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COMPLETELY METRISABLE GROUPS ACTING ON TREES

CHRISTIAN ROSENDAL

Abstract. We consider actions of completely metrisable groups on simplicial trees in the context of

the Bass–Serre theory. Our main result characterises continuity of the amplitude function corresponding

to a given action. Under fairly mild conditions on a completely metrisable group G , namely, that the

set of elements generating a non-discrete or finite subgroup is somewhere dense, we show that in any

decomposition as a free product with amalgamation, G = A ∗C B , the amalgamated groups A, B and C

are open in G .

§1. Introduction. While Klein in his Erlangen programme insisted that geometric
structures should be understood through their symmetry groups, one of the main
tenets of geometric group theory is that abstract groups should be understood
by via their actions on geometric structures. A particular instance of this is the
Bass–Serre theory of actions on trees [20], which gives a complete understanding
of free products with amalgamation and HNN extensions of groups. The present
paper specialises the Bass–Serre theory to common topological groups and can be
seen as an attempt to provide a coherent approach to various phenomena from the
literature indicating a certain rigidity of completely metrisable groups with respect
to free constructions and actions on trees. We are specifically aiming to gain a better
understanding of the following result.

Theorem 1.1 (R. M. Dudley [7]). Let G be a completely metrisable or locally
compact, Hausdorff, topological group. Assume that

! : G → F

is a homomorphism into a free group ( free Abelian, or free non-Abelian). Then ! is
continuous with respect to the discrete topology on F , i.e., ker(!) is an open subgroup
of G .

As an immediate application, one sees that the only completely metrisable or
locally compact, Hausdorff, group topology on a free group is the discrete one.
Going beyond Dudley’s result, it is natural to attempt to weaken the conditions
on F . Now, by the Nielsen–Schreier–Serre Theorem, a group is free if and only if it
acts freely andwithout inversion on a tree, sowemight replace the homomorphism!
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with an action ofG without inversion on a tree. A number of results in the literature
treat various aspects of this problem, see, e.g., [1, 2, 4, 8, 16, 11, 10, 14, 15, 21],
notably the results of R. Alperin [2] entirely elucidating the situation for locally
compact, Hausdorff groups (for ease of exposition, henceforth, all locally compact
groups will be assumed to be Hausdorff).
Our main result isolates a very natural property of actions of completely metris-
able groups on trees, which we will indicate might be inevitable. Before stating it,
let us stress that, though the groups we consider are topological groups, we never
make any assumptions as to the continuity of their actions. Determining to which
extent they are necessarily continuous is, in fact, one of the main objectives of this
paper.

Theorem 1.2. Let G be a completely metrisable or locally compact group acting
without inversion on a tree X . Then the following four properties are equivalent.

(1) G either fixes an end or has an open subgroup fixing a vertex,
(2) the amplitude ‖ · ‖ : G → N is a continuous function on G ,
(3) the set of elliptic isometries is somewhere comeagre in G ,
(4) there is an open subgroup consisting of elliptic isometries.

Moreover, the above properties hold for any action of G if and only if whenever G is
written as a non-trivial free product with amalgamation,G = A ∗C B, the subgroups
A, B, and C are open in G .

We recall that a subset of G is comeagre in an open set U ⊆ G if it contains the
intersection of countably many dense open subsets of U . Also, a subset of G is
somewhere comeagre if it is comeagre in a non-empty open set. A free product with
amalgamation, G = A ∗C B, is non-trivial if A and B are proper subgroups of G .
Finally, an isometry of a tree is elliptic if it fixes a vertex.
To simplify exposition, we shall refer to the equivalent properties of Theorem 1.2
under one name.

Definition 1.3. A topological group G is said to have property (OA) ( for open
amalgams), if wheneverG = A∗CB is a non-trivial decomposition, the three subgroups
A, B and C are open.

With this definition, we can formulate one of the main results of [2] as follows.

Theorem 1.4 (R. Alperin [2]). Locally compact groups have property (OA).

Using Theorem 1.2, we show that the same holds for a fairly substantial class of
completely metrisable groups.

Theorem 1.5. Let G be a completely metrisable group such that the set

D = {g ∈ G | g generates a finite or non-discrete subgroup of G}

is somewhere dense in G . Then G has property (OA).

Though our main interest is in Polish, i.e., separable, completely metrisable
groups, none of our results rely on separability and we have therefore chosen to
formulate them in the more general setting.
Based on the results of Alperin and Dudley mentioned above, along with Theo-
rems 1.2 and 1.5, we are led to the following conjecture, which we shall also provide
additional evidence for.

Conjecture 1.6. Any completely metrisable topological group has property (OA).
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The paper is organised as follows: In Section 2 we collect some of the background
material on trees and groups acting on them that we will need in the paper. Nothing
here is novel and this section can easily be skipped by the reader familiar with
Bass–Serre theory. In Section 3.3, we prove Theorem 1.2 and finally in Section 4
we give the proof of Theorem 1.5 along with some examples of groups satisfying its
premises.

Acknowledgement. I wish to thank the anonymous referee for a careful reading
and many helpful suggestions.

§2. Actions on trees. In this section we will recall basic Bass–Serre theory for
which our basic reference is Serre’s book [20]. None of the results here are novel
and can almost all be found explicitly in [20].

2.1. Graphs and trees. A graphX consists of a set of vertices, VertX , and a set of
edges, EdgeX , along with three functions o, t : EdgeX → VertX , and · : Edge →
EdgeX such that

o(e) = t(e),

e &= e,

and

e = e.

So each edge e comes as a pair, e and its inverse e, whence e is a directed vertex
from its origin o(e) to its terminal node t(e). An edge path in X is a finite, infinite
or biinifinite sequence (en) of edges such that t(en) = o(en+1) for all n. The path is
reduced if for all n, en &= en+1. A finite path (e1, e2, . . . , en) is a loop if o(e1) = t(en).
A tree X is a connected graph without non-trivial, reduced loops. Since a
tree X is connected and acyclic, it is uniquely path connected, i.e., for any distinct
x, y ∈ VertX there is a unique reduced path (e1, . . . , en) with o(e1) = x and
t(en) = y. This path, denoted by x − y, is called the geodesic from x to y and lets
us define metric on VertX by setting

d (x, y) = n.

