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ABSTRACT. A topological group G is defined to have property (OB) if any G-action by
isometries on a metric space, which is separately continuous, has bounded orbits. We
study this topological analogue of strong uncountable cofinality in the context of Polish
groups, where we show it to have several interesting reformulations and consequences. We
subsequently apply the results obtained in order to verify property (OB) for a number of
groups of isometries and homeomorphism groups of compact metric spaces. We also give
a proof that the isometry group of the rational Urysohn metric space of diameter 1 has
strong uncountable cofinality.

1. INTRODUCTION

We study in this paper a topological version of strong uncountable cofinality. This latter
property has been the object of intense scrutiny by a number of people, since it was first
discovered to hold for the infinite symmetric group, S∞, by George M. Bergman [6].

Definition 1.1. A group G is said to have strong uncountable cofinality if whenever W0 ⊆
W1 ⊆ . . . ⊆ G =

⋃
n Wn, there are n and k such that G = W k

n .

We should mention that the above property is sometimes called the Bergman property
in the literature, but since this terminology is also used for a weaker property, we stick to
“strong uncountable cofinality” throughout the paper.

We now have a large number of interesting results concerning this property, but most
surprising is perhaps the fact that many large permutation groups indeed have strong un-
countable cofinality. One can pick some of these results from [9, 11, 12, 21, 26, 34, 35].
For example, it holds for automorphism groups of 2-transitive linear orders (Droste and
Holland [12]), the group of measure preserving automorphisms of the unit interval (Miller
[26]) and oligomorphic permutation groups with ample generics, e.g., many automorphism
groups of ω-stable, ω-categorical structures (Kechris and Rosendal [21]).

To see what strong uncountable cofinality is really worth, it is useful to consider some
of its consequences and reformulations. First of all, it is clear that no group with strong
uncountable cofinality can be written as a union of a countable chain of proper subgroups,
or, in other words, such groups have uncountable cofinality. Similarly, if 1 ∈ E = E−1

is a generating set for a group with strong uncountable cofinality, then there is some finite
power n such that every element of the group can be written as a word of length n in
E. We express this by saying that the group is Cayley bounded, since it corresponds to
every Cayley graph being of bounded diameter with respect to the word metric. Both
uncountable cofinality and Cayley boundedness have been studied in the literature, though
apparently mostly independently of each other. Uncountable cofinality grew out of J.P.
Serre’s work [30] on property (FA), which is a fixed point property for actions on trees, in
which it proved to be one of the three conditions in his equivalent formulation of property
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(FA) for uncountable groups. It was first proved to hold for certain profinite groups by
S. Koppelberg and J. Tits [23] and has subsequently been verified for a large number of
primarily subgroups of the infinite symmetric group. S. Shelah [31], on the other hand, has
constructed a group having width 240 with respect to any generating set, so the group is
Cayley bounded. As a matter of fact, as was noticed by Droste and Holland [12], these two
properties taken together are equivalent to having strong uncountable cofinality.

However, perhaps more useful for the geometric theory of groups with strong uncount-
able cofinality is the following basic characterisation, of which I learned the equivalence
of (2) and (3) from B.D. Miller [26] and where the equivalence of (1) and (3) was indepen-
dently noticed by Y. de Cornulier [9] and V. Pestov.

Theorem 1.2. The following conditions are equivalent for a group G.
(1) Whenever G acts by isometries on a metric space (X, d) every orbit is bounded.
(2) Any left-invariant metric on G is bounded.
(3) G has strong uncountable cofinality.
(4) Whenever G acts on a metric space (X, d) by mappings, which are Lipschitz for large
distances, every orbit is bounded.
(5) Whenever G acts by uniformly continuous homeomorphisms on a geodesic space (X, d)
every orbit is bounded.

Now, of course, (1),(4) and (5) are really properties one would tend to study in connec-
tion with topological groups modulo some continuity condition, and these are indeed the
main topics of the present paper. We therefore propose the following definition.

Definition 1.3. A topological group G is said to have property (OB) if whenever G acts
by isometries on a metric space (X, d), such that for every x ∈ X the function g ∈ G 7→
gx ∈ X is continuous, then every orbit is bounded.

