inV. We may assume that|ỹ| > |x̃|
and write ỹ = x̃′ z̃ with x̃ < z̃ and |x̃′|� max(supp(x̃)). Chooseũ and ṽ to be
finite sequences of blocks such thatũ, ṽ > z̃, |ũ| = |x̃′| and |ṽ| = |x̃|, and such that
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max(supp(ũ)) = max(supp(ṽ)). Let U ′ be the basic open setN(x̃ z̃ ũ) and letV ′
be the basic open setN(x̃′ z̃ ṽ). Again AC is residual inU ′ while Ak is meagre
in V ′.
Now let T be the canonical map fromU ′ to V ′. For all u in U ′, T (u) differs

from at most |x̃| + max(supp(x̃)) � 2max(supp(x̃)) vectors from u, so [T (u)] is
c(2max(supp(x̃))) isomorphic to[u]. Since k = Cc(2max(supp(x̃))) it follows that
Ak is residual inV ′ ⊂ V . The contradiction follows by choice ofV. �
By analogy with the definition of atomic measures, we may see Proposition7 as

stating that a non-ergodic Banach spaces with a basis must be “atomic” for its block-
subspaces.
We now want to give a characterisation of residual subsets ofbbd(X). If A is a

subset ofbbd(X) and� = (	n)n∈N is a sequence of positive real numbers, we denote
by A� the usual�-expansion ofA in bbd(X), that is x = (xn) ∈ A� iff there
existsy = (yn) ∈ A such that‖yn − xn‖�	n,∀n ∈ N. Given a finite block-sequence
x̃ = (x1, . . . , xn), we say that a (finite or infinite) block-sequence(yi) passes through
x̃ if there exists some integerm such that∀1� i�n, ym+i = xi .

Proposition 8. Let A be residual inbbd(X). Then for all� > 0, there exist successive
finite block-sequences(x̃n), n ∈ N such that any element ofbbd(X) passing trough
infinitely many of thex̃n’s is in A�.

Proof. Let (Un)n∈N be a sequence of dense open sets, which we may assume to be
decreasing, such that∩n∈NUn ⊂ A. Without loss of generality we may also assume�
to be decreasing. In the following, block-vectors are always taken inQ, in the intention
of building elements ofbbd(X).
First, U0 is open so there exists̃x0 a finite block-sequence such thatN(x̃0) ⊂ U0.

Now let us choose someN1 > max(supp(x̃0)) and let us take an arbitrary block-vector
z1 such thatN1 = min(supp(z1)). Let F<1 be a finite set of finite block-sequences
forming an	N1-net for all finite block-sequences supported beforeN1 and letF01 be
a finite set of finite block-sequences forming an	N1-net for all finite block-sequences
supported after̃x0 and beforeN1. Let G1 = {x̃ 0 ỹ, ỹ ∈ F01} and letF1 = F<1 ∪G1.
Using the fact thatU1 is dense open, we may construct successively a finite block-
sequencex̃1 which extendsz1, so that min(supp(x̃1)) = N1 > max(supp(x̃0)), and
such that for anyf̃1 ∈ F1, N(f̃ 1 x̃1) is a subset ofU1.
Let us now write what happens at thekth step. We choose someNk > max(supp

(x̃k−1)) and an arbitrary blockzk whose support starts atNk. We letF<k be a finite set
of finite block-sequences forming an	Nk -net for all finite block-sequences supported
before Nk and for all i < k, we let Fik be a finite set of finite block-sequences
forming an	Nk -net for all finite block-sequences supported afterx̃i and beforeNk. For
any I = {i1 < i2 < · · · < im = k}, we let GI be the set of finite block-sequencesz̃
passing through everyi in I, such that the finite sequence of blocks ofz̃ supported
before x̃i0 is in F<i0 and such that for allj < m, the finite sequence of blocks of
z̃ supported betweeñxij and x̃ij+1 is in Fij ij+1. And we let Fk be the union of all
GI over all possible subsets of{1,2, . . . , k} containingk. Using the fact thatUk is
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dense open, we may construct successively a finite block-sequencex̃k which extends
zk, so that min(supp(x̃k)) = Nk > max(supp(x̃k−1)), and such that for anyf̃k ∈ Fk,
N(f̃ k x̃k) is a subset ofUk.
Repeat this construction by induction, and now letz be a block-sequence passing

through x̃n for n in an infinite set{nk, k ∈ N}. We may writez = ỹ 0 x̃ n0 ỹ 1 x̃ n1 . . .,
where ỹ0 is supported beforẽxn0 (we may assume thatn0 > 0) and for k > 0, ỹk is
supported betweeñxnk−1 and x̃nk .
Let f̃0 ∈ F<n0 be 	Nn0 distant from ỹ0, and for anyk > 0, let f̃k ∈ Fnk−1nk be