A vertex path or line segment is a finite, infinite or biinfinite sequence (xn) of
vertices of X such that for every n there in an edge e ∈ EdgeX with o(e) = xn and
t(e) = xn+1. A line in X is a biinfinite vertex path

" = (. . . , x−2, x−1, x0, x1, x2, . . . )

of distinct vertices of X , and, similarly, a half-line is an infinite path

"+ = (x0, x1, x2, . . . )

of distinct vertices. When convenient, we shall identify the geodesic x − y =
(e1, . . . , en) with the corresponding vertex path (x, t(e1), t(e2), . . . , t(en)).
An (induced ) subgraph of a graph X is a graph Y such that VertY ⊆ VertX and
EdgeY = {e ∈ EdgeX | o(e), t(e) ∈ VertY}. A subgraph Y ⊆ X of a tree X
is said to be a subtree if, moreover, for any x, y ∈ VertY the geodesic path x − y
is contained in Y , i.e., if Y is itself connected. For simplicity of notation, we shall
sometimes identify a subgraph with its set of vertices, noticing that its edges can
then be read off from the full graph. It follows from the unique path connectedness
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of a treeX that ifX1, . . . , Xn is a finite family of subtrees ofX that intersect pairwise,
we have

X1 ∩X2 ∩ · · · ∩ Xn &= ∅

(see Lemma 10, p. 65 [20]). Actually, we shall also need the following more general
fact due to J. Tits (see Lemma 1.6 [23]). Whenever (Xi)i∈I is a family of subtrees that
intersect pairwise, then either

⋂

i∈I Xi &= ∅ or there is an infinite half-line "+ ⊆ X
that is eventually contained in each Xi , i.e., such that for every i ∈ I , "+ \ Xi is
finite.

2.2. Single automorphisms. An isometry, or equivalently an automorphism, g of
a tree X is said to be without inversion if there is no edge e ∈ EdgeX with g(e) = e.
In this case, there are two possibilities for g; either g fixes a vertex of X , in which
case g is said to be elliptic, or there is a unique biinfinite line "g on which g acts by
non-trivial translation, in which case g is said to be hyperbolic. For isometries g
without inversion, we associate the characteristic subtree Xg of X , which, if g is
elliptic, is the non-empty set of vertices fixed by g and, if g is hyperbolic, is its axis
of translation, "g .
We define the amplitude of g by the formula

‖g‖ = min
(

d (g(y), y) | y ∈ VertX
)

,

so g is elliptic if and only if ‖g‖ = 0. Now, if g is a hyperbolic isometry of X with
characteristic subtree "g , then we can write "g = (. . . , x−2, x−1, x0, x1, x2, . . . ) such
that for some n ! 1 and all m ∈ Z

g(xm) = xm+n.

In this case, we have n = ‖g‖ and for any y /∈ "g , if xm is the vertex of "g closest
to y, the geodesic path y−g(y) from y to g(y), is the concatenation of the geodesic
paths y − xm, xm − xm+n and xm+n − g(y).
Suppose g and h are isometries ofX without inversion. Then the following equal-
ity can easily be checked by inspection (see, e.g., M. Culler and J. W. Morgan [6]).

If Xg ∩ Xh = ∅, then ‖gh‖ = ‖g‖+ ‖h‖+ 2dist(Xg,Xh).

From this, one immediately obtains what is sometimes referred to as Serre’s Lemma
(see Corollary 2, p. 64 [20]).

If g, h and gh are all elliptic, then Xg ∩ Xh &= ∅.

We also define the following equivalence relation on the half-lines of X . If
"+ = (x0, x1, x2, . . . ) and l+ = (y0, y1, y2, . . . ) set

"+ ∼ l+ ⇐⇒ ∃n,m (xn = ym & xn+1 = ym+1 & . . . ).

So "+ and l+ are equivalent if they share a common tail. The equivalence classes of
half-lines are called ends of X and we see that any isometry of X naturally defines
a permutation of the set of ends by g · ["+] = [g · "+].
Note that if e = ["+], for "+ = (x0, x1, . . . ), is an end fixed by an isometry g ofX ,
we have "+ ∼ g · "+, and so one of the following three things will happen;

(1) for some n and all m ! n, g(xm) = xm,
(2) for some n, g({xn, xn+1, . . . }) ⊆ {xn+1, xn+2, . . . },
(3) for some n, {xn, xn+1, . . . } ⊆ g({xn+1, xn+2, . . . }).
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In the first case, g is elliptic and we say that e is a neutral fixed end for g. In the two
other cases, g will be hyperbolic with its axis containing a tail of "+. In the second
case, we say that e is an attracting fixed end for g, and in the last case, e is a repulsing
fixed end for g.

2.3. Group actions. If a group G acts without inversion on a tree X , we define
the quotient graph G \ X by

VertG \ X = {Gx | x ∈ VertX},

EdgeG \ X = {Ge | e ∈ EdgeX},

o(Ge) = Go(e),

t(Ge) = Gt(e),

Ge = Ge.

