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The aim of the present paper is to organise and put into a coherent form a number
of old and new results, ideas and research programmes regarding topological groups
and their linear counterparts, namely Banach spaces. As the title indicates, our
focus will be on geometries by which we understand the various types of geometric
structures that a topological group or Banach spaces may be equipped with, e.g.,
Lipschitz structure or the quasimetric structure underlying geometric group theory.
We shall attempt to provide a common framework and language for several different
currently very active disciplines, including geometric nonlinear functional analysis
and geometric group theory, and varied objects, e.g., Banach spaces, finitely gener-
ated, Lie, totally disconnected locally compact and Polish groups. For this reason,
it will be useful not to restrict our objects initially.

1. Banach spaces as geometric objects

1.1. Categories of geometric structures. Our model example of topological
groups, namely, the additive group (X,+) of a Banach space (X, ‖·‖) is perhaps
somewhat unconventional. Certainly, the Banach space (X, ‖·‖) is far more struc-
tured that (X,+) and thus one misses much important information by leaving out
the normed linear structure. Moreover, algebraically (X,+) is just too simple to
be of much interest. However, Banach spaces are good examples since they are
objects that have classically been studied under a variety of different perspectives,
e.g., as topological vector spaces, as metric or uniform spaces. So, apart from their
intrinsic interest, Banach spaces will illustrate some of the appropriate categories
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in which to study topological groups and also will provide a valuable lesson in how
rigidity allows us to reconstruct forgotten structure.

The language of category theory will be convenient to formulate the various
geometric structures we shall be studying. So recall that to define a category we
need to specify the objects and the morphisms between them. In that way, we
derive the concept of isomorphism, namely, an isomorphism between objects X

and Y is a morphism X
φ−→ Y so that, for some morphism Y

ψ−→ X, both ψφ and
φψ equal the unique identities on X and Y respectively.

On the other hand, embedding, i.e., isomorphism with a substructure, is not
readily a categorical notion as it relies on the model theoretical concept of substruc-
ture. However, in all our examples, what constitutes a substructure is evident, e.g.,
a substructure of a topological vector space is a linear subspace with the induced
topology, while a substructure of a metric space is just a subset with the restricted
metric. So, for example, an embedding of topological vector spaces is continuous

linear map X
T−→ Y , which is a linear homeomorphism onto its image V ⊆ Y .

1.2. Metric spaces. Recall that a Banach space is a complete normed vector space
(X, ‖·‖). Thus, the norm is part of the given data. For simplicity, all Banach
spaces are assumed to be real, i.e., over the field R. In the strictest sense, an
isomorphism should be a surjective linear isometry between Banach spaces and the

proper notion of morphism is thus linear isometry, i.e., a linear operator X
T−→ Y

so that ‖Tx‖ = ‖x‖.
However, instead of normed vector spaces, quite often, Banach spaces are consid-

ered in the weaker category of topological vector spaces with morphisms simply being
continuous linear operators. The procedure of dropping the norm from a normed
linear space while retaining the topology thus amounts to a forgetful functor

NVS
F−→ TVS

from the category of normed vector spaces to the category of topological vectors
spaces. Similarly, rather than entirely eliminating the norm, we may instead erase
the linear structure while recording the induced norm metric and thus obtain a
forgetful functor

NVS
G−→ MetricSpaces

to the category of metric spaces whose morphisms are (not necessarily surjective)
isometries. Observe also that these functors preserve embeddings.

This latter erasure however points to our first rigidity phenomenon, namely, the

Mazur–Ulam theorem. Indeed, S. Mazur and S. Ulam [29] showed that if X
φ−→ Y

is a surjective isometry between Banach spaces, then φ is necessarily affine, i.e.,
the map Tx = φ(x) − φ(0) is a surjective linear isometry between X and Y . In
particular, any two isometric Banach spaces are automatically linearly isometric.

In a more recent breakthrough, G. Godefroy and N. J. Kalton established a
similar rigidity result for separable Banach spaces.

Theorem 1.1. [17] If X
φ−→ Y is an isometric embedding from a separable Banach

space X into a Banach space Y , then there is an isometric linear embedding of X
into Y .

Observe that the conclusion here is somewhat weaker than in the Mazur–Ulam
theorem, since φ itself may not be affine. This is for good reasons, as for example
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the map φ(x) = (x, sinx) is an isometric, but clearly non-affine embedding of R
into `∞(2) = (R2, ‖·‖∞). Also, the assumption that X is separable is known to be
necessary as there are counter-examples in the non-separable setting.

Though these two rigidity results do not provide us with any functor from the
category of metric space reducts of separable Banach spaces to the category of
normed vector spaces, they do show that an isomorphism or embedding in the
weaker category of metric spaces implies the existence of an isomorphism, respec-
tively, embedding in the category of normed vector spaces.

1.3. Lipschitz structures. To venture beyond these simple examples, we consider
some common types of maps between metric spaces.

Definition 1.2. A map X
φ−→M between metric spaces (X, d) and (M,∂) is

• Lipschitz if there is a constant K so that, for all x, y ∈ X,

∂(φx, φy) 6 K · d(x, y),

• Lipschitz for large distances if there is a constant K so that, for all x, y ∈ X,

∂(φx, φy) 6 K · d(x, y) +K,

• Lipschitz for short distances if there are constants K, δ > 0 so that,

∂(φx, φy) 6 K · d(x, y)

whenever x, y ∈ X satisfy d(x, y) 6 δ.

A fact that will becomes important later on is that our definitions above provide
a splitting of being Lipschitz as the conjunction of two weaker conditions. Namely,
we have the following simple fact:

φ is Lipschitz ⇔ φ is Lipschitz for both large and short distances.

As the composition of two Lipschitz maps is again Lipschitz, the class of metric
spaces also form a category where the morphisms are now Lipschitz maps. Similarly
with Lipschitz for both large and short distances. However, for later purposes where
there are no canonical metrics, it is better not to treat spaces with specific choices
of metrics, but rather equivalence classes of these.

We therefore define three equivalence relations, namely, bi-Lipschitz, quasi-iso-
metric and locally bi-Lipschitz equivalence on the set of metrics on any set X by
letting

d ∼Lip ∂ ⇔
(
X, d

) id
�
id

(
X, ∂

)
are both Lipschitz

⇔ ∃K 1

K
d 6 ∂ 6 K · d,

d ∼QI ∂ ⇔
(
X, d

) id
�
id

(
X, ∂

)
are Lipschitz for large distances

⇔ ∃K 1

K
d−K 6 ∂ 6 K · d+K

d ∼locLip ∂ ⇔
(
X, d

) id
�
id

(
X, ∂

)
are Lipschitz for short distances.
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Example 1.3. The standard euclidean metric d1(x, y) = |x − y| on R is locally
Lipschitz equivalent with the truncated metric d2(x, y) = min{1, |x − y|}. On the
other hand, since the map x 7→

√
x is not Lipschitz for short distances, these are

not locally Lipschitz equivalent with the metric

d3(x, y) =
√
|x− y|.

Eventually, when we turn to topological groups, we may occasionally pick out
equivalence classes of metrics without being able to choose any particular metric.
These thus become objects of the following types.

