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FINITELY APPROXIMABLE GROUPS AND ACTIONS

PART I: THE RIBES–ZALESSKIĬ PROPERTY

CHRISTIAN ROSENDAL

Abstract. We investigate extensions of S. Solecki’s theorem on closing off finite partial isometries of

metric spaces [11] and obtain the following exact equivalence: any action of a discrete group Γ by isometries

of a metric space is finitely approximable if and only if any product of finitely generated subgroups of Γ is

closed in the profinite topology on Γ.

§1. Introduction. Suppose a discrete group G acts by isometries on a metric
space (X, dX ). The main question we shall consider here is the conditions on the
group G that ensure that such an action can always be finitely approximated. So,
before we go any further, we need to precisely state our notion of approximation.
Let G be a group acting on sets X and Y and let A ⊆ X and F ⊆ G be arbitrary
subsets. An F -map from A to Y is a function ð : A → Y such that whenever
g ∈ F and x, gx ∈ A, then ð(gx) = gð(x). Moreover, if X and Y are relational
structures of the same type, an F -embedding is simply an injective F -map that is an
isomorphism of A with its image F [A].

Definition 1. Let G be a group acting by isometries on a metric space (X, dX ).
We say that the action is finitely approximable if for any finite A ⊆ X and F ⊆ G
there is a finite metric space (Y, dY ), on which G acts by isometries, and an isometric
F -embedding ð : A→ Y .

We note that this is a very strong notion of finite approximation in the sense that
we require ð to be an isometric embedding and not just a map with small distortion.
However, as we shall see later, this is not a real restriction.
The goal here is to isolate the properties of a group G that ensure that every
isometric action of G is finitely approximable and, in particular, show this is so for
finitely generatedAbelian groups. These results form thebasis of our investigation in
our companion paper [10]. The first result along these lines is due to S. Solecki [11],
who proved that this is verified when G is a finitely generated free group. Solecki’s
proof was based on earlier work of B. Herwig and D. Lascar [6] on equations in
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free groups and ultimately relied on the solution to Rhodes’ Type II Conjecture
proved independently by C. J. Ash [1] and L. Ribes and P. A. Zalesskĭı [9]. The
proof by Ribes and Zalesskĭı used a connection between the Type II Conjecture and
the profinite topology on free groups established by J.-E. Pin and C. Reutenauer
[8], and, indeed, the main result of Ribes and Zalesskĭı is that products of finitely
generated subgroups of free groups are closed in the profinite topology. While part
of the result presented here is not entirely novel and can be proved with the methods
of the literature, it is not clear from Solecki’s and Herwig and Lascar’s papers that
this topological property ofG is exactly what is needed for the approximation result.
Our main goal here is to establish the following exact correspondence between the
two properties.

Theorem 2. The following two properties are equivalent for a countable discrete

group G .

(1) IfH1, . . . ,Hn are finitely generated subgroups ofG , their productH1H2 · · ·Hn
is a closed subset in the profinite topology on G ,

(2) any action of G by isometries on a metric space is finitely approximable.

1.1. The profinite topology and finitely approximable groups. We recall that if G
is a discrete group, the profinite topologyonG is the group topology onG generated
by the basic open sets

gK,

where g ∈ G and K is a finite index subgroup of G . Since any finite index
subgroupK 6 G contains a further subgroupN 6 K , which is both of finite index
and normal in G , in the definition of the basis, one can always assume that K is
moreover normal in G . Thus, a subset S ⊆ G is closed in the profinite topology
on G if for any g ∈ G \ S, there is a finite index (normal) subgroup K 6 G such
that gK ∩ S = ∅ or, equivalently, such that g /∈ SK . Since this is a group topology,
i.e., the group operations are continuous,G is Hausdorff if and only if {1} is closed,
i.e., if for any g 6= 1 there is a finite index subgroup K not containing g. In other
words, G is Hausdorff if and only if it is residually finite.
A stronger notion than residual finiteness is subgroup separability or being LERF
(locally extended residually finite). Here a groupG is subgroup separable, orLERF,
if any finitely generated subgroup H 6 G is closed in the profinite topology on G .
Since {1} is finitely generated, subgroup separability implies residual finiteness.
M. Hall [4, 5] originally proved that free groups are subgroup separable.
However, the even stronger notion that concerns us here is what we shall call the
Ribes–Zalesskĭı property, or property (RZ) for brevity. Namely, a groupG is said to
have the Ribes–Zalesskiı̆ property if any product H1H2 · · ·Hn of finitely generated
subgroups Hi 6 G is closed in the profinite topology on G . This property was
originally proven for free groups in [9] and T. Coulbois [3] showed that if both G
and F have property (RZ), then so does G ∗ F .