	Nnk distant from ỹk. Then it is clear thatz is � distant fromf = f̃  0 x̃ n0 f̃  1 x̃ n1 . . ..
Indeed, consider a termzn of the block-sequencez: If it appears as a term of some
finite sequencex̃nk then its distance to the corresponding blockfn of f is 0. If it
appears as a term of someỹk then it is less than	Nk -distant from the blockfn, and
Nk > max(supp(zn))�n, so it is less than	n-distant fromfn.
It remains to check thatf is in A. But for all K, the finite sequencẽgK =

f̃  0 x̃
 
n0
. . . f̃  k x̃nk is an element ofG{n1,...,nK } so is an element ofFK ; it follows

that N(g̃K) is a subset ofUnK and so thatf is in UnK . Finally, f is in ∩k∈NUnk so is
in A. �
Conversely, given successive blocksx̃n, the set of block-sequences passing through

infinitely many of the x̃n’s is residual: for a givenx̃n, “(yk)k∈N passes through̃xn”
is open and “(yk)k∈N passes through infinitely many of thẽxn’s” is equivalent to
“∀m ∈ N, ∃n > m ∈ N : (yk) passes through̃xn”, so is G	, and clearly dense. If
the setA considered is an isomorphism class, then it is invariant under small enough
�-perturbations, and so we get an equivalence:A is residual iff there exist successive
finite block-sequences(x̃n), n ∈ N such that any element ofbbd(X) passing through
infinitely many of thex̃n’s is in A.
Finally, as any element ofbb(X) is arbitrarily close to an element ofbbd(X), the

following theorem holds:

Theorem 9. Let X be a Banach space with a basis. Then either X is ergodic or
there existsK�1, and a sequence of successive finite block-sequences{x̃n} such that
all block-sequences passing through infinitely many of the{x̃n}’s span mutually K-
isomorphic subspaces.

If in addition the basis is unconditional, then we may use the projections to get
further properties of the residual class.

Corollary 10. Let X be a non-ergodic Banach space with an unconditional basis.
Denote by A an element of the residual class of isomorphism inbbd(X). Then for any
block-subspace Y of X, A # A⊕Y . If X is hereditarily block-minimal, then all residual
classes inbbd(Y ), for block-subspaces Y of X, are isomorphic.

Proof. Let {ei} be the unconditional basis ofX and let {x̃n} be given by Theorem9.
Consider an arbitrary block-subspaceY of X. Its natural basis is unconditional andY =
[yi]i∈N is not ergodic as well. Let, by Theorem6, (Fn)n�1 be successive finite subsets
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of N such that for any infinite subsetN of N, if N ∩ [min(Fn),max(Fn)] = Fn for
infinitely manyn’s, then the space[yi]i∈N is isomorphic toY. Passing to subsequences
we may assume that for alln in N, x̃n < ∪i∈Fn supp(yi) < x̃n+1. Then

A # [x̃n]n∈N ⊕ [yi]i∈∪n∈NFn # A⊕ Y.

If now X is hereditarily block-minimal, andB belongs to the residual class inbbd(Y ),
for Y�X, then by the aboveA # A⊕ B; but alsoA is block-minimal so some copy
of A embeds as a block-subspace ofY, so B # B ⊕ A. �
A Banach space is said to becountably homogeneousif it has at most countably

many non-isomorphic subspaces. By Theorem4, a countably homogeneous space has
a block-minimal subspace with an unconditional basis, and one easily diagonalises to
get a hereditarily block-minimal subspace.

Proposition 11. Let X be a countably homogeneous, hereditarily block-minimal Banach
space with an unconditional basis. Then elements in the residual class of isomorphism
for bbd(X) are isomorphic to a(possibly infinite) direct sum of an element of each
class.