Definition 1.4. A Lipschitz, quasimetric, respectively locally Lipschitz space is
a set X equipped with a Lipschitz, quasi-isometric, respectively, locally Lipschitz
equivalence class D of metrics on X.

In neither of these three cases do we have an easy grasp of what the space
actually is. By definition, it is that which is invariant under a certain class of
transformations. On the other hand, morphisms are simpler. Indeed, a morphism(

X,DX
) φ−→

(
M,DM

)
between two Lipschitz or locally Lipschitz spaces is a map X

φ−→ M that is Lip-
schitz, respectively, Lipschitz for short distances, with respect to some or equiva-
lently any choice of metrics from the respective equivalence classes DX and DM .
In this way, Lipschitz and locally Lipschitz spaces form categories in which the
isomorphisms are bijective functions that are Lipschitz (for short distances) with
an inverse that is also Lipschitz (for short distances).

Just as maps that are Lipschitz for large distances need not be continuous and
hence fail to capture topological notions, isomorphisms between quasimetric spaces
should neither preserve topology nor record spaces’ cardinality either. In analogy
with homotopy equivalence of topological spaces, we therefore adjust the notion of
morphism.

Definition 1.5. Two maps X
φ,ψ−→ M from a set X to a metric space (M,d) are

close if
sup
x∈X

d
(
φx, ψx

)
<∞.

Observe that, whether φ and ψ are close depends only on the quasi-isometry class
of the metric d on M . We may therefore define morphisms in the category of quasi-
metric spaces to be closeness classes of Lipschitz for large distances maps between
these spaces and where composition is computed by composing representatives of
these classes.

As a consequence, a Lipschitz for large distances map X
φ−→ M between two

quasimetric spaces is a closeness representative of an isomorphism between X and

M exactly when there is M
ψ−→ X, Lipschitz for large distances, so that both ψφ

and φψ are close to the identities on X and M respectively, i.e., so that

sup
x∈X

d
(
ψφ(x), x

)
<∞ and sup

z∈M
∂
(
φψ(z), z

)
for some/any choice of compatible metrics d, ∂ on X and M .

While motivating the discussion of isomorphisms here, in practice we shall often
avoid equivalence classes of metrics and maps and simply work with representa-
tives from these classes. In this way, a map between metric spaces is called a
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quasi-isometry if it is a representative for an isomorphism between the associated
quasimetric spaces.

Example 1.6. The map Rn φ−→ Zn given by φ(x1, . . . , xn) =
(
bx1c, . . . , bxnc

)
is

a quasi-isometry whose inverse is the inclusion map Zn → Rn when both are given
the euclidean metric.

It is obvious that every metric d on a set X induces not only a metric space
(X, d) but also a Lipschitz, locally Lipschitz and quasimetric space, by taking the
respective equivalence classes of the metric. Moreover, since the morphisms in the
category of a metric space are (not necessarily surjective) isometries, these are also
automatically morphisms in the other categories.

On the other hand, while not every topological vector space X has a Lipschitz
structure compatible with its topology, if X happens to be the reduct of a normed
vector space, then all norms compatible with the topology on X are bi-Lipschitz
equivalent and thus X is naturally equipped with the Lipschitz structure induced
by these norms.

Though there are counter-examples in the non-separable case (see Example 7.12
[4]), the outstanding problem regarding Lipschitz structure on Banach spaces is
whether this completely determines the linear structure.

Problem 1.7. Suppose X and Y are bi-Lipschitz equivalent separable Banach
spaces. Must X and Y also be linearly isomorphic?

1.4. Banach spaces as uniform spaces. Of course every map between metric
spaces that is Lipschitz for short distances is automatically uniformly continuous.
In particular, this means that the uniform structures Ud and U∂ given by two locally
Lipschitz equivalent metrics d and ∂ must coincide, i.e., Ud = U∂ . However, to give
a proper presentation of this and also to motivate the category of coarse spaces,
recall the definition of uniform structures.

Definition 1.8 (A. Weil [45]). A uniform space is a set X equipped with a filter U
of subsets E ⊆ X ×X, called entourages, satisfying

(1) ∆ ⊆ E for all E ∈ U ,
(2) if E ∈ U , then E−1 = {(y, x)

∣∣ (x, y) ∈ E} ∈ U ,

(3) if E ∈ U , then F ◦ F = {(x, z)
∣∣ ∃y (x, y), (y, z) ∈ F} ⊆ E for some F ∈ U .

Here ∆ = {(x, x)
∣∣ x ∈ X} denotes the diagonal in X ×X. Recall that if d is an

écart (aka. pseudo-, pre- or semimetric) on a set X, i.e., d is a metric except that
possibly d(x, y) = 0 for distinct x, y ∈ X, then the induced uniform structure Ud is
the filter generated by the family of entourages

Eα = {(x, y)
∣∣ d(x, y) < α}

for α > 0.
Also, a morphism between two uniform spaces (X,U) and (M,V) is simply a

uniformly continuous map X
φ−→M , that is, satisfying

∀F ∈ V ∃E ∈ U : (x, y) ∈ E ⇒ (φx, φy) ∈ F.
Again, as the notion of substructure is apparent, we obtain a notion of uniform
embeddings.

Important early work on the uniform classification of Banach spaces was done
by P. Enflo, J. Lindenstrauss and M. Ribe, who established a number of rigidity
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results for these. For example, the combined results of Lindenstrass [26] and Enflo
[9] establish that if 1 6 p < q <∞, then the spaces Lp([0, 1]) and Lq([0, 1]) are not
uniformly homeomorphic. However, while this distinguishes between the Lp spaces,
it does not tell an Lp space apart from an arbitrary space. Regarding this, W. B.
Johnson, J. Lindenstrauss and G. Schechtman [20] show that if a Banach space X
is uniformly homeomorphic to `p for some 1 < p < ∞, then X is actually linearly
isomorphic to `p.

For the record, let us mention that, as opposed to the Lipschitz category, it is
known that the uniform structure does not determine the linear structure. Namely,
by work of Ribe [35], there are examples of separable uniformly homeomorphic
Banach spaces that are not linearly isomorphic. Similarly, quasimetric structure
does not determine uniform structure. Indeed by a result due to Kalton [24] there
are separable quasi-isometric Banach spaces that are not uniformly homeomorphic.

1.5. Banach spaces as coarse spaces. While we have not discussed Banach
spaces viewed as quasimetric spaces, we shall now consider a weaker category that
abstracts large scale content from metric spaces in a manner similar to how uniform
spaces abstracts small scale content. In fact, the following definition is an almost
perfect large scale counterpart to that of uniform spaces.

Definition 1.9 (J. Roe [36]). A coarse space is a set X equipped with an ideal E
of entourages E ⊆ X ×X satisfying

(1) ∆ ∈ E,
(2) if E ∈ E, then E−1 ∈ E,
(3) if E ∈ E, then E ◦ E ∈ E.

Again, if (X, d) is a pseudometric space, the associated coarse structure Ed is
then the ideal, generated by the entourages Eα = {(x, y) ∈ X ×X

∣∣ d(x, y) < α},
where now we require α <∞ rather than α > 0.

In particular, this means that we can define two maps Y
φ,ψ−→ X from a set Y into

a coarse space (X, E) to be close if there is an entourage E ∈ E so that (φy, ψy) ∈ E
for all y ∈ Y . This conservatively extends the definition from the case of metric
spaces.