Note that from Serre’s Lemma it follows that ifG is a group of elliptic isometries,
then Xg ∩ Xh &= ∅ for all g, h ∈ G . So either

⋂

g∈G Xg &= ∅, in which case G fixes a
vertex of X , or

⋂

g∈G Xg = ∅, in which case it can be checked that G has a neutral
fixed end e = ["+], "+ = (x0, x1, . . . ) (see Proposition 3.4 [22]). In the second case,
letting Gn = {g ∈ G | ∀m ! n g(xm) = xm}, we see that (Gn)n∈N is an increasing
chain of proper subgroups of G whose union is G . Conversely, if G can be written
as the union of an increasing chain (Gn) of proper subgroups, we can define a treeX
with vertex set

VertX = G/G0 / G/G1 /G/G2 / · · ·

and with edges between the vertices gGn and gGn+1 for g ∈ G and n ∈ N. Then
G acts without inversion on X by left translation of the cosets gGn and, since
G =

⋃

n∈N
Gn, it has a neutral fixed end e = ["+], namely "+ = (G0, G1, G2, . . . ),

but does not fix a vertex.
This shows that for any group G the following two conditions are equivalent

• G acts without inversion on a tree with a neutral fixed end, but not fixing a
vertex,

• G is the union of a countable increasing chain of proper subgroups.

Now suppose instead G can be written as a free product with amalgamation
G = A ∗C B. Then we can define a tree X (see Theorem 7, p. 32 [20]) whose vertex
set is the space of left cosets G/A / G/B and connecting any pair gA and gB by
a set of edges. In other words, gA and hB are connected by an edge if and only if
gA∩hB &= ∅. Again,G acts without inversion onX by left-translation of the cosets.
Note also that the stabiliser in G of a vertex hA is just the subgroup hAh−1 " G ,
while the stabiliser of hB is the subgroup hBh−1 " G . It follows that the stabiliser
of the edge between hA and hB is

hAh−1 ∩ hBh−1 = h(A ∩ B)h−1 = hCh−1.

Suppose, moreover, that the product is non-trivial and pick a ∈ A\B and b ∈ B \A.
It follows that the product ab does not belong to any conjugate of either A or B
and, in particular, ab does not fix any vertex of X . So ab ∈ G is hyperbolic.
In the course of the proof of Theorem 1.2, we shall also be needing the following
result of Bass-Serre theory (Corollary 1, p. 55 [20]).
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Theorem 2.1. Suppose G is a group acting without inversion on a tree X and let
R " G be the subgroup of G generated by the elliptic isometries. Then !1(G \ X ) ∼=
G/R. In particular, since !1(G \ X ) is a free group, either

• G \ X is a tree, in which case !1(G \ X ) = {1} and G = R, or
• !1(G \ X ) ∼= G/R is a free group of rank ! 1, whence G has an infinite cyclic
quotient.

§3. Actions of completely metrisable and locally compact groups.

3.1. Discontinuous and definable actions. Before we begin the proof of Theo-
rem 1.2, we shall first provide some examples providing empirical evidence for
Conjecture 1.6. At the same time, these examples delimit the type of continuity that
one can hope for in general.

• A completely metrisable, locally compact group acting without inversion
with no open vertex stabiliser.

To construct such an example, let G be the union of a countable chain of non-open
proper subgroups

G0 < G1 < G2 < · · · < G =
⋃

n∈N

Gn.

Then when G acts on the corresponding tree X with vertex set

VertX = G/G0 / G/G1 /G/G2 / · · ·

the vertex stabilisers are simply conjugates of the groups Gn , none of which are
open. For example, if B is a Hamel basis for R as a Q-vector space, write B as the
union of a strictly increasing chain of proper subsets Bn . Then if Gn is theQ-vector
subspace generated by Bn , the Gn form an increasing, exhaustive chain of proper
non-open subgroups of G . However, in this case, there is a neutral fixed end forG .

• A completely metrisable, locally compact group acting without inversion,
neither fixing an end nor having open vertex stabilisers.

For this example, let G be non-discrete and let X be the tree with vertices {∗} ∪G ,
where ∗ is a point not in G , and equip X with edges between ∗ and g for all
g ∈ G . Then G acts without inversion on X by fixing ∗ and otherwise acting by
left translation on the vertices g ∈ G . Thus, since G is not discrete, the stabilisers
stabG(g) = {1} fail to be open. Moreover, there is no end to fix. Nevertheless,
in this example, G has an open subgroup fixing a vertex of X , namely ∗. In the
concrete example, G is itself the open subgroup in question, but this can also be
avoided with more care.

• ZN has no open subgroup with property (FA’).

We recall that a group has property (FA’) if whenever it acts without inversion
on a tree, every element is elliptic. Since any open subgroup of ZN admits an
epimorphism onto Z, no open subgroup satisfies property (FA’). As we shall see
later, this distinguishes completely metrisable groups from locally compact groups.
For completeness, we show that in the definable setting, some of the above
discontinuities disappear (see [12] for the basic concepts and results of descriptive
set theory).
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Proposition 3.1. Suppose X is a standard Borel tree, i.e., VertX and EdgeX are
standard Borel spaces and the functions o, t, · are Borel. Let G be a Polish, i.e.,
separable, completely metrisable group acting without inversion on X such that the
action G ! VertX is Borel. Then there is an open subgroupH " G fixing a vertex.

Proof. Fix some vertex x0 ∈ VertX . We note that for any n,

Bn = {g ∈ G | d (gx0, x0) " n}

=
⋃

m!n

{g ∈ G | ∃e1, e2, . . . , em ∈ EdgeX t(ei ) = o(ei+1)

& x0 = o(e1) & gx0 = t(em)}

is analytic. Since
⋃

n Bn = G , some Bn is non-meagre, whence by Pettis’ Theorem
(see Theorem (9.9) in [12]) BnB−1

n = BnBn ⊆ B2n is a neighbourhood of the
identity in G . Now pick some neighbourhood U of the identity in G such that
U 2n+1 ⊆ B2n. Then, every element of U is elliptic. For otherwise, if g ∈ U is
hyperbolic of amplitude ‖g‖ > 0, then g2n+1 ∈ U 2n+1 is hyperbolic of amplitude
> 2n, whence d (gx0, x0) > 2n, contradicting g ∈ B2n . Now pick a neighbourhood
W ⊆ U of the identity such that W 2 ⊆ U . Then every element of W is elliptic
and, moreover, if g,f ∈ W , then also gf ∈ U is elliptic. By Serre’s Lemma,
Xg ∩ Xf &= ∅ for any g,f ∈ W . Also, if g ∈ W , then, since d (gx0, x0) " 2n, we
have d (x0, Xg) " n. It follows that