Similar properties have previously been considered by Jan Hejcman [16] in 1959 (see
also his recent paper [17]) and later by Christopher Atkin [1] under the name of bounded-
ness in the context of uniform spaces. However, let me point of the differences between
their notions and property (OB). A topological group G is bounded if for any non-empty
open subset U ⊆ G there is a finite set A ⊆ G and a number n such that G = UnA. This,
however, is easily seen to fail for our prime example of a group with strong uncountable
cofinality, namely S∞. For if we choose U to be an open subgroup of denumerable index,
as for example the isotropy subgroup of 0 ∈ N, then clearly UnA = UA 6= S∞ for all n
and finite A. Nevertheless, the two notions do turn out to be equivalent in the context of
abelian groups, but most of the groups considered here are very much non-abelian.

One of the reasons for our interest in the property comes from the fact that it can be seen
as an addition to a well-known spectrum of properties studied in geometric group theory,
namely properties (FA), (FH), (T), amenability, etc. One easily sees that property (OB)
implies property (FH) and actually, we shall see that it provides a fairly comprehensive
class of new examples of non-locally compact groups with property (FH).

Much of the work on these properties has been restricted to the locally compact setting,
where the strongest tools are available (e.g., Haar measure). But over the years, a number
of very interesting results concerning the dynamics of non-locally compact Polish groups
have surfaced, for example on the unitary group of `2, where Gromov and Milman proved
that it is extremely amenable [15] and Bekka proved that it has property (T) [4]. Moreover,
in logic, where, e.g., automorphism groups of countable structures tend to be non-locally
compact, there is a multitude of results on permutation groups, e.g., Truss [36] and Hodges,
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Hodkinson, Lascar, and Shelah [19], and also for more inclusive classes of Polish groups,
e.g., Becker and Kechris [3] and Hjorth [18].

Thus, for Polish groups it is natural to look for a similar characterisation of property
(OB), and indeed we have the following result.

Theorem 1.4. The following are equivalent for a Polish group G:
(i) G has property (OB).
(ii) Whenever W0 ⊆ W1 ⊆ . . . ⊆ G is an increasing exhaustive sequence of sets with the
Baire property, there are n and k such that G = W k

n .
(iii) Any compatible left-invariant metric on G is bounded.
(iv) G is finitely generated of bounded width over any non-empty open subset.

For example, a locally compact Polish group has property (OB) if and only if it is
compact.

This gives an indication of how to think of these properties. Namely, one should think
of strong uncountable cofinality as a strong generalisation of finiteness and of property
(OB) as a strong generalisation of compactness. Surprisingly though, this “compactness”
can, apart from compact groups, only be found in large, very much non-locally compact
groups.

We study first the dynamics of property (OB) groups acting continuously by Hölder
mappings, showing that in this case the closure of the orbits gives a decomposition of
the phase space into pieces on which the group acts minimally (often denoted by semi-
simplicity). And secondly we consider the closure properties of the class of property (OB)
groups, for example, it is quite easily seen that it is closed under infinite products, group
extensions over a property (OB) group, and behaves well with respect to short exact se-
quences. I.e., if π : G → H is a continuous homomorphism with dense image where G
has property (OB), then so does H . Most interesting in this connection is the fact that it
passes to subgroups of finite index, for which we give a geometric proof. In his paper [6],
Bergman originally asked whether strong uncountable cofinality was preserved between a
group and its subgroups of finite index, and A. Khélif, in an announcement [22], stated
that this is indeed the case. However, the mentioned geometric proof, which works also
for strong uncountable cofinality, shows the usefulness of the reformulation of strong un-
countable cofinality in terms of isometric actions, where one has the added advantage of
geometric intuition.

However, a large chunk of the paper is concerned with the verification and construction
of groups which have either strong uncountable cofinality or property (OB). Our first ex-
amples are isometry groups of sufficiently homogeneous metric spaces. We turn Theorem
1.4 on its head and ask for when the isometry group of a bounded complete metric space
has property (OB). We provide one sufficient condition that is also of independent interest
and use this to show that the isometry group of the Urysohn metric space of diameter 1 has
property (OB). However, in the case of the rational Urysohn metric space of diameter 1,
one can take advantage of the results of S. Solecki from [32], and use this to show outright
that its isometry group have strong uncountable cofinality.

Theorem 1.5. Let U1 be the Urysohn metric space of diameter 1 and Ω the rational
Urysohn metric space of diameter 1. Then Iso(U1) has property (OB) and Iso(Ω) strong
uncountable cofinality.