1.2. Finitely approximable actions. The requirement in the definition of finitely
approximable actions that the map ð be an isometry may seem very strong, but can
actually be weakened somewhat without effect.

Definition 3. Suppose (X, dX ) and (Y, dY ) are metric spaces and K > 1. A
function f: X → Y is said to be a map with constant K if for some constant c > 0
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and all x, y ∈ X ,

cdX (x, y) 6 dY (f(x), f(y)) 6 KcdX (x, y).

The minimum C of the numbers K for which f is a map with constant K is said to
be the distortion of f. In this case, we say that (X, dX ) embeds into (Y, dY ) with
distortion C .

Note that if we rescale the metric dY by a factor
1
Kc , the function f will be

1-Lipschitz and f−1 will be K-Lipschitz on its domain f[X ].
A finite set D of non-negative real numbers is said to be a good value set if 0 ∈ D
and for all s, t ∈ D, if s + t 6 maxD, then also s + t ∈ D. With this definition in
hand, the following lemma is trivial to verify.

Lemma 4. Suppose (X, dX ) is a metric space andD is a good value set. Then,

∂X (x, y) =

{

min(s ∈ D | dX (x, y) 6 s) if dX (x, y) 6 maxD,

maxD otherwise.

defines a metric on X . Moreover, if G is a group acting by isometries of (X, dX ), then
the same action is also an isometric action on (X, ∂X ).

Definition 5. If (X, dX ) is a metric space andA ⊆ X is a non-empty finite subset,
the expanded distance set of A is defined by

Ex(A) = {r1 + · · ·+ rn | ri ∈ dX [A× A] & r1 + · · ·+ rn 6 diam(A)}.

Note thatEx(A) is a good value set in the above sense. Sowith these preliminaries
off our hands, we can now show the following equivalence.

Proposition 6. SupposeG is a group acting by isometries on ametric space (X, dX )
and that A ⊆ X and F ⊆ G are finite subsets. Then the following are equivalent,

(1) there is a finite Ex(A)-valued metric space space (Y, dY ), on which G acts by
isometries, and an isometric F -embedding ð : A→ Y ,

(2) there is a finite metric space space (Y, dY ), on which G acts by isometries, and
an isometric F -embedding ð : A→ Y ,

(3) for every K > 1, there is a finite metric space space (Y, dY ), on which G acts
by isometries, and an F -map ð : A→ Y of distortion at most K .

Proof. The only non-trivial part is that (3) implies (1). So pick K > 1 small
enough such that for any s < t in Ex(A), Ks < t. Assume (Y, dY ) is a finite
metric space on which G acts by isometries and that ð : A → Y is an F -map with
constant K . Also, by rescaling the metric dY , we can suppose that ð is 1-Lipschitz
and ð−1 is K-Lipschitz on its domain. By Lemma 4, we can define a G-invariant,
Ex(A)-valued metric ∂Y on Y by

∂Y (x, y) =

{

min(s ∈ Ex(A) | dY (x, y) 6 s), if dY (x, y) 6 maxEx(A);

maxEx(A), otherwise.

Then, for all x, y ∈ A,

1

K
dX (x, y) 6 dY (ð(x), ð(y)) 6 dX (x, y),

and so, by assumption on K , we have for all x, y ∈ A, ∂Y (ð(x), ð(y)) = dX (x, y).
It follows that ð is an isometric F -embedding of (A, dX ) into (Y, ∂Y ). ⊣
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Thus, approximatingwith arbitrarily small distortion or isometrically are equivalent
and we shall therefore stick to the stronger notion throughout the rest of the paper.

§2. Groups with the Ribes–Zalesskĭı property. We are now ready for our main
equivalence.

Theorem 7. The following properties are equivalent for a countable group G .

(a) G has property (RZ),
(b) any action of G by isometries on a metric space is finitely approximable.

We note also that it follows from Theorem 7 together with Proposition 6, that if
G has property (RZ) and acts by isometries on a rational valued metric space, then
any finite approximation can be done by rational valued metric spaces. This will be
important for our later applications.