Definition 1.10. A map X
φ−→ M between two coarse spaces (X, E) and (M,F)

is bornologous if

∀E ∈ E ∃F ∈ F : (x, y) ∈ E ⇒ (φx, φy) ∈ F.

It follows that a map (X, d)
φ−→ (M,∂) between pseudometric spaces is bornol-

ogous if and only if there is a monotone increasing function ω : R+ → R+ so that

∂(φx, φy) 6 ω
(
d(x, y)

)
for all x, y ∈ X.

Analogously to the category of quasimetric spaces, morphisms between coarse
spaces are closeness classes of bornologous maps and so two coarse spaces (X, E)
and (Y,F) are coarsely equivalent (that is, isomorphic as coarse spaces) if there are

bornologous maps X
ψ

�
φ
Y so that ψφ and φψ are close to the identities on X and

Y respectively.
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LocallyLipschitz Quasimetric

Uniform Coarse

Figure 1. Forgetful functors between geometric categories

More concretely, note that a map X
φ−→M of a metric space (X, d) into a metric

space (M,∂) is a uniform embedding if

d(xn, yn)→ 0 ⇔ ∂(φxn, φyn)→ 0

for all sequences xn, yn ∈ X. In the same manner, X
φ−→M is a coarse embedding

if, for all xn, yn,

d(xn, yn)→∞ ⇔ ∂(φxn, φyn)→∞.
A coarse embedding is then a coarse equivalence1 if furthermore φ[X] is cobounded
in M , i.e.,

sup
a∈M

dist(a, φ[X]) <∞.

As Lipschitz for short distances entails uniformly continuous and Lipschitz for
large distances entails bornologous, we obtain a diagram of forgetful functors be-
tween the categories of metric, Lipschitz, locally Lipschitz, uniform, quasimetric
and coarse spaces as in Figure 1.

Example 1.11 (Near isometries). Consider the category of metric spaces in which

morphisms are closeness classes of near isometries i.e., of maps (X, d)
φ−→ (Y, ∂) so

that

κφ = sup
x,z∈X

|d(x, z)− ∂(φx, φz)| <∞.

Then two spaces are isomorphic provided there are near isometries X
ψ

�
φ
Y so that

ψφ and φψ are close to the identities on X and Y respectively. Observe that it is
easy to produce isomorphic spaces that are not isometric and also automorphisms
that are not close to any autoisometries.

We remark that if X and Y are Banach spaces that are isomorphic in this

category, then there is a surjective near isometry X
φ−→ Y so that furthermore

φ(0) = 0. Furthermore, by a result due to J. Gevirtz [15] and P. M. Gruber [19],

for any such φ, there is a linear isometry X
T−→ Y with

sup
x
‖Tx− φx‖ 6 4κφ.

1Strictly speaking, φ is a closeness representative of a coarse embedding.
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In particular, this shows that any isomorphism is close to a surjective linear isometry
and hence that the new notion of isomorphism coincides with linear isometry of
spaces.

1.6. Rigidity of morphisms and embeddability. So far we have encountered
rigidity results for isomorphisms and individual objects in the various categories.
The following simple fact, on the other hand, will establish rigidity of morphisms.

Lemma 1.12 (General Corson–Klee lemma). Suppose X
φ−→ E is a map between

normed vector spaces so that, for some δ,∆ > 0 and all x, y ∈ X,

‖x− y‖ < δ ⇒ ‖φx− φy‖ < ∆.

Then φ is Lipschitz for large distances.

Proof. Given x, y ∈ X, let n be minimal so that ‖x − y‖ < n · δ. Then there are
v0 = x, v1, . . . , vn = y so that ‖vi − vi+1‖ < δ for all i. It thus follows that

‖φx− φy‖ 6
n−1∑
i=0

‖φvi − φvi+1‖ < n ·∆.

Therefore ‖φx− φy‖ < ∆
δ · ‖x− y‖+ ∆. �

In particular, both a uniformly continuous and a bornologous map between two
Banach spaces is automatically Lipschitz for large distances. Similarly, a uniform
homeomorphism or a coarse equivalence between Banach spaces is also a quasi-
isometry. On the other hand, since a uniform or coarse subspace of a Banach space
need not be the reduct of linear subspace itself, a uniform or coarse embedding
between Banach spaces is not in general a quasi-isometric embedding.

Remark 1.13 (Reconstruction functors). The above comments show that, when
we restrict the attention to reducts of Banach or just normed vector spaces, there
are reconstruction functors going from the categories of uniform, respectively coarse
spaces to quasimetric spaces. Namely, suppose U is the uniform structure induced
from some normed vector space structure on the set X. Then we let F(X,U) =
(X,D) be the quasimetric space induced by some or, equivalently, any normed
vector space structure on the set X that is compatible with the uniformity U .
Indeed, if (X,+, ‖·‖) and (X,⊕, ||| · |||) are two such normed vector space structures,
then

(X, ‖·‖) id−→ (X, ||| · |||)
is a uniform homeomorphism and thus a quasi-isometric equivalence. It thus follows
that the quasi-isometric equivalence classes of the norm metrics actually coincide.

Similarly, every map between Banach spaces that is Lipschitz for short distances
is automatically Lipschitz for large distances and hence actually Lipschitz (for all
distances). So this provides a functor from the category of Banach spaces viewed
as locally Lipschitz spaces to the category of Banach spaces viewed as Lipschitz
spaces.

At this point, we can refer to Figure 2 for a diagram of categories and the
functors relating them. All categories refer exclusively to reducts of separable real
Banach spaces and the black arrows to functors. Also, blue arrows refer to a
rigidity result for isomorphism. For example, an isomorphism in the category of
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NVS

TVS Metric

Lipschitz Local

LocallyLipschitz Quasimetric

Uniform Coarse

Topological

Mazur−Ulam

Godefroy−Kalton

∃?

reconstr.

reconstr.

∃?

reconstr.
Ribe

Figure 2. Commutative diagram of functors between diverse cat-
egories of reducts of separable real Banach spaces. Dashed blue and
red arrows refer to rigidity results for isomorphisms, respectively,
embeddings.

metric spaces induces another isomorphism in the category of normed vector spaces
by the Mazur–Ulam theorem.

Again, while a functor maps isomorphisms to isomorphisms, it need not preserve
embeddings, since the latter notion is not intrinsic to the category. Thus, while a
uniform embedding between Banach spaces is bornologous, it need not be a coarse
embedding. Nevertheless, we do have rigidity results for embeddings not stemming
from functors. Indeed, for separable Banach spaces, by the Godefroy–Kalton the-
orem, isometric embeddings give rise to other linear isometric embeddings. This
rigidity is indicated by a red arrow in Figure 2.

Now, though by [24] there are separable quasi-isometric Banach spaces that are
not uniformly homeomorphic, it is an open problem due to Kalton whether the
notions of uniform and coarse embeddability between Banach spaces coincide.

Problem 1.14 (Kalton). Are the following two conditions equivalent for all (sepa-
rable) Banach spaces X and E?

(1) X uniformly embeds into E,
(2) X coarsely embeds into E.