⋂

g∈W Xg &= ∅, and so, ifH is the open subgroup
of G generated byW ,H fixes any vertex in

⋂

g∈W Xg . 1

3.2. Actions on a line. Dudley’s Theorem 1.1 in particular implies that if a com-
pletely metrisable or locally compact group G acts by translations on a biinfinite
line " , then the kernel of the action is open in G . Now, if we also allow reflections,
this no longer holds, since G could have a non-open subgroup H " G of index 2,
whenceG/H ∼= Z2 and hence alsoG act by reflections on " , the latter with kernelH .
Nevertheless, as we shall see below, the proof of Dudley’s result can be adapted to
show that there is always an open subgroup fixing a vertex.
Recall that the infinite dihedral groupD∞ is the group

D∞ = Z2 ∗ Z2 = 〈a, b | a2 = b2 = 1〉.

We can also see D∞ as the group of all automorphisms of the biinfinite line " =
(. . . , x−1, x0, x1, . . . ) generated by a reflection a = R0 around x0 and a reflection
b = R1/2 around the midpoint between x0 and x1. Note also that if we instead let b
be the reflection R1 around x1, we obtain an action of D∞ without inversion on " .
We thus have a bijective correspondence between actions without inversion on "
and homomorphisms into D∞.

Theorem 3.2. Let G be a completely metrisable group acting without inversion on
the biinfinite line " . Then there is an open subgroup fixing a vertex.

Proof. Suppose first that any openV 4 1 contains a hyperbolic element. Let also
U 4 1 be open and n ! 1. Pick then V 4 1 open such that V n ⊆ U . So if g ∈ V is
hyperbolic, gn ∈ U is hyperbolic of amplitude ‖g‖ ! n. Suppose now instead that
for any open V 4 1 there are elliptic g, h ∈ V with no common fixed point. Then
for such g, h ∈ V, gh ∈ V 2 is hyperbolic. It follows from these considerations that
if no open subgroup ofG fixes a vertex, then any open neighbourhood of 1 contains
hyperbolic elements of arbitrarily large amplitude.
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So suppose towards a contradiction thatG has no open subgroup fixing a vertex
and find a sequence gi ∈ G converging to 1 such that, on the other hand, ‖gi‖ → ∞.
By passing to a subsequence, we can suppose that there are even numbers ki ! 1
such that the infinite products

ym = gm(gm+1(gm+2(. . . )
km+2)km+1 )km ∈ G

exist and the following are satisfied

(1) km < ‖gm+1‖,
(2) ym = gmy

km
m+1,

(3) km = m +
∑m
i=1 ‖gi‖.

Now, if ym+1 elliptic, then y2m+1 acts trivially on " , whence, as km is even,

‖ym‖ = ‖gmy
km
m+1‖ = ‖gm‖ > km−1.

On the other hand, if ym+1 is hyperbolic, then, since gm is hyperbolic too,

‖ym‖ = ‖gmy
km
m+1‖ ! km · ‖ym+1‖ − ‖gm‖ ! km − ‖gm‖ > km−1.

It follows that for all m,

‖y1‖ = ‖g1y
k1
2 ‖

! ‖yk12 ‖ − ‖g1‖

! ‖y2‖ − ‖g1‖

= · · ·

! ‖ym+1‖ −
m
∑

i=1

‖gi‖

> km − (km −m)

= m,

contradicting that ‖y1‖ is finite. 1

3.3. Proof of Theorem 1.2. For the proof of Theorem 1.2, we shall need the
following basic calculation (this is (6.14) in Alperin and Bass [3]).

Proposition 3.3. Suppose a group G acts without inversion on a tree X and let
x ∈ VertX . Then the amplitude ‖ · ‖ : G → N is given by

‖g‖ = max
{

0, d (x, g2(x))− d (x, g(x))
}

.

Proof. Fix x ∈ VertX . Suppose g ∈ G is hyperbolic. Then as can be seen from
Figure 1, we have ‖g‖ = d (x, g2(x))− d (x, g(x)).
On the other hand, if g is elliptic, let y ∈ Xg be the vertex in Xg closest to x.
Then, the geodesic path from x to g(x) is the concatenation of x− y and y− g(x),
while, on the other hand, the concatenation of x − y and y − g2(x) also provides
a path from x to g2(x), though perhaps not the shortest (see Figure 1). Since
d (y, x) = d (y, g(x)) = d (y, g2(x)), we see that

d (x, g2(x)) " d (x, g(x)).

In any case,

‖g‖ = max
{

0, d (x, g2(x))− d (x, g(x))
}

. 1
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! "g

• • •
x g(x) g2(x)

g hyperbolic g elliptic

•"
"
"

"
"

#
#
#
#
##

##

g2(x)
•• •

y ∈ Xg

x g(x)

Figure 1.

Corollary 3.4. LetG be a topological group acting without inversion on a treeX .
Suppose that for some x ∈ VertX the map

g ∈ G 6→ d (x, g(x)) ∈ N

is continuous. Then the amplitude ‖ · ‖ : G → N is continuous.

Let us first recall the statement of Theorem 1.2.

Theorem 3.5. Let G be a completely metrisable or locally compact group acting
without inversion on a tree X . Then the following four properties are equivalent.

(1) G either fixes an end or has an open subgroup fixing a vertex,
(2) the amplitude ‖ · ‖ : G → N is a continuous function on G ,
(3) the set of elliptic isometries is somewhere comeagre in G ,
(4) there is an open subgroup consisting of elliptic isometries.

Moreover, the above properties hold for any action of G if and only if whenever G is
written as a non-trivial free product with amalgamation,G = A ∗C B, the subgroups
A, B, and C are open in G .