Proof. Suppose first G is a group with property (RZ) acting by isometries on a
metric space X and A ⊆ X and F ⊆ G are finite subsets. Replacing dX with the
metric ∂X defined from the good value set Ex(A), as in Lemma 4, we can, without
changing distances between points of A, assume that dX only takes values in the
finite set Ex(A).
Now let Ga1, . . . , Gam list the orbits of G on X that intersect A. Without loss
of generality, we can suppose that X = Ga1 ∪ · · · ∪ Gam. Let also Ni = {g ∈ G |
gai = ai} and let G act by left-translation on the space of left cosets

G/N1 ⊔ · · · ⊔ G/Nm.

Then the map

ð : X → G/N1 ⊔ · · · ⊔ G/Nm

gai ∈ Gai 7→ gNi ∈ G/Ni

is a conjugacy of G-actions and we may therefore assume that X = G/N1 ⊔ · · · ⊔
G/Nm , i.e., thatG acts by left-translation onG/N1⊔· · ·⊔G/Nm preserving a metric
d taking values in the finite set Ex(A).
Now, since A ⊆ G/N1 ⊔ · · · ⊔G/Nm is finite, there is some finite set C ⊆ G such
thatA ⊆ {gNi | i 6 m & g ∈ C}. By enlarging F , we can also assume that 1 ∈ F .
Define finitely generated subgroupsMi 6 Ni by

Mi = 〈g−1fh | f ∈ F, g, h ∈ C & g−1fh ∈ Ni〉

and subsets E ijr ⊆ G for i, j 6 m and r ∈ Ex(A) \ {0} by

E ijr =Mi{g
−1h | g, h ∈ C & d (gNi , hNj) = r}Mj .

Note that E ijr = (E
ji
r )−1 and clearly also E

ij
r =MiE

ij
r Mj .

We claim that whenever i0, . . . , in 6 m, rj , r ∈ Ex(A) \ {0} and r1 + · · ·+ rn < r,
we have

1 /∈ E i0 i1r1 E
i1i2
r2 · · ·E

in−1 in
rn E in i0r .

To see this, suppose toward a contradiction that hl ∈ E
il−1 il
rl and h ∈ E in i0r are such

that 1 = h1h2 · · · hnh. Then

d (Ni0 , h1Ni1) = r1, d (Ni1 , h2Ni2) = r2, . . . , d (Nin−1 , hnNin ) = rn
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and

d (Nin , hNi0) = r

whereby

r = d (Ni0 , h
−1Nin )

= d (Ni0 , h1h2 · · · hnNin )

6 d (Ni0 , h1Ni1) + d (h1Ni1 , h1h2Ni2)

+ · · ·+ d (h1 · · · hn−1Nin−1 , h1 · · · hn−1hnNin )

= d (Ni0 , h1Ni1) + d (Ni1 , h2Ni2) + · · ·+ d (Nin−1 , hnNin )

= r1 + r2 + · · ·+ rn < r,

which is a contradiction. So the claim holds.
We remark that each of the sets E ijr can be written as a finite union of sets,
Mig

−1hMj where g, h ∈ C , and these sets are themselves products of left-cosets of
finitely generated subgroups of G . Thus, any set

E i0 i1r1 E
i1 i2
r2

· · ·E
in−1in
rn E in i0r

is again a finite union of products of left-cosets of finitely generated subgroups ofG .
Using that for any subgroupsHi 6 G and any gi ∈ G

g1H1g2H2 · · · gkHk = g1 · · · gk · (g2 · · · gk)
−1H1(g2 · · · gk)

· (g3 · · · gk)
−1H2(g3 · · · gk) · · · g

−1
k Hk−1gk ·Hk ,

we see that such sets are actually finite unions of left-translates of products of finitely
generated subgroups of G . Since G has property (RZ), it follows that the sets

E i0 i1r1 E
i1 i2
r2

· · ·E
in−1in
rn E in i0r

are closed in the profinite topology on G .
Using that the sets are closed and do not contain 1, we can find a finite index,
normal subgroupK E G such that whenever i0, . . . , in 6 m and rj , r ∈ Ex(A)\ {0}
satisfy r1 + · · ·+ rn < r, we have

1K ∩ E i0 i1r1 E
i1i2
r2 · · ·E

in−1 in
rn E in i0r = ∅,

i.e., as K is normal,

1 /∈ E i0 i1r1 E
i1 i2
r2 · · ·E

in−1 in
rn E in i0r K =

(

E i0i1r1 K
)(

E i1 i2r2 K
)

· · ·
(

E
in−1 in
rn K

)(

E in i0r K
)

.