Proof. We write the proof in the denumerable case. We partitionX in a direct sum of
subspacesXn, n ∈ N by partitioning the basis. So eachXn embeds intoX. For eachn,
choose a representativeEn of the nth isomorphism class which is a block ofXn (it is
possible becauseXn is block-minimal as well). By applications of Gowers’s theorem in
eachXn, we may pick each vector forming the basis of eachEn far enough, to ensure
that E = ∑

n∈N ⊕En is a block-subspace ofX. We show thatE is in the residual
classA. Indeed, ifm is such thatEm ∈ A, then E # Em ⊕ ∑

n�=m ⊕En # Em by
Corollary 10. �
It follows from the proof above that for any two block-subspacesA andB of X, A⊕B

may be embedded as a block-subspace ofX; i.e., under the assumptions of Proposition
11, isomorphism classes of block-subspaces ofX form a countable (commutative) semi-
group.
Consider the property that every block-subspaceY satisfiesA # A⊕Y . We may think

of this property as an algebraic property characterising large subspaces in the sense that
a large subspace should intuitively “contain” other subspaces, and more importantly, a
space should have at most one large subspace (here ifA andA′ satisfy the property,
A # A⊕A′ # A′!). Notice that asX is not ergodic, all block-subspaces are isomorphic
to their squares by Ferenczi and Rosendal[6] and so the property above is equivalent
to saying that every block ofX embeds complementably inA (i.e. A is complementably
universal forbb(X)). Generally, a spaceA is said to be complementably universal for
a classC of Banach spaces if every element ofC is isomorphic to a complemented
subspace ofX. It is known that no separable Banach space is complementably universal
for the class of all separable Banach spaces ([19, Theorem 2.d.9]), but there exists a
Banach spaceXU with an unconditional basis which is complementably universal for
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the class of all Banach spaces with an unconditional basis[23], and so for the class
of its block-subspaces in particular.
Combining Theorem4 and Corollary10, we get

Theorem 12. Any Banach space is ergodic or contains a subspace with an uncondi-
tional basis which is complementably universal for the family of its block-subspaces.

We now study this property in more detail. We also see how Theorem9 may be
used to obtain uniformity results.

Definition 13. Let X andY be Banach spaces such thatX has a Schauder basis.Y is
said to be complementably universal forbb(X) if every block-subspace ofX embeds
complementably inY.

Lemma 14. Let X be a Banach space. Any Banach space complementably universal
for bb(X) is decomposable.

Proof. Let A be complementably universal forbb(X) and indecomposable. First note
that X embeds complementably inA, so must be isomorphic to a finite-codimensional
subspace ofA. As well, any block-subspace ofX is isomorphic to a finite-codimensional
subspace ofA and so none of them is decomposable either. It follows easily that no
subspace ofX is decomposable. In other words,X is hereditarily indecomposable. It
follows also thatX is isomorphic to a proper (infinite-dimensional) subspace, and this
is a contradiction with properties of hereditarily indecomposable spaces.�
To quantify the property of complementable universality, let us definedecX(Y ) =

inf KK ′, where the infimum runs over all couples(K,K ′) such thatY is K-isomorphic
to aK ′-complemented subspace ofX. Of course,decX(Y ) = +∞ iff Y does not embed
complementably inX. We shall say that a spaceA is C-complementably universal
for bb(X) if every block-subspace ofX is K-isomorphic to someK ′-complemented
subspace ofA, for someK andK ′ such thatKK ′�C, that is, if supY �X decA(Y )�C.

Lemma 15. Assume A, B, C are Banach spaces with bases. Then

decA(C)�decA(B)2decB(C).

Proof. Let 
 be positive. LetPB be a projection defined onB and �BC be an isomor-
phism from PB(B) onto C such that‖PB‖.‖�BC‖.‖�−1BC‖�decB(C) + 
. Let PA be
a projection defined onA and �AB be an isomorphism fromPA(A) onto B such that
‖PA‖.‖�AC‖.‖�−1AB‖�decA(B)+ 
.
We let P = �−1ABPB�ABPA, defined onA; it is easily checked thatP is a projection.

We let � = �BC�AB : it is an isomorphism fromP(A) onto C. Then

decA(C)�‖P ‖.‖�‖.‖�−1‖�(decA(B)+ 
)2(decB(C)+ 
). �
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Proposition 16. Let X be a Banach space with a Schauder basis and let A be comple-
mentably universal forbb(X). Then there existsC�1 such that every finite-dimensional
block-subspace of X C-embeds complementably in A.