Proof. Suppose G acts without inversion on a tree X .
(1)⇒ (2): Assume G satisfies (1). We show that ‖ · ‖ : G → N is continuous.
Suppose first that e is an end fixed by G and define a homomorphism ! : G → Z

as follows

!(g) =











0; if g is elliptic,

‖g‖; if g is hyperbolic and e is an attracting fixed end for g,

−‖g‖; if g is hyperbolic and e is a repulsing fixed end for g.

Since e is a fixed end for g, this is easily seen to be a homomorphism, and so, by
Theorem 1.1, ! is continuous. Thus, also ‖ · ‖ : G → N given by ‖g‖ = |!(g)| is
continuous.
Now suppose instead thatK is an open subgroup ofG fixing a vertex x ∈ VertX .
Note that if f, g ∈ G satisfy g−1f, g−2f2 ∈ K , then g(x) = f(x) and g2(x) =
f2(x), whence, by Proposition 3.3, ‖g‖ = ‖f‖. Since K is open it follows that ‖ · ‖
is locally constant and thus continuous.
(2)⇒ (3): Assume that ‖ · ‖ is continuous. Then the set E = {g ∈ G | ‖g‖ = 0}
of elliptic isometries is non-empty open and hence somewhere comeagre in G .
(3)⇒ (4): We split the proof of this implication into several lemmas.
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Lemma 3.6. Suppose s = (x0, x1, . . . , xn) is a finite line segment of X and B ⊆ G
is a somewhere comeagre set of elliptic isometries such thatXg ∩ s &= ∅ for all g ∈ B.
Then there is an open subgroupH " G that fixes a single vertex x ∈ VertX .

Proof. Let {xi , xi+1, . . . , xj} ⊆ {x0, x1, . . . , xn} be a segment, minimal with
respect to the property that for a somewhere comeagre subset of elliptic isometries
D ⊆ G we have

Xg ∩ {xi , xi+1, . . . , xj} &= ∅

for all g ∈ D. Fix also the corresponding setD and assume toward a contradiction
that i < j.
Now, choose a non-empty open subset U ⊆ G in which D is comeagre and fix a
non-empty open subset V ⊆ U such that V 2j+1V−2j ⊆ U . By the minimality of
{xi , xi+1, . . . , xj}, we can find g, h ∈ D ∩ V such that

xi ∈ Xg, xi+1 /∈ Xg, xj−1 /∈ Xh, xj ∈ Xh.

Since then Xg ∩ Xh = ∅, hg is a hyperbolic isometry of amplitude

‖hg‖ = 2 · dist(Xh,Xg) = 2 · d (xj, xi) ! 2

along a line "hg containing the geodesic path from Xg to Xh , i.e., {xi , xi+1, . . . , xj}.
By inspection one sees that hg translates the line "hg in the direction from xi toward
xj (assuming that the action of G on X is a left-action). It follows that if Y is a
subtree of X containing some xp, i < p " j but not containing xi , then

(hg)j(Y ) ∩ {xi , xi+1, . . . , xj} = ∅.

Note now that as V 2j+1V−2j ⊆ U , g, h ∈ V and D is comeagre in U , the set

E = D ∩ (hg)−jD(hg)j

is comeagre in V. So, by the minimality of {xi , xi+1, . . . , xj}, we can find some
k ∈ E such that xi /∈ Xk ∩ {xi , xi+1, . . . , xj} &= ∅. We then have that

X(hg)jk(hg)−j = (hg)
j(Xk)

is disjoint from {xi , . . . , xj}, contradicting that (hg)jk(hg)−j ∈ D.
Thus, our assumption that i < j is incorrect and hence, for all g ∈ D, xi =
xj ∈ Xg . LettingH be the subgroup of G generated byD,H fixes xi and by Pettis’
Theorem (see Theorem (9.9) in [12]) is an open subgroup of G . 1

Lemma 3.7. Suppose "+ = (x0, x1, x2, . . . ) is an infinite half-line in X and B ⊆ G
is a somewhere comeagre set of elliptic isometries such thatXg ∩"+ &= ∅ for all g ∈ B.
Then there is an open subgroupH " G either fixing a vertex or having a neutral fixed
end.

Proof. Fix a non-empty open setU in which B is comeagre and let V ⊆ U be a
non-empty open subset such that VVV−1 ⊆ U .
If for all f ∈ B ∩ V, Xf contains a tail of "+, then if H is the subgroup of G
generated by B ∩ V, H is open by Pettis’ Theorem and "+ is a neutral fixed end
forH .
So suppose instead that there is some f ∈ B ∩ V such that no tail of "+ is
contained in Xf and let n be maximal such that xn ∈ Xf .
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Claim 3.8. For a somewhere comeagre subset C ⊆ B and all g ∈ C ,

Xg ∩ {x0, x1, . . . , x2n} &= ∅.

Proof. Note that by assumption on n,

f({xn+1, xn+2, xn+3, . . . }) ∩ {xn+1, xn+2, xn+3, . . . } = ∅.

Now, let Y ⊆ X be the subtree of X consisting of all y whose geodesic path to xn
contains the line segment (x2n+1, x2n, . . . , xn). Since for any y ∈ Y ,

d (f(y), xn) = d (f(y), f(xn)) = d (y, xn) ! d (x2n+1, xn) > n,

we see that f(Y ) ∩ {x0, . . . , xn} = ∅. Moreover, for any y ∈ Y , the geodesic path
from f(y) to f(xn) = xn contains the line segment f({x2n+1, x2n, . . . , xn}), so as

f({xn+1, xn+2, xn+3, . . . }) ∩ {xn+1, xn+2, xn+3, . . . } = ∅,

we have f(Y ) ∩ "+ = ∅.
Now, since f ∈ V, we have fVf−1 ⊆ U , so C = B ∩ f−1Bf is comeagre in V.
It follows that for every g ∈ C , Xg ∩ {x0, x1, . . . , x2n} &= ∅. For assume this fails for
some g ∈ C . Then, since Xg ∩ "+ &= ∅,