We setHi =MiK and B
ij
r = E

ij
r K . Then, as K is normal in G ,

B ijr = E
ij
r K = KE

ij
r = K

−1(Ejir )
−1 = (Ejir K)

−1 = (Bjir )
−1

and

HiB
ij
r Hj = (MiK)(E

ij
r K)(MjK) =MiE

ij
r MjK = E

ij
r K = B

ij
r .

Finally, whenever i0, . . . , in 6 m and rj , r ∈ Ex(A) \ {0} satisfy r1 + · · · + rn < r,
we have

1 /∈ B i0 i1r1 B
i1 i2
r2

· · ·B
in−1 in
rn B in i0r .

Using the setsB ijr , we can define an Ex(A)-valued metric ñ on the left-coset space

G/H1 ⊔ G/H2 ⊔ · · · ⊔ G/Hm



1302 CHRISTIAN ROSENDAL

by setting for distinct gHi , fHj ,

ñ(gHi , fHj) =

min
(

maxEx(A), inf{r1 + · · ·+ rn | g
−1f ∈ B ii1r1 B

i1 i2
r2 · · ·B

in−1j
rn

for some i1, . . . , in−1 6 m}
)

. (1)

Note first that since HiB ilr = B
il
r and B

lj
r Hj = B

lj
r for any r ∈ Ex(A) \ {0} and

l 6 m, this definition does not depend on the choice of representatives g and f
from the cosets gHi andfHj . Also, ñ is easily seen to satisfy the triangle inequality
and the positivity condition, so ñ is indeed a metric on

G/H1 ⊔G/H2 ⊔ · · · ⊔ G/Hm.

Moreover, for all g,f, h ∈ G and i, j, we have

ñ(gHi , fHj) = ñ(hgHi , hfHj),

so ñ is invariant under the action of G by left-translation on G/H1 ⊔ · · · ⊔ G/Hm.

We claim that if g−1h ∈ B ijr , then ñ(gHi , hHj) = r. For if not, we would have

g−1h ∈ B ii1r1 B
i1 i2
r2

· · ·B
in−1j
rn for some i1, . . . , in−1 6 m and r1 + · · ·+ rn < r. But, as

h−1g ∈ Bjir , this implies

1 = g−1hh−1g ∈ B ii1r1 B
i1 i2
r2

· · ·B
in−1j
rn Bjir ,

contradicting the assumptions on the sets B ijr .
Now define

ð : A→ G/H1 ⊔ G/H2 ⊔ · · · ⊔ G/Hm

by ð(gNi) = gHi for all g ∈ C such that gNi ∈ A. We claim that ð is an isometric
F -embedding of A into G/H1 ⊔ · · · ⊔ G/Hm.
First, to see that ð is well-defined, i.e., that ð(gNi ) does not depend on the
representative g of gNi , suppose that g, h ∈ C and gNi = hNi ∈ A. Then
g−1h ∈ Ni , so, as 1 ∈ F , also g−11h ∈Mi 6MiK = Hi , whereby

ð(gNi ) = gHi = hHi = ð(hNi).

Secondly, to see that ð is an isometric embedding of A into Y , suppose
gNi , hNj ∈ A are distinct, where g, h ∈ C . Let r = d (gNi , hNj) > 0, whereby

g−1h ∈ E ijr ⊆ B ijr . It therefore follows that ñ(gHi , hHj) = r. So ð is an isometry.
Finally, to see that ð is a partial conjugation of the action ofG , suppose gNi ∈ A
and f · gNi = hNi ∈ A for some g, h ∈ C and f ∈ F . Then h−1fg ∈ Ni and so
h−1fg ∈Mi 6 Hi . Therefore, fgHi = hHi and so

fð(gNi) = fgHi = hHi = ð(hNi) = ð(fgNi).