Proof. First it is clear that it is enough to restrict ourselves to elements ofbbd(X) with
the previously defined topology. We let fork ∈ N, Ak denote the set of block-subspaces
of X which arek-isomorphic to somek-complemented subspace ofA. Now it is clear
that one of theAk must be non-meagre. This set is analytic, so has the Baire property,
so is residual in some basic open setU, of the formN(ũ). We now show thatAK is
residual forK = kc(2max(supp(ũ)). Otherwise, as in Proposition7, we may assume
AK is meagre inV = N(ỹ), andAk is residual inU ′ = N(x̃) where x̃ extendsũ,
|x̃|�2 max(supp(ũ)) and max(supp(x̃)) = max(supp(ỹ)).
Now let T be the canonical map fromU ′ to V. For all u in U ′, T (u) differs from

at mostq�2 max(supp(ũ)) vectors fromu, so the space[T (u)] is c(2 max(supp(ũ))
isomorphic to [u]. So T (u) is in AK wheneveru is in Ak. It follows that AK is
residual inV, a contradiction.
Now consider any finite-dimensional spaceF generated by a finite block-sequence

of A, F = [x1, . . . , xp]: it may be extended to a block-sequencex = (xi)i∈N in AK ,
that isdecA([x])�K2. But alsodec[x](F )�c, wherec is the constant of the basis, so
by Lemma15, decA(F )�cK4. �

Proposition 17. Let X be a space with an unconditional basis. If A is complementably
universal forbb(X) and isomorphic to its square, then A is C-complementably universal
for bb(X) for someC�1.

Proof. The first part of the proof is as above to getK ∈ N such thatAK , the set of
block-subspaces ofX which areK-isomorphic to someK-complemented subspace ofA,
is residual. So by Proposition8, there exists a sequencex̃n of successive finite blocks
such that any block passing through infinitely many of thex̃′ns is in A2K .
Let now Y = [yn]n∈N = [y] be an arbitrary block-subspace ofX. We may define a

sequence(ỹi) of finite block-sequences with̃y 1 ỹ
 
2 . . . = y and a subsequence of{x̃n},

denoted{x̃i}, such that for alli,

supp(ỹi−1) < supp(x̃i) < supp(ỹi+1).

We let w = ỹ 1 x̃ 2 ỹ 3 . . . and w′ = x̃ 1 ỹ 2 x̃ 3 . . . It is clear thatY1 = [ỹ2i−1]i∈N

is c-complemented in[w], where c is the constant of unconditionality of the basis;
so dec[w](Y1)�c. But we know thatdecA([w])�4K2, so by Lemma15, decA(Y1)�
16K4c. Likewise if we denote [ỹ2i]i∈N by Y2 and use [w′], we prove that
decA(Y2)�16K4c. It follows that Y1 ⊕ Y2 satisfies decA⊕1A(Y1 ⊕ Y2)�(16K4c)2

(here ⊕1 denotes the�1-sum) , and, ifD is such thatA is D isomorphic to its
squareA⊕1 A, that decA(Y )�29D2K8c3. �
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In view of the fact that by Theorem6, any unconditional basic sequence in a non-
ergodic Banach space spans a space isomorphic to its square, the previous proposition
may be applied to Theorem12: a non-ergodic Banach space contains a subspaceX
with an unconditional basis which isuniformly complementably universal forbb(X).

4. Asymptotically �p spaces

Consider now spaces with a basis with the stronger property that every block-
subspace is complemented. It is well-known that every block-subspace of�p or c0
is complemented, and the same is true for spaces(

∑+∞
n=1 ⊕�ns )p, the relevant case

being s �= p (see[19]), or for Tsirelson’s spacesT(p) (see[4]). All these examples are
asymptotically�p or c0, and we shall now see that this is not by chance.
We recall the definition of an asymptotically�p space with a basis. Consider the

so-called asymptotic gamein X, where Player I plays integers(nk) and Player II
plays successive unit vectors(xk) in X such thatsupp(xk) > nk for all k. ThenX is
asymptotically�p if there exists a constantC such that for anyn ∈ N, Player I has a
winning strategy in the asymptotic game of lengthn for forcing II to play a sequence
C-equivalent to the unit basis of�np. The similar definition holds forc0.
Our reference for asymptotic structure in Banach spaces will be the paper of Maurey

et al. [21]. Note that there are two natural notions of asymptotic structure for Banach
spaces: the first is associated to the set of finite-codimensional subspaces ofX, and
the second to tail subspaces ofX taken with a given basis. Our definition obviously
corresponds to the second notion. Note also that, if formally slightly different from the
definition in [21] (Definition 1.7), our definition is easily seen to be equivalent to it
(use [21, Definition 1.3.3 and Proposition 1.5]).
We start by a uniformity result similar to Proposition17, for Banach spaces with a

basis for which every block-subspace is complemented.