Observe that this is far from being trivial, since it is easy to produce uniform
embeddings that are not coarse embeddings and vice versa. Also, one cannot hope
to replace coarse embeddings by quasi-isometric embeddings, since `1 embeds into
`2 uniformly, but not quasi-isometrically.

Theorem 1.15. Assume X and E are Banach spaces and that E ⊕ E embeds as

a topological vector space into E. Suppose also X
φ−→ E is uniformly continuous

and that, for some δ,∆ > 0,

‖x− y‖ > ∆ ⇒ ‖φx− φy‖ > δ.

Then there is a simultaneously uniform and coarse embedding X
ψ−→ E.
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Proof. As E ⊕ E embeds into E, we may inductively construct three sequences
En, Zn, Vn of closed linear subspaces of E so that En ∼= Zn ∼= E (i.e., isomorphic
as topological vector spaces),

En+1 ⊕ Zn+1 ⊆ Zn
and

Vn = E1 ⊕ E2 ⊕ . . .⊕ En ⊕ Zn.
Indeed, we simply begin with an isomorphic copy V1 of E ⊕ E inside of E and let
E1 and Z1 be respectively the first and second summand. Again, pick a copy of
E⊕E inside of Z1 with first and second summand denoted respectively E2 and Z2

and let V2 = E1 ⊕ E2 ⊕ Z2 ⊆ V1, etc.
Let also Pn denote the projection of Vn onto the summand En along the decom-

position above. While each Pn is bounded, there need not be any uniform bound
on their norms. Note now that V1 ⊇ V2 ⊇ . . ., so we can let V =

⋂∞
n=1 Vn, which is

a closed linear subspace of E containing all of the En. Moreover, the Pn all restrict
to bounded projections Pn : V → En so that Em ⊆ kerPn whenever n 6= m.

Composing φ with linear isomorphisms between E and En, we get a sequence of

uniformly continuous maps X
φn−→ En satisfying ‖x− y‖ > ∆n ⇒ ‖φx−φy‖ > δn

for some ∆n, δn > 0 and bounded projections Pn : V → En so that Em ⊆ kerPn
for n 6= m. By Lemma 1 [37], this implies that X admits a simultaneously coarse
and uniform embedding into V and thus into E. �

Observe that, if X
φ−→ E is either a uniform or coarse embedding between

Banach spaces, then there are ∆, δ > 0 as in Theorem 1.15. Therefore, apart from
the mild assumption that E ⊕ E embeds as a topological vector space into E, we
have the implication (1)⇒(2) in Problem 1.14.

Corollary 1.16. Suppose X and E are Banach spaces so that E ⊕ E embeds as
a topological vector space into E, Then, if X uniformly embeds into E, X also
coarsely embeds into E.

On the other hand, if a coarse embedding could always be strengthened to be
uniformly continuous, then we would essentially have proved the converse direction
(2)⇒(1). However, one must contend with the following serious obstruction.

Theorem 1.17 (Naor [32]). There is a bornologous map X
φ−→ E between separable

Banach spaces that is not close to any uniformly continuous map.

The above results indicate that the uniform structure of a Banach space is more
rigid than the coarse structure. However, once we pass to the underlying topology,
almost no information is left. Indeed, it is a result of M. I. Kadets [21] and H.
Toruńczyk [43] that any two infinite-dimensional Banach spaces of the same den-
sity character are homeomorphic. For example, the separable infinite-dimensional
Banach spaces are all homeomorphic to a countable product of lines, RN.

Remark 1.18 (Universal spaces). In the various categories above, it is interesting
to search for universal spaces, that is, separable spaces into which every other
separable spaces embeds. For example, a classical result states that, for K an
uncountable compact metric space, C(K) is universal in the category NVS; every
separable Banach space admits an isometric linear embedding into C(K). Similarly,
by a result of I. Aharoni [1], c0 is universal in the category Lipschitz.
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In contradistinction to this, F. Baudier, G. Lancien and T. Schlumprecht [3]
recently showed that the is no infinite-dimensional space that coarsely embeds into
all infinite-dimensional spaces. And when combined with a result of Y. Raynaud
[33], one sees that the same holds for uniform embeddings.

1.7. Banach spaces as local objects. The results of Enflo, Johnson, Linden-
strauss and Schechtman [9, 26, 20] mentioned earlier show rigidity for the uniform
structure of the individual spaces Lp([0, 1]) and `p. However, there is also a beau-
tiful rigidity result due to Ribe encompassing all Banach spaces. To explain this,
we need a technical concept.

Definition 1.19. A Banach space X is said to be crudely finitely representable
in a Banach space Y if there is a constant K so that, for every finite-dimensional
subspace E ⊆ X, there is a finite-dimensional subspace F ⊆ Y and a linear iso-

morphism E
T−→ F with ‖T‖ · ‖T−1‖ 6 K.

We then say that X and Y are locally isomorphic in case they are crudely finitely
representable in each other. In [34], Ribe then establishes the surprising fact that
any two uniformly homeomorphic spaces must be locally isomorphic. In particular,
this implies that all local properties of Banach spaces, i.e., that only depend on the
finite-dimensional subspaces (up to some uniform constant of isomorphism) is in
principle expressible in terms of the uniform structure of the entire space. This, in
turn, has motivated to so called Ribe programme (see, e.g., Naor [31]) of identifying
exclusively metric expressions for these various local invariants of Banach spaces
such as convexity, smoothness, type and cotype, which furthermore then become
applicable not only in the linear setting but to metric spaces in general.

Subsequent proofs of Ribe’s theorem go by showing that if X and Y are quasi-
isometric separable spaces, then X and Y have bi-Lipschitz equivalent ultrapowers

XU and Y U . Moreover, if V
φ−→ W is a bi-Lipschitz embedding of a separable

Banach space V into a Banach space W , then using differentiation techniques,
V embeds as a topological vector space into W ∗∗. In particular, the diagonal
copy of X in XU embeds as a topological vector space into (Y U )∗∗. Now, by the
principle of local reflexivity, (Y U )∗∗ is crudely finitely representable in Y U and, by
the nature of ultrapowers, Y U is crudely finitely representable in Y . Combined,
this shows that if X and Y are quasi-isometric separable spaces, then X is crudely
finitely representable in Y and vice versa, i.e., X and Y are locally isomorphic.
As uniformly homeomorphic or coarsely equivalent spaces are also quasi-isometric,
Ribe’s theorem follows.

One may think of Banach spaces as objects in the category Local of local spaces
in the following sense. The objects of the category are simply Banach spaces and
we put an arrow X → Y from X to Y in case X is crudely finitely representable in
Y . Observe that, in this way, an arrow X → Y does not necessarily correspond to
the existence of a special type of function from X to Y . However, if X isometrically
embeds into Y , then X also linearly isometrically embeds and thus is crudely finitely
representable in Y . This means that we obtain a last functor from the category of
metric reducts of separable Banach spaces to Local.

In Figure 2, Ribe’s Theorem is indicated as an arrow from the category Coarse
to Local. His original rigidity theorem, that is the arrow from Uniform to Local, is
then obtained by composition with the functors from Uniform to Quasimetric and
further onto Coarse.
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When we restrict the category Local to infinite-dimensional spaces, we have initial
and terminal objects X and Y , that is, so that for every Z there are (trivially
unique) arrows

X → Z → Y.