This shows that ifG has property (RZ), then any action ofG by isometries is finitely
approximable.
Suppose now conversely that any isometric action of G is finitely approximable
and letH1, . . . ,Hn be finitely generated subgroups ofG . We must show that for any
g /∈ H1 · · ·Hn there is a finite index subgroup K 6 G such that g /∈ H1 · · ·HnK .
So let H1, . . . ,Hn and g be given. We set

X = G/H1 ⊔ G/H2 ⊔ · · · ⊔ G/Hn
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and define a graph Γ = (X,E) with vertex set X and edges {fHi , kHi+1}, where
fHi ∩ kHi+1 6= ∅. Now set

dX (fHi , kHj) = min
(

n, number of edges in the shortest path

from fHi to kHj in Γ
)

.

So (X, dX ) is an integer valued metric space. Also, the left shift action of G on X
clearly preserves the distance dX .
Notice that for any f, k ∈ G ,

dX (fH1, kHn) =

{

n − 1 if there is a path fH1, f2H2, . . . , fn−1Hn−1, kHn in Γ,

n otherwise.

Note that if f1H1, f2H2, . . . , fnHn is a path in Γ, then

f−1
1 f2 ∈ H1H2 & f

−1
2 f3 ∈ H2H3 & · · · & f−1

n−1fn ∈ Hn−1Hn ,

whence

f−1
1 fn = f

−1
1 f2 · f

−1
2 f3 · · ·f

−1
n−1fn ∈ H1H2 ·H2H3 · · ·Hn−1Hn = H1H2 · · ·Hn.

Since g = 1−1g /∈ H1H2 · · ·Hn, it follows that dX (H1, gHn) = n.
Let now A = {H1,H2, . . . ,Hn , gHn} and set

F = {generators ofH1,H2, . . . ,Hn} ∪ {1, g}.

By the assumption onG , there is a finite metric space (Y, dY ) upon which G acts by
isometries and an isometric F -embedding ð : A → Y of A into Y . Let now Ki be
the stabiliser of ð(Hi) in G . Since Y is finite,Ki is a finite index subgroup ofG . We
claim thatHi 6 Ki . For if h is a generator of Hi , then, as h ∈ F andHi , hHi ∈ A,
we must have ð(Hi) = ð(hHi) = hð(Hi) and so h ∈ Ki . Thus, Ki contains the
generators ofHi and hence Hi 6 Ki .
Now suppose ki ∈ Ki . SinceH1, . . . ,Hn ∈ A and dX (Hi ,Hi+1) = 1, we have

dY
(

k1 · · · kið(Hi), k1 · · · kiki+1ð(Hi+1)
)

= dY
(

k1 · · · kið(Hi), k1 · · · kið(Hi+1)
)

= dY
(

ð(Hi), ð(Hi+1)
)

= 1.

So, by the triangle inequality,

dY
(

ð(H1), k1k2 · · · knð(Hn)
)

= dY
(

k1ð(H1), k1k2 · · · knð(Hn)
)

6 n − 1.

In other words, for any f ∈ K1 · · ·Kn, we have dY (ð(H1), fð(Hn)) 6 n − 1.
Now, g ∈ F andHn, gHn ∈ A, so gð(Hn) = ð(gHn), whence

dY
(

ð(H1), gð(Hn)
)

= dY
(

ð(H1), ð(gHn)
)

= dX (H1, gHn) = n.

So it follows that g /∈ K1K2 · · ·Kn, whence g /∈ H1H2 · · ·HnKn ⊆ K1 · · ·Kn. ⊣

We should make a few comments on the above proof. Namely, one sees that in
order for a productH1 · · ·Hn of finitely generated subgroups ofG to be closed in the
profinite topology, it suffices that any action of G by isometries on a metric space
with distance set {0, 1, . . . , n} is finitely approximable. Conversely, with somewhat
more care, one can check that if any product H1 · · ·Hn of finitely generated sub-
groups of G is closed in the profinite topology, then any action of G by isometries
on a metric space with distance set {0, 1, . . . , n} is finitely approximable.
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Another type of actions of interest to us is actions by automorphisms on a graph.
Here a graph is a pair (X,EX ) of a non-empty set X and a symmetric, irreflexive
relation EX on X . So an action G y X of a discrete group by automorphisms
of a graph (X,EX ) is said to be finitely approximable if for any finite A ⊆ X and
F ⊆ G there is a finite graph (Y,EY ) on which G acts by automorphisms and an
F -embedding ð : A→ Y embedding (A,EX ) into (Y,EY ).
Similarly, an action G y X of a discrete group by permutations on a set X
is finitely approximable if for any finite A ⊆ X and F ⊆ G there is a finite set
Y on which G acts by permutations and an injective F -map ð : A → Y . Then,
identifying a discrete set with a metric space with distance set {0, 1} and a graph
with a metric space with distance set {0, 1, 2}, the proof above show the following
probably well-known facts.