Proposition 18. Let X be a space with an unconditional basis{ei}, and assume that
every block-subspace of X is complemented. Then there existsC�1 such that every
block-subspace of X is C-complemented.

Proof. Without loss of generality, assume{ei} is 1-unconditional. Given any finite or
infinite block-sequence{xn} of X, we define for anyn ∈ N, En = [ei,min(supp(xn))� i
� max(supp(xn))]. We note that by[19], 1.c.8, Remark 1, the projection onto[xn]
may be chosen to be block-diagonal with respect toEn (just replaceP by

∑
k EkPEk,

and the norm of the projection is preserved).
We shall prove that if for someC and everyn ∈ N, [x1, . . . , xn] is C-complemented

by a block-diagonal projection with respect toEn, then [xn]n∈N is C-complemented
(by a block-diagonal projection with respect toEn). The proposition follows by an
easy induction.
So let for eachn ∈ N, Pn be a projection on[x1, . . . , xn], of norm less thanC, which

is block-diagonal with respect to theEk ’s. Passing to a diagonal subsequence we may
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assume that for eachk, Ek(Pn)|Ek converges to some projectionQk defined fromEk
onto the 1-dimensional space generated byxk. DefineQ on X by Qx = ∑

k∈N QkEkx.
It is easy to check thatQ is a projection onto[xn]n∈N of norm less thanC. �
A few comments before the next proposition. Our original proof of Proposition18

was similar to the one of Proposition17. We are thankful to the referee for indicating
to us that a much more direct proof existed. The property of complementation for
block-subspaces is too regular to require the strength of the theorem of Baire.
We then used Theorem 5.3 in[21] to conclude thatX must be asymptoticallyc0 or

�p. However, the referee showed us that ifX does not containc0, there is a chain of
classical properties equivalent to our property, which imply thatX is asymptoticallyc0
or �p by a more direct and more informative proof. We write this chain of equivalences
in the next proposition.
Let X be a Banach space with a basis{ei}. Given a block-subspace[xn] of X, where

{xn} is supposed normalised, we let as before, forn ∈ N, En = [ei,min(supp(xn))� i�
max(supp(xn))]. We shall callcanonical projection onto[xn]n∈N a projectionP de-
fined onX by Px = ∑

n∈N x
∗
n(Enx)xn, where for alln ∈ N, x∗n ∈ E∗

n is a norm 1
functional such thatx∗n(xn) = 1.
Finally, following [3], we say that a finite-dimensional decompositionX = ∑

n∈N En
of a Banach space isabsoluteif there exists a constantC such that for everyxn, yn ∈ En
such that for alln ∈ N, ‖yn‖�‖xn‖, it follows that ‖∑

n∈N yn‖�C‖∑
n∈N xn‖.

Proposition 19. Let X be a Banach space with an unconditional basis{ei} which does
not contain a copy ofc0. The following are equivalent:

(i) every block-subspace of X is complemented,
(ii) every block-subspace[xn]n∈N of X is complemented by any canonical projection

onto [xn]n∈N,
(iii) {ei} has the shift property, i.e. for any normalised block-sequence{xn} of {ei},

{xn}n∈N is equivalent to{xn+1}n∈N,
(iv) every blockingEn = [ei, rn� i < rn+1] of {ei} (where (rn) is an increasing

sequence of integers) is absolute.

Proof. (iii )⇒ (iv) is immediate and was already observed by Casazza and Kalton in
[3]. From (iv) we get that any choices of functionalsx∗n in the definition of a canonical
projection will give a bounded projection, so (ii) follows, and(ii )⇒ (i) is trivial.
Assume (i). Let{xn}n∈N, {yn}n∈N be normalised block-sequences such that for all
n ∈ N, xn < yn < xn+1. We prove that{xn} and {yn} are equivalent and (iii) follows.
Following the method of Lindenstrauss and Tzafriri,[19] Theorem 2.a.10, we apply

their Lemma 2.a.11: if
∑
n∈N �nxn converges, then for any sequence�n converging

to 0,
∑
n∈N �n�nyn converges. If

∑
n∈N �nyn does not converge, we easily construct

a block-sequence of{yn} which is equivalent to the canonical basis ofc0 (see the
proof of Theorem 2.a.10), soc0 embeds inX, a contradiction. By the same proof, if∑
n∈N �nyn converges, then so does

∑
n∈N �nxn. �
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Corollary 20. Let X be a Banach space with an unconditional basis{ei}, such that
every block-subspace of X is complemented. Then X is asymptoticallyc0 or �p,1�p <
+∞.