Indeed, by a result of A. Dvoretzky, Hilbert space `2 is crudely finitely repre-
sentable in every infinite-dimensional Banach space (see [13]), while, by a result
of S. Kwapień [25], any space crudely finitely representable in `2 has type and co-
type 2 and must be isomorphic to `2 as a topological vector space. Thus, up to
isomorphism, `2 is the unique initial object.

On the other hand, Y is a terminal object exactly when `∞ is crudely finitely
representable in Y , which by a result of B. Maurey and G. Pisier [28] is equivalent
to Y only having trivial cotype. This shows that, for example, c0 and the reflexive
space

(`∞(2)⊕ `∞(3)⊕ . . .)`2

are terminal.
There is also a concept of locally minimal spaces for which one may established

a dichotomy [12]. Specifically, every infinite-dimensional Banach space contains an
infinite-dimensional closed linear subspace X satisfying one of

(1) X is crudely finitely representable in all its infinite-dimensional subspaces,
(2) X has a Schauder basis (xn)∞n=1 so that no infinite-dimensional subspace

Y ⊆ X is crudely finitely representable in all tail subspaces Xm = [xn]∞n=M

with a uniform constant.

2. Geometric structures on topological groups

2.1. Uniform and locally Lipschitz structure. In the preceding section, we
have introduced various geometric structures through the instructive example of
Banach spaces. In this case, once the categories are understood, there is no discus-
sion of what the appropriate structure of a Banach space is, since it is just obtained
by stripping away information. Also, we saw how one may reconstruct, e.g., affine
structure from the metric structure and quasimetric structure from the uniform
structure. However, for topological groups, the problem is rather how and when
one may endow the group with a canonical structure of a given type.

Recall that a topological group is simply a group G equipped with a topology in
which the group operations are continuous. Even a Lie group may be (depending
on who you ask) a locally compact locally euclidean group and thus simply a special
type of topological group without any further structure. For simplicity, all groups
will be assumed to be Hausdorff.

Now, apart from being a topological space, a topological group G also has a
couple of canonical uniform structures associated with it. The most interesting in
this context in the left-uniform structure UL which is the filter on G×G generated
by entourages

EV = {(x, y) ∈ G×G
∣∣ x−1y ∈ V },

where V ranges over identity neighbourhoods in G. Observe that if (X,+) is the
additive topological group of a Banach space, this is simply the uniform structure
of the norm.
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As always, with uniform spaces it is often useful to work with écarts generating
the uniformity and, in the case of groups, one can even require these to be com-
patible with the algebraic structure. Indeed, an écart d is said to be left-invariant
if

d(xy, xz) = d(y, z)

for all x, y, z ∈ G.

Theorem 2.1 (A. Weil [45]). The left-uniform structure UL on a topological group
G is given by

UL =
⋃
d

Ud,

where the union is over all continuous left-invariant écarts d on G.

In fact, prior to this, independently G. Birkhoff [5] and S. Kakutani [22] showed
that if a topological group G satisfies a weak consequence of metrisability, namely,
if only it is first countable, then G in fact admits a compatible left-invariant metric
d, i.e., inducing the topology of G. Moreover, in this case, by left-invariance, this
metric will also be compatible with the left-uniform structure, that is, UL = Ud. In
short, the following properties are equivalent for an arbitrary topological group G.

(1) UL is metrisable,
(2) G admits a compatible left-invariant metric,
(3) G is first countable.

Apart from exceptional circumstances, one should not expect that a canonical
metric, even up to rescaling, should exist on a metrisable topological group. Nev-
ertheless, it is instructive to look at what such a metric should do for us. Since the
general case is not much different, we shall not assume metrisability of G at the
outset and hence deal with écarts rather than metrics.

First of all, an écart d should be continuous. This ensures that the induced
topology τd is coarser than that τG of G itself. Secondly, to enforce compatibility
with the algebraic structure, we should also require the écart to be left-invariant,
which then guarantees that the uniform structure Ud is coarser than the left-uniform
structure UL. Finally, in case G is metrisable, d can be assumed to be compatible
with the topology, whereby actually UL = Ud. By the results of Birkhoff, Kakutani
and Weil cited above, these requirements can always be fulfilled.

These were the general requirements. Now, how could we identify a canonical
locally Lipschitz structure on G? Since a locally Lipschitz structure automatically
gives us a metrisable uniform structure, we focus exclusively on metrics.

Definition 2.2. [38] A compatible left-invariant metric d on a topological group G
is said to be minimal if, for every other compatible left-invariant metric ∂ on G,

(G, ∂)
id−→ (G, d)

is Lipschitz for short distances.

In fact, this definition relies on a quasiordering of metrics by setting d �L ∂ if

(G, ∂)
id−→ (G, d) is Lipschitz for short distances. Then a minimal metric is just a

minimum element in this ordering.
Clearly any two minimal metrics are locally Lipschitz equivalent and thus define

a locally Lipschitz structure on G, which furthermore is compatible with the left-
uniform structure on the group. On the other hand, the definition of minimal
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metrics is highly impredicative as it involves a quantification over objects of the
same type, namely the class of left-invariant metrics. So is there a characterisation
quantifying only over G?

Theorem 2.3. [38] The following conditions are equivalent for a compatible left-
invariant metric d on a topological group G.

(1) d is minimal,
(2) there are an identity neighbourhood U and a constant K so that, for all

n > 1 and x ∈ G,

x, x2, x3, . . . , xn ∈ U ⇒ n · d(x, 1) 6 K · d(xn, 1),

(3) there are constants K and ε > 0 so that, for all n > 1 and x ∈ G,

d(x, 1) 6
ε

n
⇒ n · d(x, 1) 6 K · d(xn, 1).

Observe that by left-invariance we automatically have d(xn, 1) 6 n · d(x, 1).
So condition (2) is a linear growth condition on the associated length function
`(x) = d(x, 1) in an identity neighbourhood of the group. Clearly condition (2) is
much simpler that the initial definition of minimality and also has the non-trivial
consequence that the restriction of a minimal metric d on G to a subgroup H 6 G
with the induced topology is also minimal on H.

Nevertheless, while we have a simple characterisation of minimal metrics, we do
not have any informative reformulation of which groups admit a minimal metric
and hence, equivalently, a locally Lipschitz structure. The language of descriptive
set theory allows us to make this question precise at least for the well-behaved
class of Polish groups, that is, completely metrisable separable topological groups.
Concretely, the class of Polish groups can be parametrised by a standard Borel
space Gp, e.g., by letting Gp be the Effros–Borel space of closed subgroups of some
injectively universal Polish group such as the homeomorphism group Homeo([0, 1]N)
of the Hilbert cube [44].

Problem 2.4. The class of Polish groups admitting a minimal metric is it Borel
in the standard Borel space Gp of Polish groups?

A positive answer would show that one can characterise these groups without
simply asking for an object of the same complicated type as a minimal metric
itself. For locally compact second countable groups, the answer to Problem 2.4 is
already known. Indeed, condition (3) of Theorem 2.3 appears under the name weak
Gleason metric in T. Tao’s book [42] and from Tao’s exposition of A. Gleason,
D. Montgomery, H. Yamabe and L. Zippin’s solution to Hilbert’s fifth problem
the following equivalent conditions for a locally compact second countable group
emerge.