We then study a model theoretic version of the unitary group of `2 in some depth. This
is a subgroup U(V) that sits as a dense subgroup in U(`2), which we prove to have ample
generics, the main tool used in proving strong uncountable cofinality for automorphism
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groups of ω-stable, ω-categorical structures in [21] and previously introduced by Hodges,
Hodkinson, Lascar, and Shelah [19]. From ample generics, we prove that also U(V) has
strong uncountable cofinality and has a number of other properties, e.g., the small index
property and satisfies automatic continuity of homomorphisms.

Our final collection of examples comes from topology, where we prove property (OB)
for homeomorphism groups of spheres and of the Hilbert cube.

Theorem 1.6. Homeo(Sm) and Homeo(Q) have property (OB) and, by consequence, any
Polish group is topologically isomorphic to a subgroup of a Polish group with property
(OB).

In the final section of the paper we consider property (FA), and provide a simple proof
of a result of Dugald Macpherson and Simon Thomas stating that if a Polish group with
a comeagre conjugacy class acts on a tree, there every element of the group fixes a vertex
or an edge. Actually, we extend their theorem to all actions on Λ-trees, though of course,
the case of simplicial trees is ultimately the most interesting, due to the structure theory of
Serre for groups with property (FA) [30].

Though we shall from time to time use a little bit of descriptive set theory, the article
should be comprehensible to the general analyst. Really, all one needs to know is the
definition of a Polish space (a completely metrisable separable topological space), a Polish
group (a topological group whose topology is Polish), Borel sets (the sets belonging to the
σ-algebra generated by the open sets), analytic set (a subset in a Polish space which is the
continuous image of a Borel set) and sets having the Baire property (i.e., sets A such that
for some open set U and some meagre set M , A = U4M ). A basic result of Lusin and
Sierpiński says that analytic sets have the Baire property.

I am grateful to Yves de Cornulier, Alekos Kechris, Benjamin Miller, Vladimir Pestov,
Stevo Todorčević and the anonymous referee for help and welcome criticism at various
stages in the preparation of this paper.

2. STRONG UNCOUNTABLE COFINALITY

For the following, recall that a geodesic space is a metric space such that between any
two points x and y there is a path of length d(x, y). For example, Banach spaces and R-
trees are geodesic spaces. Recall also that a mapping φ : X → X , where X is a metric
space, is called Lipschitz for large distances if there are constants c,K such that for all
x, y ∈ X , d(φx, φy) ≤ c · d(x, y) + K.

The following result states the basic equivalent formulations of strong uncountable co-
finality.

Theorem 2.1. The following conditions are equivalent for a group G.
(1) Whenever G acts by isometries on a metric space (X, d) every orbit is bounded.
(2) Any left-invariant metric on G is bounded.
(3) G has strong uncountable cofinality.
(4) Whenever G acts on a metric space (X, d) by mappings which are Lipschitz for large
distances, every orbit is bounded.
(5) Whenever G acts by uniformly continuous homeomorphisms on a geodesic space (X, d)
every orbit is bounded.

Proof. Clearly, 1 ⇒ 2 is trivial.
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2 ⇒ 3: Suppose that W0 ⊆ W1 ⊆ W2 ⊆ . . . ⊆ G is an exhaustive sequence of
subsets of G. Notice that then W0 ∩W−1

0 ⊆ W1 ∩W−1
1 ⊆ . . . ⊆ G is also exhaustive.

So we can suppose that the Wn are symmetric, and by renumbering the sequence, we can
also suppose that W0 = {1}. Notice now that the following left-invariant metric on G is
bounded if and only if G = W k

n for some n and k:

d(f, g) = min(k1 + k2 + . . . + kn

∣∣ ∃hi ∈ Wki
fh1 . . . hn = g).

3 ⇒ 4: Assume now that 3 holds and that G acts on a metric space (X, d) by mappings
which are Lipschitz for large distances and find for each g ∈ G constants cg and Kg

witnessing this. Then, if g1, . . . , gk ∈ G and cg1 , . . . , cgk
,Kg1 , . . . ,Kgk

≤ M ,

d(g1 . . . gk · x, g1 . . . gk · y) ≤ M · d(g2 . . . gk · x, g2 . . . gk · y) + M

≤ M2 · d(g3 . . . gk · x, g3 . . . gk · y) + M2 + M

≤ . . .