Proof. First assumec0 does not embed inX. We apply Proposition19, and we note that
uniformity of the constants of equivalence is easily obtained in (iii). Krivine’s theorem
implies that�p (or c0) is asymptotic inX ([21, Remark 1.6.3]): that is, for all 
 > 0
and n ∈ N, Player II has a winning strategy in the asymptotic game of lengthn for
producing a sequence 1+ 
 equivalent to the basis oflnp (or ln∞). This, in combination
with (iii), implies very directly thatX is asymptoticallyc0 or �p (this was already
essentially observed by Kalton in[15]).
If c0 embeds inX, let {un} be a normalised block-basic sequence inX which is

equivalent to the canonical basis ofc0. We again apply Lemma 2.a.11 from[19]: we
deduce easily that if{uni } is any subsequence of{un}, and{vi} a normalised block-basic
sequence inX, such that for alli ∈ N, uni < vi < uni+1, then {vi} is equivalent to the
unit vector basis ofc0. Furthermore, by an easy induction, there is uniformity in the
equivalence of these sequences{vi} with the basis ofc0. From this, it is straightforward
to see thatX is asymptoticallyc0. �

We now pass to a proposition of independent interest concerning asymptoticallyc0
or �p spaces.

Proposition 21. Let {ei} be a basic sequence asymptoticallyc0 or �p such that every
subsequence of{ei} has a block-sequence equivalent to{ei} (in particular, if {ei} is
subsymmetric or equivalence-block-minimal). Then {ei} is equivalent to the unit basis
of c0 or �p.

Proof. Let p be such that{ei}i∈N is asymptotically�p (the case ofc0 is similar).
Assume every subsequence of{ei} has a block-sequence equivalent to{ei}. Then as
shown in Lemma2 we may (by passing to a subsequence) assume that for someC�1,
every subsequence of{ei} has a block-sequenceC-equivalent to{ei}.
We fix n ∈ N and build a winning strategy for Player II in the asymptotic game

of infinite length for producing a block-sequence 2C-equivalent to(ei). This strat-
egy may then be opposed to a winning strategy for Player I for producing length
n block-sequencesC′-equivalent to the unit basis of�np. We get thate1, . . . , en is
2CC′-equivalent to�np for all n which will conclude the proof.

Let A = {
(nk) ∈ [N]N : ∃(xk) ∈ bbN(X) ∀k n2k < xk < n2k+1 ∧ (xk) ∼C (ek)

}
. We

claim that any sequence(mk) ∈ [N]N contains a further subsequence inA, for we can
suppose thatIk =]m2k,m2k+1[�= ∅ for all k and therefore take(yi) ∼C (ei) with
supp(yi) ⊂ ⋃

In. Then in betweenyi andyi+1 there aren2i+1 := m2k+1 andn2i+2 :=
m2k+2, whereby(nk) ∈ A. So by the infinite Ramsey theorem there is some infinite
A ⊂ N such that[A]N ⊂ A and there is aC-measurablef : [A]N −→ bbN(X)

choosing witnesses(xk) for being inA.
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Let � = (	n), 	n > 0 be such that if two normalised block-sequences are less
than � apart, then they are 2-equivalent. We choose inductivelyni < mi < ni+1
and setsBi ⊂ N such thatni,mi ∈ Bi ⊂ Bi−1/mi−1 and such that for allC,D ∈[{nj1,mj1, . . . , njk , mjk }, Bjk+1

]
(j1 < . . . < jk) we have‖f (C)(k)− f (D)(k)‖ < 	k.