(1) G is locally Euclidean,
(2) G has no small subgroups, that is, there is an identity neighbourhood in G

not containing any non-trivial subgroup,
(3) G has a weak Gleason metric,
(4) G is a Lie group.

Thus, by Theorem 2.3, a locally compact second countable group has a canonical
locally Lipschitz structure if and only if it is a Lie group.

Beyond locally compact Lie groups, examples of minimal metrics are the operator
norm metrics on the unitary groups of complex unital Banach algebras. That is, if
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A is a complex unital Banach algebra, then the operator norm metric is minimal
on

U(A) = {u ∈ A
∣∣ ‖u‖ = 1 & ∃v ∈ A ‖v‖ = 1 & uv = vu = 1}.

This is an unpublished result of C. Badea relying essentially on a classical result of
I. M. Gelfand [14] characterising the unity 1 as the unique doubly power-bounded
element a ∈ A with spectrum σ(a) = {1}. For example, U(A) could be the group
of linear isometries of a complex Banach space with the operator norm metric.

Given that the locally compact second countable groups with minimal metrics
are exactly the Lie groups, it is not too surprising that some amount of Lie group
structure should follow from having a minimal metric even in the general case. The
following result (slightly simplifying a result of [38]) has its origins in work of C.
Chevalley [6], Enflo [10] and Gleason [16].

Theorem 2.5. Let G be a completely metrisable group with a minimal metric and
suppose that, for every identity neighbourhood W , the set of squares

{g2
∣∣ g ∈W}.

is dense in a neighbourhood of 1. Then there is an identity neighbourhood V so
that, for each f ∈ V , there is a unique 1-parameter subgroup (hα)α∈R with f = h1

and hα ∈ V for all α ∈ [−1, 1].

Proof. By Theorem 25 [38], there are open identity neighbourhoods U ⊇ O so that,
for every h ∈ O, there is a unique continuous 1-parameter subgroup (hα) with
h1 = f and hα ∈ U for all α ∈ [−1, 1]. Moreover, by the last paragraph of the
proof, U can be supposed to be arbitrarily small.

In particular, if d is the minimal metric, we can suppose there is a constant K
so that

g, g2, g3, . . . , gn ∈ U ⇒ n · d(g, 1) 6 K · d(gn, 1).

Assume that (hα) is this unique 1-parameter subgroup associated to some element
h = h1 ∈ O. Then

sup
α∈[−1,1]

d(hα, 1) 6 K · d(h1, 1).

Indeed, if d(hα, 1) > ε for some α ∈ [−1, 1] and ε > 0, then there is a rational

number k
n ∈ [−1, 1] so that also d(h

k
n , 1) > ε, whence d(h

1
n , 1) > ε

k . By symmetry,

assume that k
n > 0. Then

h
1
n , h

2
n , . . . , h

n
n ∈ U

whereby n · d(h
1
n , 1) 6 K · d(h1, 1) and thus ε 6 nε

k < n · d(h
1
n , 1) 6 K · d(h1, 1).

It follows that the set

V = {h ∈ O
∣∣ hα ∈ O for all α ∈ [−1, 1]}

is an identity neighbourhood. Indeed, fix ε > 0 small enough so that Bd(Kε) ⊆ O.
Then, if d(h, 1) < ε, we have d(hα, 1) 6 Kd(h1, 1) < Kε and so hα ∈ O for all
α ∈ [−1, 1]. Thus Bd(ε) ⊆ V .

Note finally that, if h ∈ V , then hα ∈ V for all α ∈ [−1, 1], since gβ := hβα is
the unique 1-parameter subgroup associated with g1 = hα and gβ = hβα ∈ O for
all β ∈ [−1, 1], i.e., hα = g1 ∈ V . �
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2.2. Coarse and quasimetric structure. Of course having a minimal metric
is already a restrictive condition among locally compact groups and one should
not expect it to be ubiquitous in other settings either. So let us instead turn our
attention to quasimetric and coarse geometry.

Example 2.6 (Finitely generated groups). The standard and indeed motivating
example of a quasimetric geometry is that induced by the word metric

ρS(x, y) = min(k
∣∣ ∃s1, . . . , sk ∈ S± : x = ys1 · · · sk)

on a group Γ generated by a finite subset S ⊆ Γ. The fundamental observation of
geometric group theory is that this geometry is independent of the specific finite
generating set S. Indeed, if T is another finite generating set, then there is a k so
that each element of T can be written as a word of length at most k in S and so
one sees that ρT 6 k · ρS . By symmetry, it thus follows that the two metrics are
bi-Lipschitz equivalent and hence define the same quasimetric and even Lipschitz
structure.

Example 2.7 (Compactly generated groups). A similar argument applies to com-
pactly generated locally compact groups. Namely, if M and L are two symmet-
ric compact generating sets containing 1 for a locally compact group G, then
M ⊆ M2 ⊆ M3 ⊆ . . . is an exhaustive sequence of compact subsets and thus,
by the Baire category theorem, some M l has non-empty interior and therefore cov-
ers L by finitely many left-translates. It thus follows that L ⊆Mk for some k > 1
and therefore as in Example 2.6 the two word metrics ρM and ρL are Lipschitz
equivalent. However, though left-invariant, the word metrics are no longer com-
patible with the topology on G unless G itself is discrete. But a simple argument
using the construction of Birkhoff and Kakutani allows us to find a continuous
left-invariant écart d representing the same quasi-isometry class as ρM and ρL.

The recent book by Y. de Cornulier and P. de la Harpe [7] provides a complete
introduction to the geometric group theory of locally compact groups.

Example 2.8 (Fragmentation metrics on homeomorphism groups). Fix a closed
manifold M and let Homeo0(M) be the identity component of the homeomorphism
group equipped with the compact-open topology. We note that Homeo0(M) consists
of the isotopically trivial homeomorphisms and hence is connected. Fix also a cov-
ering B = {B1, B2, . . . , Bn} of M by embedded open balls and let Ui ⊆ Homeo0(M)
be the set of homeomorphisms g with supp(g) ⊆ Bi. By results of R. D. Edwards
and R. C. Kirby [8], every g ∈ Homeo0(M) sufficiently close to the identity can be
factored as g = h1 · · ·hn with hi ∈ Ui. In other words,

U = U1U2 · · ·Un
is an identity neighbourhood in Homeo0(M). Moreover, as Homeo0(M) is con-
nected, this means that U generates Homeo0(M). The word metric ρU is called
the fragmentation metric associated to the cover B. Furthermore, as shown by E.
Militon [30], any two such covers produce quasi-isometric fragmentation metrics
and thus define a canonical quasimetric structure on Homeo0(M).

Observe however that the definition on the fragmentation norm is not a priori
intrinsic to the topological group, but rather depends on viewing Homeo0(M) as a
transformation group of the manifold M , that is, depends on the group Homeo0(M)
along with its tautological action Homeo0(M) yM .
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The above examples give us concrete quasimetric structures induced by word
metrics, including on groups that don’t have small generating sets in any reasonable
topological sense. For other specific transformation groups there may be similar
constructions, but is there a way to see these as instances of a general construction
that applies to all groups? The correct way of doing this is to take serious the idea
that a coarse structure is somehow dual to uniform structure (without implying
that there is an actual duality between these categories). We thus dualise Weil’s
Theorem 2.1 into a definition as follows.