≤ Mk · d(x, y) + Mk + Mk−1 + . . . + M

≤ Mk · (d(x, y) + k)

(1)

Now, fix an x0 ∈ X and let for n ≥ 1

Wn = {g ∈ G
∣∣ cg,Kg ≤ n & d(x0, g · x0) ≤ n}

This is clearly an increasing exhaustive sequence of subsets of G, so for some M ≥ 1
and k, G = W k

M . We claim that x0’s orbit is bounded in diameter by 2k2Mk. For if
g = g1 . . . gk ∈ G, with g1, . . . , gk ∈ WM ,

d(x0, g · x0) = d(x0, g1 . . . gk · x0)

≤ d(x0, g1 · x0) + d(g1 · x0, g1g2 · x0)+

. . . + d(g1 . . . gk−1 · x0, g1 . . . gk−1gk · x0)

≤ d(x0, g1 · x0) + M(d(x0, g2 · x0) + 1) + M2(d(x0, g3 · x0) + 2)+

. . . + Mk−1(d(x0, gk · x0) + k − 1)

≤ M + M(M + 1) + M2(M + 2) + . . . + Mk−1(M + k − 1)

≤ 2k2Mk

(2)

So if x is any other point of X , then
d(g · x, x) ≤ d(g · x, g · x0) + d(g · x0, x0) + d(x0, x)

≤ Mk(d(x, x0) + k) + 2k2Mk + d(x, x0)
(3)

Whence x’s orbit is bounded and thus showing 4.
4 ⇒ 5: This implication follows from the general fact that any uniformly continuous

mapping φ on a geodesic space (X, d) is Lipschitz for large distances. To see this, notice
that for some ε > 0 and all x, y ∈ X ,

d(x, y) ≤ ε → d(φx, φy) ≤ 1.

So if d(x, y) ≤ N · ε, there are, since (X, d) is geodesic, x0 = x, x1, . . . , xN = y ∈ X
with d(xi, xi+1) ≤ ε, whence

d(φx, φy) ≤ d(φx0, φx1) + d(φx1, φx2) + . . . + d(φxN−1, φxN ) ≤ N.

In other words, for all x, y ∈ X ,

d(φx, φy) ≤
⌈d(x, y)

ε

⌉
<

1
ε
d(x, y) + 1.
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5 ⇒ 1: Suppose that G acts by isometries on a metric space (X, d). Now, (X, d) might
not be geodesic, but can be extended to a geodesic space as follows:

For any x, y ∈ X , let α(x, y) be a distinct isometric copy of [0, d(x, y)]. We let X̃
be the quotient space of X =

⋃
x,y∈X α(x, y) obtained by for all x, y, z ∈ X identifying

the left endpoints of α(x, y) and α(x, z), identifying the right endpoints of α(y, x) and
α(z, x), and identifying the right endpoint of α(y, x) with the left endpoint of α(x, z). We
define a metric d̃ on X̃ as follows: For a ∈ α(x, y) and b ∈ α(z, u), put

d̃(a, b) = min





|a− 0|+ d(x, z) + |0− b|
|a− 0|+ d(x, u) + |d(z, u)− b|
|a− d(x, y)|+ d(y, z) + |0− b|
|a− d(y, u)|+ d(y, u) + |d(z, u)− b|

Then (X̃, d̃) contains (X, d) isometrically (sending x ∈ X to the equivalence class of the
unique (end)point of α(x, x)). Moreover, the isometric action of G on X extends to X̃
by letting g ∈ G send α(x, y) isometrically and order-preservingly to α(gx, gy). Thus, G

acts by isometries on the geodesic space X̃ and hence, if 5 holds, then every orbit of X̃
and hence every orbit of X is bounded. ¤

This allows us to give the following nice proof that strong uncountable cofinality is pre-
served under short exact sequences: Clearly, if H E G and any action by isometries of G
has bounded orbits, then any action by isometries of G/H has bounded orbits. Conversely,
assume any action by isometries of G/H and of H has bounded orbits and that G acts by
isometries on (X, d). LetO be the closure of an H orbit in X and let A = {g ·O ∣∣ g ∈ G}
be equipped with the Hausdorff metric dH . Then G acts transitively by isometries on
(A, dH) and the action factors through G/H . Therefore, A is bounded and so any orbit is
bounded in X .

3. POLISH GROUPS WITH PROPERTY (OB)

The preceding section is exclusively concerned with discrete groups, but we shall see
that in the case of Polish groups there are again nice equivalent formulations of property
(OB). We first notice that property (OB) can be slightly reformulated for Polish groups.