Proposition 8. Let G be a discrete group.

(A) The following are equivalent.
• Any action of G by automorphisms of a graph is finitely approximable,
• ifH andK are finitely generated subgroups ofG , thenHK is closed in the
profinite topology on G .

(B) The following are equivalent.
• Any action of G by permutations of a set is finitely approximable,
• G is subgroup separable.

The Rado or random graph is the countable graph R, i.e., a set with a symmetric
irreflexive relation, defined up to isomorphism by the following extension property:
if X is a finite graph and φ : Y → R is an embedding of an induced subgraph, then
φ entends to an embedding of X into R.
E. Hrushovski investigated the case of graphs in [7], and showed that any finite
graph can be extended to a larger finite graph in such a way that any partial
automorphism of the former extends to a full automorphism of the latter. Modulo
the existence of an ultrahomogeneous universal graph, namely the random graph,
this is equivalent to showing that any action of a free group by automorphisms
of a graph is finitely approximable. So, by the above proposition, this implies the
special case of the Ribes–Zalesskĭı Theorem that a product of two finitely generated
subgroups of a free group is closed in the profinite topology.

§3. Locally finite dense subgroups of automorphism groups. The rational Urysohn
metric space QU is the countable metric space all of whose distances are rational
and satisfying the following extension property: if X is a finite metric space with
rational distances and φ : Y → QU is an isometric embedding of a subset Y ⊆ X ,
then φ extends to an isometric embedding of X into QU.
Using the extension property, it is easy to see that any countable metric space
with rational distances embeds isometrically into QU and also, by a standard back
and forth argument, the above properties define QU uniquely up to isometry.
The rational Urysohn space is useful for us in that it and its isometry group
function as a universal framework for certain arguments about metric spaces. To
see this, we need to introduce a few notions.

Definition 9. An isometry f: A → B between finite subsets A and B of the
rational Urysohn space QU is said to be a finite partial isometry of QU.
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So the restriction of any full isometry of QU to a finite subset is a finite partial
isometry, but more importantly, by a back and forth argument, any finite partial
isometry of QU extends to a full isometry of QU.
In fact, we also have the following interesting fact due to V. V. Uspenskĭı [12];
namely, if G is a group acting by isometries on a finite subspace A ⊆ QU, then
the action of G extends to an action by isometries on all of QU. To see this, we
can without loss of generality suppose that G is finite. Also, modulo an inductive
construction, it suffices to show that for any one-point extension B ⊇ A, there is a
further finite extension C ⊇ B and an action of G on C extending the action of G
on A. We identify the unique point in B \A with 1 ∈ G and extend the metric d on
B = A ⊔ {1} to all of C = A ⊔ G , by letting d (x, h) = d (h−1x, 1) for x ∈ A and
h ∈ G and setting

d (g, h) = min
(

d (g, x) + d (x, h) | x ∈ A
)

for all g, h ∈ G . This is easily seen to be a rational-valued metric extending the
metric on B and the invariance under the left-shift action by G is trivial.
We equip the group Isom(QU) of isometries of QU with the permutation group
topology, that is, the basic open neighbourhoods of f ∈ Isom(QU) are of the form

U (f, x1, . . . , xn) = {g ∈ Isom(QU) | g(xi) = f(xi), i 6 n},

where x1, . . . , xn ∈ QU. Since QU is countable, it is easy to see that Isom(QU) is a
Polish group, i.e., a separable and completely metrisable topological group.
We shall now use the correspondence developed above in conjunction with the
main result of Coulbois [3] to give an alternative proof of an unpublished result of
Solecki (we include the result here with Solecki’s permission).

Theorem 10 (S. Solecki). The isometry group Isom(QU) of the rational Urysohn
metric space has a dense, locally finite subgroup.