Definition 2.9. [39] The left-coarse structure EL on a topological group G is given
by

EL =
⋂
d

Ed,

where the intersection ranges over all continuous left-invariant écarts d on G.

As with uniform spaces, metrisable coarse spaces (X, E), that is, so that E = Ed
for some metric or equivalently some écart d on the set X, are much simpler to
understand than the general case. So let us call an écart d on X coarsely proper if
it induces the coarse structure on X, i.e., if E = Ed.

Every coarse space (X, E) has an associated bornology of bounded sets, i.e., an
ideal B of subsets of X with X =

⋃
B∈B B. Namely, B ⊆ X is said to be bounded

if B ×B ∈ E . A subset B of a topological group G is then bounded exactly when

diamd(B) <∞
for every continuous left-invariant écart d on G. By left-invariance and continuity
of the écarts defining EL, the bornology of bounded sets in G is furthermore stable
under the operations

A 7→ cl(A), A 7→ A−1, (A,B) 7→ A ·B.
Moreover, a continuous left-invariant écart d on G is coarsely proper provided the
d-bounded sets are exactly the bounded sets of G.

Example 2.10 (Proper metrics). Clearly every compact subset of a topological
group is bounded. But conversely, by a theorem of R. A. Struble [40], every locally
compact second countable groupG admits a compatible left-invariant proper metric,
i.e., whose closed bounded sets are all compact. It follows that the bounded sets in
G are exactly the relatively compact sets and hence that d is also coarsely proper.
In particular, the coarse structure on a countable discrete group is that given by
any left-invariant metric whose balls are finite.

As for minimal metrics, the characterisation of bounded sets involves quantifica-
tion over a large sets of écarts, so one would like a simpler criterion for boundedness
and thus coarse properness too. For a Polish group G, we have a much better op-
erative criterion. Namely, a subset B is bounded if and only if, for every identity
neighbourhood V there are a finite set F ⊆ G and k > 1 so that

B ⊆ (FV )k,

which shows that the ideal of bounded sets is Borel in the Effros Borel space F(G) of
closed subsets of G. Furthermore, we have an analogue of Birkhoff and Kakutani’s
characterisation of metrisable groups above.

Theorem 2.11. [39] The following conditions are equivalent for a Polish group G,
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(1) the coarse structure EL is metrisable,
(2) G admits a compatible left-invariant coarsely proper metric,
(3) G is locally bounded, i.e., has a bounded identity neighbourhood.

As it is straightforward to see that no identity neighbourhood in the Polish group

Z× Z× Z× . . .
is bounded, this shows that not every Polish group has metrisable coarse structure.
Nevertheless, most important transformation groups do and, in fact, they often
admit a canonical compatible quasimetric structure.

To address how a quasimetric structure compatible with the coarse structure
may be defined, we first define a quasiordering of continuous left-invariant écarts
on G by

∂≪ d ⇔ (G, d)
id−→ (G, ∂) is bornologous.

Then the coarsely proper écarts are simply the maximum elements of the ordering
≪. Refining ≪, we set

∂ � d ⇔ (G, d)
id−→ (G, ∂) is Lipschitz for large distances

and say that a continuous left-invariant écart is maximal if maximum in this order-
ing. Since the sum of two écarts is still an écart, these are directed orderings and
hence maximal elements are automatically maximum too. Also, as any two maxi-
mal écarts are obviously quasi-isometric, when they exist they induce an inherent
quasimetric structure on G identifiable exclusively from the topological group struc-
ture. Moreover, because maximal écarts are also coarsely proper, the quasimetric
structure is automatically compatible with the coarse structure.

As always, we are left with three main issues, namely, (i) finding simpler opera-
tive charaterisations of maximal metrics, (ii) determine criteria for their existence
and (iii) analyse concrete groups.

Proposition 2.12. The following are equivalent for a continuous left-invariant
écart d on a topological group,

(1) d is maximal,
(2) d is coarsely proper and large scale geodesic, that is, for some constant K

and all x, y ∈ G, there are z0 = x, z1, . . . , zn = y so that d(zi−1, zi) 6 K
and

n∑
i=1

d(zi−1, zi) 6 K · d(x, y),

(3) d is quasi-isometric to the word metric ρB given by a bounded generating
set B ⊆ G.

From condition (2), one easily gets that every outright geodesic metric is maximal
and hence that the norm induces the quasimetric structure of the additive group
(X,+) of a Banach space. Since the norm metric is evidently also minimal, we see
that both the locally Lipschitz and quasimetric structures on (X,+) are what they
should be, namely, those given by the norm.

One may also use condition (3) to given a simple criterion for when, e.g., Polish
groups have maximal metrics and hence canonical quasimetric structure. But first
a word of caution. Even for a Polish group, it is not true that the word metric ρB
of every bounded generating set B ⊆ G will induce the quasimetric structure. But,
if ρB is known to be quasimetric to a compatible metric on G, then it does.
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Theorem 2.13. A Polish group G admits a maximal metric and thus a quasimetric
structure if and only if G is algebraically generated by a bounded subset B ⊆ G.
Moreover, in this case, the word metric ρB associated to B induces the quasimetric
structure.

Our examples before can now be seen as instances of this general setup and, in
addition, many other groups have easily calculable quasimetric structure.

• Let Γ be a finitely generated group. Then the quasimetric structure of the
discrete topological group Γ is simply that given by the word metrics.
• If G is a compactly generated locally compact second countable group, the

quasimetric structure of G is that given by the word metric ρK where K is
any compact generating set.
• If M is a closed manifold, the quasimetric structure on Homeo0(M) is that

given by the fragmentation metric. In particular, the fragmentation metric
is intrinsic to the topological group Homeo0(M) without knowledge of its
tautological action on M [27].
• Let Tn be the n-regular simplicial tree for n = 2, 3, 4, . . . ,ℵ0 and equip

its automorphism group Aut(Tn) with the permutation group topology in
which vertex stabilisers are declared to be open. Then, for any vertex
t ∈ Tn, the orbit map

g ∈ Aut(Tn) 7→ g(t) ∈ Tn
is a quasi-isometry between Aut(Tn) and Tn.

Observe that, in the last example, when n is finite, Aut(Tn) is compactly gener-
ated locally compact. However, for n = ℵ0, i.e., when the valency is denumerable,
then Aut(Tn) is only Polish and thus cannot be compactly generated.

Of course, not every group has an inherent quasimetric structure, i.e., a max-
imal écart. For example, a countable, but not finitely generated, group will be
such. It has a metrisable coarse structure, but any attempt at constructing a finer
quasimetric structure will involve choices not dictated by the topological group
structure.

With this framework in place, it is now possible develop substantial parts of
geometric group theory in this larger setting; see [39] for an account. However, one
must caution that there are dramatic changes from the theory of finitely generated
or even locally compact groups to this more general setting. For example, if H
is a closed subgroup of G, then the inclusion mapping is automatically a uniform
embedding and, if G and H are locally compact second countable, then it is also a
coarse embedding. On the contrary, if G and H are no longer locally compact, H
is in general not coarsely embedded in G and so, as opposed to minimal metrics,
a coarsely proper metric on G need not restrict to a coarsely proper metric on
H. This phenomenon is similar to the fact that a finitely generated subgroup of
a finitely generated group may not be quasi-isometrically embedded and leads to
substantial complications and new aspects of the theory that one must contend
with.