Xg ∩ {x2n+1, x2n+2, x2n+3, . . . } &= ∅

and hence Xg ⊆ Y . Now fgf−1 ∈ B, but

Xfgf−1 ∩ "+ = f(Xg) ∩ "+ ⊆ f(Y ) ∩ "+ = ∅,

which contradicts the assumption that Xh ∩ "+ &= ∅ for all h ∈ B. 1

Now applying Lemma 3.6 to the somewhere comeagre set C and the finite line
segment s = (x0, . . . , x2n), we obtain an open subgroup H of G fixing a vertex
of X . 1

Lemma 3.9. Suppose " = (. . . , x−2, x−1, x0, x1, x2, . . . ) is a biinfinite line inX and
B ⊆ G is a somewhere comeagre set of elliptic isometries such that Xg ∩ " &= ∅ for
all g ∈ B. Then there is an open subgroupH " G either fixing a vertex or having a
neutral fixed end.

Proof. Let U ⊆ G be a non-empty open set in which B is comeagre and let
V ⊆ U be a non-empty open subset such that VVV−1 ⊆ U .
Assume first that for some f ∈ B ∩V, f(") &= " and pick some xn ∈ " such that
f(xn) /∈ " . Then either

f({xn, xn+1, xn+2, . . . }) ∩ " = ∅

or

f({. . . , xn−2, xn−1, xn}) ∩ " = ∅.

Without loss of generality, we can suppose the first option holds. Notice that, since
B is comeagre inU and fVf−1 ⊆ U , B ∩f−1Bf is comeagre in V. We claim that
if g ∈ B ∩ f−1Bf, then

Xg ∩ {. . . , xn−3, xn−2, xn−1} &= ∅.

If not, pick a g for which it fails. Since g ∈ B, Xg ∩ " &= ∅ and hence

Xg ∩ {xn, xn+1, xn+2, . . . } &= ∅.
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So Xg is contained in the subtree of X consisting of all y ∈ X whose geodesic
path to {. . . , xn−3, xn−2, xn−1} passes through xn. By choice of f it follows that
f(Xg)∩" = ∅. Butf(Xg) = Xfgf−1 andfgf−1 ∈ B, contradicting the assumption
on B.
It thus follows that there is a half-line "+ = (xn, xn+1, xn+2, . . . ) in X such that
for a somewhere comeagre set C = B ∩ f−1Bf of elliptic isometries we have
Xg ∩ "+ &= ∅ for all g ∈ C . By Lemma 3.7, the conclusion of the lemma follows.
Now assume instead that for all f ∈ B ∩ V, f(") = " . Then, if K " G is
the subgroup of G generated by B ∩ V, K will be open by Pettis’ Theorem and,
moreover, " is invariant under K . Now, if G is completely metrisable, so is K ,
and hence, by Theorem 3.2, there is an open subgroup H " K fixing a vertex of
" ⊆ X . If on the other hand, G and thus also K are locally compact, as we shall
see in Theorem 4.1, K has an open subgroupH with property (FA’) that therefore
also fixes a vertex of " ⊆ X . 1

Now suppose finally that the set E ⊆ G of elliptic isometries is somewhere
comeagre. We will show that G has an open subgroup H that either fixes a vertex
or has a neutral fixed end. So, let U ⊆ G be a non-empty open set in which E is
comeagre and let V ⊆ U be a non-empty open subset such that VVV−1 ⊆ U .
Suppose first that the trees {Xf}f∈E∩V intersect pairwise. Then, if there is some
x ∈

⋂

f∈E∩V Xf , the somewhere comeagre set E ∩ V and hence also the open
subgroupH " G generated by E ∩V fixes x. Otherwise, if

⋂

f∈E∩V Xf = ∅, there
is an infinite half-line "+ such that any Xg , g ∈ E ∩V, contains a tail of "+, and so
the open subgroupH " G generated by E ∩ V has a neutral fixed end.
So suppose instead that for some f, g ∈ E ∩ V, Xf ∩ Xg = ∅. Then fg−1 is
a hyperbolic isometry acting by translation on some line "fg−1 ⊆ X . Also, for
all h ∈ E ∩ Egf−1, Xh ∩ "fg−1 &= ∅, for otherwise, hfg−1 will be hyperbolic,
contradicting that hfg−1 ∈ E. Applying Lemma 3.9 to the somewhere comeagre
set E ∩ Egf−1, we again find an open subgroupH either fixing a vertex or having
a neutral fixed end.
(4) ⇒ (1): This follows from Proposition 5 in [2], but for the convenience of
the reader, we shall reproduce the argument here. Suppose that H " G is an
open subgroup consisting of elliptic isometries and that G has no open subgroup
fixing a vertex of X . Then, in particular, H fixes no vertex and hence must have
a neutral fixed end e. We claim that e is fixed by G . To see this, suppose toward
a contradiction that for some g ∈ G , we have g · e &= e. Then g · e is a neutral
fixed end for gHg−1, whereby both e and g · e are neutral fixed ends for the open
subgroupN = H ∩ gHg−1 " G . But, as g · e &= e, there is a unique biinfinite line "
sharing tails with both e and with g · e. It follows that any h ∈ N fixes two opposite
tails of " , whereby h fixes every vertex of " . This contradicts that no open subgroup
of G fixes a vertex.
For the moreover part, suppose that wheneverG acts without inversion on a tree
properties (1), (2), (3), and (4) hold. Assume G = A ∗C B is a decomposition of G
as a non-trivial free product with amalgamation and let X be the Bass-Serre tree
(see Theorem 7, p. 32 [20]) corresponding to this decomposition having vertices

VertX = G/A / G/B
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and with edges between gA and gB for any g ∈ G . By assumption onG , there is an
open subgroupH " G consisting of elliptic isometries. Also, sinceC is a subgroup
of A and B, it suffices to show that C is open in G .
Suppose first that H fixes a vertex of X . Then, by construction of X , H is
contained in a conjugate of either A or of B, say H " gAg−1. Pick b ∈ B \ C .
Then

g−1Hg ∩ bg−1Hgb−1 " A ∩ bAb−1 " C

and so C is open too.
Suppose now instead thatH " G fixes an end e. We can write e = ["+], where

"+ = (1A, a0B, a0b0A, a0b0a1B, a0b0a1b1A, . . . )

for ai ∈ A and bi ∈ B. Since B is a proper subgroup of G , it has index at least 2
and hence there is some a ∈ A such that aB &= a0B. It follows that

aa−10 · "+ = (1A, aB, ab0A, ab0a1B, ab0a1b1A, . . . )

intersects "+ only in the vertex 1A ∈ VertX . So N = H ∩ aa−10 Ha0a
−1 is an open

subgroup of elliptic isometries fixing the biinfinite line

" = "+ ∪ aa−10 · "+.