This can be done as the unit sphere of[enjk+1, . . . , emjk−1] is compact.
Now in the asymptotic game of infinite length, we can demand that I plays numbers

from the sequence(ni) and then II replies tonj1, . . . , njk played by I with somenjk <
x<mjk such that for allC ∈ [{nj1,mj1, . . . , njk , mjk }, Bjk+1

]
we have‖f (C)(k)− x‖

< 	k.
Then in the end of the infinite game, supposing that I has played(njk ) and II

has followed the above strategy responding by(xk), we havenjk < xk < mjk . Let
(yk) := f ({njk ,mjk }N), then‖xk− yk‖ < 	k and (xk) ∼2 (yk) ∼C (ei), so II wins. �

B. Sari drew our attention to the fact that the dualT ∗ of Tsirelson’s space is a good
illustration of Proposition21: it is asymptoticallyc0, and is minimal[4], but by the
Proposition cannot be equivalence block-minimal.
Lindenstrauss and Tzafriri have proved that if a Banach space has a symmetric basis

and all its block-subspaces are complemented, then this basis must be equivalent to
the canonical basis ofc0 or �p ([19, Theorem 2.a.10]). An immediate combination
of Corollary 20 and Proposition21 improves their result: if a Banach space has an
unconditional basis{ei} such that all block-subspaces are complemented, and such that
every subsequence has a block-sequence equivalent to{ei}, then {ei} is equivalent to
the canonical basis ofc0 or �p.

5. Subspaces with a finite-dimensional decomposition

We now want to generalise the previous results, considering more general types of
subspaces. So we fixX to be a Banach space with a basis{en} and we denote byc
the constant of the basis.
We first notice that we could consider subspaces generated by disjointly supported

(but not necessarily successive) vectors, and get similar results: we find a residual
class characterised by a “passing through” property. It follows that in a non-ergodic
Banach space with an unconditional basis, subspaces generated by disjointly supported
vectors embed complementably in a given element of the residual class. We recall that
if a Banach space has an unconditional basis such that any subspace generated by
disjointly supported vectors is complemented, then the space isc0 or �p ([19, Theorem
2.a.10]); however there does exist a spaceXU cited above[23], not isomorphic toc0
or �p, and such that every subspace generated by disjointly supported vectors embeds
complementably inXU .
Then we want to represent any subspace ofX, possibly up to small perturbations,

on the basis{en}, and get similar results as for the case of block-subspaces. We
shall call triangular sequences of blocksthe normalised sequences of (possibly in-
finitely supported) vectors in the productXN’s, satisfying for allk, min(supp(xk)) <
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min(supp(xk+1)) equipped with the product of the norm topology onX. The set of tri-
angular sequences of blocks will be denoted bytt. By Gaussian elimination method, it is
clear that any subspace ofX may be seen as the closed linear space generated by some
sequence oftt. Once again it is possible to discretise the problem by considering the set
t td of sequences of vectors inQ such that for allk, min(supp(xk)) < min(supp(xk+1)),
and by showing that for anyx ∈ t t and any
 > 0, there existsxd in t td such that[xd ]
is 1+ 
-isomorphic to[x].
Our usual method does generalise to this setting. However, the characterisation of

a residual set turns out to be only expressed in terms of particular subspaces oftt,
namely those with a finite-dimensional decomposition on the basis (or FDD). So it
gives more information, and it is actually easier, to work directly with spaces with a
finite-dimensional decomposition on the basis.
Note that a space with a FDD on the basis must have the bounded approxima-

tion property. So our methods only allow us to study subspaces with that prop-
erty. In fact, it is easy to check that the set of sequences int td spanning a space
with an FDD on the basis is residual int td , and so, the set of spaces without the
(bounded) approximation property is meagre in our topology, which explains why with
our methods, we do not seem to be able to “see” spaces without the approximation
property.
We say that two finite-dimensional spacesF andG aresuccessive, and writeF < G,

if for any x ∈ F , y ∈ G, x and y are successive. A space with afinite-dimensional
decomposition on the basisis a space of the form⊕k∈NEk, with successive, finite-
dimensional spacesEk; such a spacepasses through Eif Ek = E for some k. We
let fdd be the set of infinite sequences of successive finite-dimensional subspaces,
and f ddd be the set of infinite sequences of successive finite-dimensional subspaces
which are spanned by a collection of vectors with rational coordinates—equipped
with the product of the discrete topology on the set of finite collections of rational
vectors.

Theorem 22. Let X be a Banach space with a basis. Then either X is ergodic, or there
existsK�1, and a sequence of successive finite-dimensional spacesFn such all spaces
with finite-dimensional decomposition on the basis passing through infinitely manyFn’s
are mutually K-isomorphic.