Proof. Let f0, f1, f2, . . . be a listing of a dense subset of Isom(QU) in which
every element is listed infinitely often. Let also ∅ = A0 ⊆ A1 ⊆ A2 ⊆ · · · be
an increasing exhaustive sequence of finite subsets of QU. We shall construct
an increasing sequence of finite groups G0 6 G1 6 G2 6 · · · and finite subsets
B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ QU, where each Gn acts faithfully by isometries on Bn
in such a way that the action of Gn+1 on Bn+1 extends the action of Gn on Bn,
An ⊆ Bn, and for every n there is some g ∈ Gn such that g|An = fn|An . In this case,
G =

⋃

n Gn naturally acts by isometries onQU =
⋃

n Bn, and letting Γ be the image
of G by the natural homomorphism into Isom(QU), we see that Γ is locally finite
and dense in Isom(QU).
To see how this is done, suppose Bn and Gn are defined and consider fn+1
and An+1. Arbitrarily extend the action of Gn on the finite subset Bn ⊆ QU

to an action by isometries on QU. So letting the generator of the infinite cyclic
group Z act as fn+1, we see that this defines an action of Gn ∗ Z by isometries
on QU. As Gn is finite, Gn has property (RZ) and so does Z. By the main result of
Coulbois [3], also Gn ∗Z has property (RZ). It follows by Theorem 7 that there is a
finite rational metric space Y on which Gn ∗ Z acts by isometries and an isometric
Gn ∪ {fn+1}-embedding of Bn ∪ An+1 into Y . By the extension property of QU,
we can suppose that actually Bn ⊆ Bn ∪ An+1 ⊆ Y ⊆ QU. Now let Bn+1 = Y and
let H be the image of Gn ∗ Z in Isom(Y ). Since Gn acts faithfully on Bn ⊆ Y , the
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canonical homomorphism is injective on Gn and so we can suppose that Gn 6 H .
Set Gn+1 = H . ⊣

By exactly the same argument as above, we see that when equipped with the
permutation group topology, Aut(R) has a locally finite dense subgroup. This gives
an alternative proof of the main result of M. Bhattacharjee and D. Macpherson [2].
We see that the above method applies fairly generally to automorphism groups
of many random relational structures, the main issue being whether they admit an
analogue of Theorem 7.

REFERENCES

[1] C. J. Ash, Inevitable graphs: a proof of the type II conjecture and some related decision procedures,
International Journal of Algebra and Computation, vol. 1 (1991), pp. 127–146.
[2]M. Bhattacharjee andD. Macpherson, A locally finite dense group acting on the random graph,

Forum Mathematicum, vol. 17 (2005), no. 3, pp. 513–517.
[3] T.Coulbois,Free product, profinite topology and finitely generated subgroups, International Journal

of Algebra and Computation, vol. 11 (2001), no. 2, pp. 171–184.
[4]M. Hall, Jr., Coset representations in free groups, Transactions of the American Mathematical

Society, vol. 67 (1949), no. 2, pp. 421–432.
[5] , A topology for free groups and related groups, Annals of Mathematics, Second Series,

vol. 52 (1950), no. 1, pp. 127–139.
[6] B. Herwig and D. Lascar, Extending partial automorphisms and the profinite topology on free

groups, Transactions of the American Mathematical Society, vol. 352 (2000), no. 5, pp. 1985–2021.
[7] E. Hrushovski, Extending partial isomorphisms of graphs, Combinatorica, vol. 12 (1992), no. 4,

pp. 411–416.
[8] J.-E. Pin and C. Reutenauer, A conjecture on the Hall topology for the free group, The Bulletin of

the London Mathematical Society, vol. 23 (1991), pp. 356–362.
[9] L. Ribes and P. A. Zalesskiı̆, On the profinite topology on a free group, The Bulletin of the London

Mathematical Society, vol. 25 (1993), pp. 37–43.
[10] C. Rosendal, Finitely approximable groups and actions. Part II: Generic representations, this

Journal, vol. 76 (2011), no. 4, pp. 1307–1321.
[11] S. Solecki, Extending partial isometries, Israel Journal of Mathematics, vol. 150 (2005), pp. 315–

332.
[12] V. V.Uspenskiı̆,On the group of isometries of the Urysohn universal metric space,Commentationes

Mathematicae Universitatis Carolinae, vol. 31 (1990), no. 1, pp. 181–182.

DEPARTMENT OFMATHEMATICS, STATISTICS, AND COMPUTER SCIENCE (M/C 249)

UNIVERSITY OF ILLINOIS AT CHICAGO

851 S. MORGAN ST.

CHICAGO, IL 60607-7045, USA

E-mail: rosendal.math@gmail.com
URL: http://www.math.uic.edu/∼rosendal