Thus N must be contained in a conjugate of C , whereby C is open too.
For the converse implication, suppose that whenever G = A ∗C B is a decom-
position as a non-trivial free product with amalgamation, the subgroups A, B,
and C are open in G . Assume also that G acts without inversion on a tree X .
By Theorem 2.1, if R denotes the subgroup of G generated by elliptic isometries,
then G/R ∼= !1(G \ X ). So, as !1(G \ X ) is a free group, by Theorem 1.1 the
quotient map from G onto G/R has open kernel, whence R is an open subgroup
of G . Now, applying Theorem 2.1, to the action of R on X , we see that R \ X is
a tree. By Proposition 17, p. 32 of [20], we can find a fundamental domain T ⊆ X
for the action of R on X , whence T is a subtree of X . We let for every x ∈ VertT ,
Rx = StabR(x), and for every e ∈ EdgeT ,

Re = Re = StabR(e) = Ro(e) ∩Rt(e).

So the inclusion homomorphisms αe : Re ↪→ Ro(e), αe : Re ↪→ Rt(e) are monomor-
phisms. This defines a tree of groups (R,T ), and by Theorem 10, p. 39 of [20], we
have

R ∼= lim
−→
(R,T ).

In other words, R is the free product of the groups {Rx}x∈VertT subject to the
additional relations

αe(g) = αe(g)

for e ∈ EdgeT and g ∈ Re = Re .
Now, for any edge e ∈ EdgeT , let Te be the subtree of T spanned by the set of
vertices x whose geodesic to t(e) passes through e. So, for any edge e ∈ EdgeT ,
the set of vertices of T decomposes as

VertT = VertTe / VertTe,

whence, if Ae = 〈Rx | x ∈ VertTe〉, then R = Ae ∗Re Ae .
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Now suppose that G has no open subgroup fixing a vertex and hence no open
subgroup fixing an edge. Then, by the basic assumption on G , we see that for
any edge e ∈ EdgeT , the decomposition R = Ae ∗Re Ae is trivial, whence ei-
ther

Ae = Ro(t) = Re " Rt(e) " Ae (1)

or

Ae = Rt(e) = Re " Ro(e) " Ae. (2)

We note that if both Ae = Re and Re = Ae , then R = Re , contradicting that no
open subgroup of G fixes an edge. Thus, for any edge e ∈ EdgeT , exactly one
of (1) and (2) holds. This gives us a natural orientation of the edges of the tree T ,
namely by letting

Edge+T = {e ∈ EdgeT | Ae = Ro(t) = Re " Rt(e) " Ae}.

Assume towards a contradiction that there is a vertex x ∈ VertT such that any
edge whose terminal vertex is x belongs to Edge+T . Then, as R is generated by

Rx ∪
⋃

{Ae | e ∈ EdgeT & t(e) = x}

= Rx ∪
⋃

{Ae | e ∈ Edge
+T & t(e) = x} = Rx,

we see that R = Rx , contradicting that G has no open subgroup fixing a vertex.
Thus, for every vertex x, there is a positively oriented edge whose origin is x. We
claim that moreover there is exactly one such edge for each vertex x. To see this,
suppose e1, e2 ∈ Edge

+T are distinct edges with o(e1) = o(e2) = x. Then, as e1 is
positively oriented,

Ae2 " Ae1 " Rt(e1),

whence Ae2 = Rt(e2) = Re2 " Rx , contradicting that e2 is positively oriented.
So every vertex has exactly oneoutgoing, positively oriented vertex. This uniquely
defines an end of the tree by following the positively oriented path originating from
any vertex. I.e., let x0 be an arbitrary vertex of T and define inductively xn by
letting xn+1 be the terminal vertex of the unique positively oriented edge originating
at xn. Then, we see that if (yn) was a similarly defined path originating at another
vertex y0, the two paths "+ = (xn) and (yn) would have a common tail. Moreover,
as

Rx0 " Rx1 " Rx2 " · · ·

and

Ry0 " Ry1 " Ry2 " · · · ,

we see thatRy0 " Rxn for all but finitely many n. Since R is generated by the vertex
stabilisers, it follows that R =

⋃

n∈N
Rxn , whence e = ["