One of the many beautiful results of M. Gromov’s fundamental work on geometric
group theory is the fact that quasi-isometric equivalence between finitely generated
groups Γ and Λ is equivalent to the groups admitting a topological coupling, that
is, a pair

Γ y X x Λ
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of commuting proper cocompact actions by homeomorphisms on a locally compact
Hausdorff space X (Theorem 0.2.C ′2 [18]). On the one hand, this shows that one can
pass from a weak metric equivalence between Γ and Λ to a more robust dynamical
equivalence. On the other hand, it also provides the vantage point from which
several other notions of couplings, e.g., measure theoretical, may be defined.

One direction of Gromov’s theorem is rather straightforward and works in a
wider generality. Namely, if Γ y X x Λ is a topological coupling, one may define

a coarse equivalence Γ
φ−→ Λ by simply requiring that, for some fixed x ∈ X and

compact set K ⊆ X with Γ ·K = X = K · Λ, we have

x ∈ gKφ(g)−1

for all g ∈ Γ.
For the other direction, one lets Γ and Λ act on the space ΛΓ of functions from

Γ to Λ by pre and post composing with the left shifts of the groups on themselves.
Clearly the actions commute and one may simply take X = Γ · φ · Λ, which turns
out to be locally compact.

If one tries to repeat this second construction for a coarse equivalence G
φ−→ H

between locally compact groups, one quickly realises that the action Gy X ⊆ HG

will not in general be continuous unless φ is uniformly continuous. Nevertheless,
Gromov’s theorem remains true for locally compact groups [2] and even in a much
wider setting.

For this, a continuous action Gy X of a topological group on a locally compact
Hausdorff space X is coarsely proper if, for every compact set K ⊆ X, the set

{g ∈ G
∣∣ K ∩ g ·K 6= ∅}

is bounded in G. Similarly, the action is modest if B ·K is compact for all bounded
B ⊆ G and compact K ⊆ X. In a second countable locally compact group, the
bounded sets are relatively compact and hence all its actions are automatically mod-
est. However, this is not the case for more general groups. Also, coarse properness
is just properness for these G.

Now, as it turns out, not every group admits a coarsely proper modest cocompact
action G y X on a locally compact Hausdorff space, In fact, a Polish group G
admits such an action exactly when G is coarsely equivalent to a proper metric
space.Such G are said to have bounded geometry as it can be seen to be equivalent
to G having bounded geometry as a coarse space in the sense of Roe [36].

Theorem 2.14. [39] Two Polish groups G and H of bounded geometry are coarsely
equivalent exactly when they admit a coarse coupling, i.e., a pair of commuting,
coarsely proper, modest, cocompact, continuous actions on a locally compact Haus-
dorff space.

Γ y X x Λ.

For a prototypical example of this setup, consider the group HomeoZ(R) of all lifts
of orientation-preserving homeomorphisms h of the circle S1 to homeomorphisms
h̃ of R. Then HomeoZ(R) is given as a central extension

0→ Z→ HomeoZ(R)→ Homeo+(S1)→ id.

Alternatively, HomeoZ(R) is the group of homeomorphisms of R commuting with in-
tegral translations. Then HomeoZ(R) is a non-locally compact Polish group coarsely
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equivalent with Z and, in fact, the canonical actions

Z y R x HomeoZ(R)

amount to a topological coupling of these groups.

2.3. Lipschitz geometry. Having introduced the uniform and coarse structure
and also discussed the conditions under which these can be further improved to
provide locally Lipschitz and quasimetric structures, the last issue at hand is to
determine when locally Lipschitz and quasimetric structure can be integrated. That
is, suppose a topological group G has both a locally Lipschitz and a quasimetric
structure. When are these two reducts of the same Lipschitz structure on G?

Proposition 2.15. Suppose G has a minimal metric d and a maximal metric D
(both compatible and left-invariant). Then G has a metric ∂ that is simultaneously
minimal and maximal and any two such metrics will be Lipschitz equivalent.

Proof. Suppose first that ∂1 and ∂2 are both simultaneously minimal and maximal.
Then, since ∂1 is maximal,

(G, ∂1)
id−→ (G, ∂2)

is Lipschitz for large distances and, since ∂2 is minimal, it is also Lipschitz for short
distances. It therefore follows that the map is Lipschitz. By symmetry, we see that
the two metrics are Lipschitz equivalent.

To construct ∂ from d and D, we observe first that, since D is maximal, G must
be generated by a bounded set B ⊆ G. Let then r > 0 be large enough so that B
is contained in the open D-ball V of radius r centred at the identity. Then D is
quasi-isometric with ρV and the formula

∂(x, y) = inf
( n∑
i=1

d(vi, 1)
∣∣ x = yv1 · · · vn & vi ∈ V

)
defines a compatible left-invariant metric on G that is quasi-isometric to ρV and
hence also to D. Moreover, if U is an identity neighbourhood so that U2 ⊆ V , then
d and ∂ agree on U and hence ∂ is also minimal. Thus, ∂ is both minimal and
maximal. �

By Proposition 2.15, a Lipschitz structure on G, if it exists, is simply that
given by any compatible left-invariant metric that is simultaneously maximal and
minimal. Moreover, the existence of this is equivalent to the conjunction of existence
of locally Lipschitz and quasimetric structure.

It is now time to return to the general picture of geometric categories we have
constructed so far.
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To sum up, every topological group G has canonical uniform and coarse struc-
tures UL and EL. These may or may not be metrisable, depending on whether G is
first countable, respectively, whether G is locally bounded (for Polish G). A locally
Lipschitz structure is then that given by a minimal metric, while a quasimetric
structure is that given by a maximal metric, if such exist. However, when G has
both, these are integrated into a single metric that is both maximal and minimal
and defines the inherent Lipschitz geometry of G. The principal examples of the
later are compactly generated, second countable, locally compact groups and the
additive groups (X,+) of Banach spaces.

Not surprisingly, there is a tight relationship between the various geometric cat-
egories and, as for Banach spaces, there are rigidity phenomena of morphisms too.

For example, by the proof of Lemma 1.12, we see that, if G
φ−→ H is a bornologous

map between topological groups with maximal metrics, then φ is automatically
Lipschitz for large distances. In particular, every coarse equivalence between G
and H is also a quasi-isometry.

Similarly, if G
φ−→ H is a uniformly continuous map between topological groups

and G has no proper open subgroups, then φ is bornologous. Thus, uniformly
homeomorphic groups without proper open subgroups are also coarsely equivalent.
As, for example, Z and Z2 are uniformly but not coarsely equivalent, this evidently
fails in general.
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[45] André Weil, Sur les Espaces à Structure Uniforme et sur la Topologie Générale, Paris, Her-

mann, 1937.



24 CHRISTIAN ROSENDAL

Department of Mathematics, Statistics, and Computer Science (M/C 249), University

of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607-7045, USA

Email address: rosendal.math@gmail.com

URL: http://homepages.math.uic.edu/˜rosendal