Proof. Most of the previous proof may be taken word by word; instead of working
with block-subspaces, i.e. subspaces with 1-dimensional decomposition on the basis,
we work with subspaces with arbitrary FDD on the basis; we just have to define the
�-expansion of a subspace with a FDD on the basis using an appropriate distance
between finite-dimensional subspaces. We then end up with characterisation in terms of
“passing through” some finite sequences of finite-dimensional spaces{Ẽi , i ∈ N}, and
this may be simplified to get Theorem22, noting that we may choose these sequences
to be of length 1 (replace each̃Ei = (E1

i , . . . , E
ni
i ) by E

1
i ⊕ . . .⊕ Enii ). �

If the basis is unconditional then we can use the many projections to get additional
results concerning the residual class.
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Proposition 23. Let X have an unconditional basis and be non-ergodic. Let A belong to
the residual class inf ddd . Then every subspace with a finite-dimensional decomposition
on the basis embeds complementably in A. Either A fails to have l.u.s.t. or X is C-�2
saturated.

Proof. Let (Fn) be given by Theorem22 and letY = ∑⊕Bn be an arbitrary space
with a finite-dimensional decomposition on the basis. Passing to a subsequence of(Fn),
we may assume that there is a partition ofN in successive intervalsJi, i ∈ N, such
that for all i,

Fi−1 < B ′
i = ⊕n∈JiBn < Fi+1.

We have that

A #
(∑

⊕Fi
)
i∈N

#
(∑

⊕F2k−1
)
k∈N

⊕
(∑

⊕F2k
)
k∈N
,

and so it follows that

A⊕ Y #
(∑

⊕F2k−1
)
k∈N

⊕
(∑

⊕B ′
2k

)
k∈N

⊕
(∑

⊕F2k
)
k∈N

⊕
(∑

⊕B ′
2k−1

)
k∈N

# A⊕ A # A.

For the last part of the Proposition, ifX is C-�2 saturated for noC, then it follows
from the Theorem of Komorowski and Tomczak-Jaegermann ([18,25] for a survey and
an improved result) thatX has a finitely supported subspaceLn without n-l.u.s.t. for
eachn: indeed Komorowski–Tomczak-Jaegermann’s result takes care of the finite cotype
case, and ifX has not finite cotype then it contains�k∞’s uniformly, and so a finitely
supported if you wish, finite-dimensional space withoutn-l.u.s.t. (see the remark after
Theorem 2.3. in[25], and e.g.[7]). We may by Theorem22 extendLn to a space with
a finite-dimensional decomposition on the basis which isK isomorphic toA. Then if
c is the unconditional constant of the basis,A must fail n/cK-l.u.s.t. and asn was
arbitrary,A fails l.u.s.t. �
Note that it is a consequence of the solution of Gowers and Komorowski-Tomczak

to the Homogeneous Banach Space Problem, that the following strengthening holds: a
Banach space isomorphic to all its subspaces with a FDD must be isomorphic to�2.
This can also be seen as a consequence of the previous Proposition (combined with
Gowers’s dichotomy theorem). Note also that by results of Kadec and Pelczynski[19,
Theorem 2.d.8], there exists a Banach space which is complementably universal for
the set of Banach spaces with the Bounded Approximation Property; but as mentioned
before, there is no complementably universal space for the class of separable Banach
spaces. The Bounded Approximation Property seems to draw the fine line for positive
results with our methods.
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We conjecture that�2 is the only non-ergodic Banach space. However, we are not
even able to prove thatc0 and �p, p �= 2 are ergodic—although it is known that
those spaces have at leastℵ1 non-isomorphic subspaces[19]. To answer this question,
evidently one would have to consider other types of subspaces than those generated
by successive blocks, or disjointly supported blocks; one could consider spaces of the
form (

∑+∞
n=1⊕Bn)p, with carefully chosen finite-dimensionalBn so that this direct sum

is isomorphic to a subspace of�p, and play with the possible choices for(Bn) (see
[19, Proposition 2.d.7]).
On the other hand, it is more relevant to restrict the question of ergodicity to block-

subspaces, if one is looking for a significant dichotomy between “regular” and “wild”
spaces with a basis: in this setting,c0 and �p are, as they should be, on the regular
(i.e. non-ergodic) side of the dichotomy.

Remark. After this article was submitted, the first author and E.M. Galego[5] proved
that the spacesc0 and �p,1�p < 2, are ergodic, reinforcing the conjecture that�2 is
the only non-ergodic Banach space. The case of�p, p > 2 is still open.
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