+] is a neutral fixed end
for R. Thus, R is an open subgroup of G consisting entirely of elliptic isometries.
In any circumstance, Property (4) holds. 1
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§4. Further results on completely metrisable and locally compact groups. There
are a number of results in the literature treating various aspects of completely
metrisable and locally compact groups acting on trees, though these are somewhat
scattered and the authors seem to have worked mostly independently of each other.
Using Dudley’s Theorem, S. A. Morris and P. Nickolas [16] showed that if G
is locally compact and ! : G → A ∗ B is a homomorphism into an arbitrary free
product of groups, then either ! is continuous with respect to the discrete topology
on A ∗ B or the image !(G) lies within a conjugate of either A or B.
In a completely unrelated work, H. Bass [4] was developing the structure theory
for groups acting on trees and in this connection showed that profinite groups have
property (FA’). On the other hand, S. Koppelberg and J. Tits [14] proved that if F is
a finite perfect group, the infinite productF N is not the union of a countable chain of
proper subgroups. Together, these results imply thatF N actually has property (FA),
i.e., whenever F N acts without inversion on a tree it fixes a vertex.
R. Alperin [1, 2] continued the study of properties (FA’) and (FA) in the context
of topological groups and showed that both compact groups and connected locally
compact groups have property (FA’).
Recently there has been renewed interest in such questions from model theory.
In particular, D. Macpherson and S. Thomas [15] showed that is G is a completely
metrisable group with a comeagre conjugacy class, then G has property (FA’)
(a simple proof of this is given in [18]). A number of other authors, e.g., [11,
10, 13, 21] give various results related to both Dudley’s Theorem and the result of
Macpherson and Thomas.
On a somewhat different note, G. M. Bergman [5] showed that whenever the
infinite symmetric group S∞ acts by isometries on a metric space without any
assumption of continuity, all orbits are bounded. It easily follows from this that S∞
has property (FA) (which was proved earlier by J. Saxl, S. Shelah and S. Thomas
in [19]) and has even stronger fixed point properties. Bergman’s result has now been
verified for a number of other non-locally compact groups by various authors.
Let us first settle the situation for locally compact groups by deducing from
Alperin’s results.

Theorem 4.1. Any locally compact, Hausdorff topological group has an open sub-
group with property (FA’).

Proof. Let G0 be the connected component of the identity in G . Since G0 is
connected and locally compact, Hausdorff, G0 has property (FA’) by the results
of Alperin [2]. Moreover, G/G0 is a locally compact, totally disconnected group,
so, by a theorem of van Dantzig ([9], Theorem 1.34), G/G0 has a neighbourhood
basis at the identity consisting of compact open subgroups. So let K " G/G0 be
compact open and letH " G be the preimage ofK under the projection map from
G toG/G0. ThenH is an open subgroup ofG containingG0. By the main result of
Alperin [1], K = H/G0 has property (FA’). Since bothH/G0 and G0 have property
(FA’), it follows from Corollary 2 of [2] that alsoH has (FA’). 1

So, in particular, any action without inversion of a locally compact group on a
tree satisfies the equivalent conditions of Theorem 1.2. For completely metrisable
groups, we have not been able to decide whether this is the case, though we can
prove it under fairly mild additional assumptions on the group.
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In the following,G will be a completely metrisable group acting without inversion
on a tree X . We shall begin by an easy observation (see H. Bass [4]).

Lemma 4.2. Suppose g ∈ G is hyperbolic and H " G is a subgroup containing g
such thatH · "g = "g . Then NG (H ) · "g = "g .

Proof. Suppose f ∈ NG(H ), i.e., that fHf−1 = H . Then fgf−1 ∈ H is
hyperbolic, and so the unique fgf−1-invariant line must equal "g . In other words,
f · "g = "fgf−1 = "g . 1

Lemma 4.3. Every hyperbolic isometry g ∈ G generates an infinite discrete sub-
group of G .

Proof. Note that, as G is Hausdorff, 〈g〉 is contained in NG (〈g〉) and that
〈g〉 · "g = "g . Therefore, by the preceding lemma, we also have 〈g〉 · "g = "g . This
therefore defines an action by 〈g〉 without inversion on the line "g . By Theorem 3.2,
there is an open subgroupK " 〈g〉 fixing a vertex, whenceK ∩ 〈g〉 = {1}, showing
that 1 is isolated in 〈g〉. It follows that g generates an infinite discrete subgroup
of G . 1

We are now ready for the proof of Theorem 1.5.

Theorem 4.4. Let G be a completely metrisable group such that the set

D = {g ∈ G | 〈g〉 is either finite or non-discrete}

is somewhere dense in G . Then G has property (OA).

Proof. Note that by Lemma 4.3, whenever G acts without inversion on a tree,
every element of D is elliptic. So, by Theorem 1.2, it suffices to show that D is
somewhere comeagre. But, if {Vk}k∈N is a neighbourhood basis at the identity
of G , then

D = {g ∈ G | 〈g〉 is either finite or non-discrete}

=
⋂

k∈N

{g ∈ G | ∃n ! 1 gn ∈ Vk},

is G% and somewhere dense, whence somewhere comeagre. 1

Let us note that Conjecture 1.6, stating that all completely metrisable groups have
property (OA), would imply that any completely metrisable group G , that is either
connected or has a dense conjugacy class, will haveproperty (FA’). For in both cases,
whenever G acts without inversion on a tree, the amplitude would be constant and
hence constantly 0.
Theorem 1.5 can be strengthened in case the set D is actually dense.

Theorem 4.5. Let G be a completely metrisable group such that the set

D = {g ∈ G | 〈g〉 is either finite or non-discrete}

is dense in G . Then G has property (FA’).

Proof. Suppose G acts without inversion on a tree X . Then, by Theorem 1.5,
the amplitude function ‖ ·‖ : G → N is continuous onG . Moreover, by Lemma 4.3,
‖ · ‖ is constantly 0 on the dense set D and hence constantly 0 on G . So every
element of G is elliptic. 1
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The class of completely metrisable groups that satisfy the hypotheses of Theo-
rems 1.5 and 4.5 is fairly rich and somehow orthogonal to the class of Polish groups
with a comeagre conjugacy class. Of course, any element of a compact metric group
generates a finite or non-discrete subgroup, but also in very large groups, such as
the group of measure-preserving automorphisms of the unit interval with Lebesgue
measure equipped with the weak topology, Aut([0, 1], &), the unitary group, U ("2),
and the isometry group of the Urysohn metric space, Isom(U), the generic element
generates non-discrete subgroup (see [17] for a more complete discussion of this
phenomenon).
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[13] A. Khélif, Uncountable homomorphic images of Polish groups are not ℵ1-free groups, Bulletin of

the London Mathematical Society, vol. 37 (2005), no. 1, pp. 54–60.
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