Lemma 3.1. Let G be a Polish group acting by homeomorphisms on a metrisable space
X , such that the mapping g ∈ G 7→ gx ∈ X is continuous for every x ∈ X . Then the
action is actually jointly continuous, i.e., (g, x) 7→ g · x is continuous from G×X to X .

Proof. Assume that gn → g and xn → x. Since the mapping h ∈ G 7→ hy ∈ X is
continuous for every y ∈ X , we see that G · y is a continuous image of a separable space
and thus separable for every y. Hence Y = G · x ∪ ⋃

n G · xn is an invariant separable
subspace of X . Moreover, the action of G on Y is separately continuous, so, as Y is
metrisable, the action of G on Y is jointly continuous (Kechris [20] (9.16)). Therefore,
gnxn → gx in Y and thus also in X . ¤

In particular, a Polish group has property (OB) if and only if all of its continuous actions
by isometries on separable metric spaces have bounded orbits.

Property (OB) and strong uncountable cofinality fit quite nicely into the well-known
hierarchy of group theoretical fixed-point properties such as property (T), (FH), (FA) etc.
As first sight they do not appear to be a fixed-point properties, but it all depends on the
perspective, as, for example, strong uncountable cofinality is equivalent to a fixed point
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property for its induced actions on the hyperspace of bounded subsets of any metric space
it acts upon.

Definition 3.2. A group G is said to have property (FA) if whenever it acts by automor-
phisms on a combinatorial tree (i.e., a uniquely path connected graph) it either fixes a
vertex or an edge.

A topological group G has property (topFA) if whenever it acts by automorphisms on
a combinatorial tree, such that the stabilisers of vertices are open, then it fixes either a
vertex or an edge.

A group G is said to have property (algFH) if whenever it acts by isometries on a real
Hilbert space H, then it fixes a vector.

A topological group G is said to have property (FH) if whenever it acts by isometries
on a real Hilbert space H, such that for all ξ ∈ H the mapping g ∈ G 7→ g · ξ ∈ H is
continuous, then it fixes a vector.

Admittedly, the fixed point property on trees is mainly interesting in its algebraic ver-
sion, property (FA). Indeed, it is the main object of Serre’s book [30] in which he shows
that it is equivalent to the conjunction of (i) the group has no infinite cyclic quotients, (ii)
the group is not a non-trivial free product with amalgamation and (iii) the group is not
the union of a countable chain of proper subgroups. The fixed point property on Hilbert
spaces has correspondingly mostly been studied for countable discrete groups (in which
case properties (algFH) and (FH) coincide) and for locally compact groups, where one is
interested in property (FH). It is also well-known that (algFH) is stronger than (FA) and
similarly, (FH) is stronger than (topFA). Moreover, for a group of isometries of Hilbert
space to fix a point it is enough that there should be a bounded orbit. This follows from the
lemma of the centre (see Bekka, de la Harpe and Valette [5]). So the following proposition
sums up the connections between our properties.

Proposition 3.3. The following diagram of implications holds for topological and abstract
groups.

Strong uncountable cofinality ⇒ Property (OB)
⇓ ⇓

Property (algFH) ⇒ Property (FH)
⇓ ⇓

Property (FA) ⇒ Property (topFA)

Now in turn, we will show the basic equivalences of the different formulations of prop-
erty (OB) for Polish groups. The following extracts the basic properties of the usual proof
of the Birkhoff-Kakutani metrisation theorem, see, e.g., Hjorth [18], Theorem 7.2.

Lemma 3.4. Let G be a topological group and (Vn)n∈Z a neighbourhood basis at the
identity consisting of open sets such that
(I) Vn = V −1

n ,
(II) G =

⋃
n∈Z Vn,

(III) V 3
n ⊆ Vn+1.

Let δ(g1, g2) = inf(2n
∣∣ g−1

1 g2 ∈ Vn) and put

d(g1, g2) = inf(
k∑

i=0

δ(hi, hi+1)
∣∣ h0 = g1, hk = g2).

Then

(4) δ(g1, g2) ≤ 2d(g1, g2) ≤ 2δ(g1, g2)
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and d is a left-invariant compatible metric on G.

Definition 3.5. Let G be a Polish group. We say that G is topologically Bergman if when-
ever

B0 ⊆ B1 ⊆ B2 ⊆ . . . ⊆ G

is an exhaustive sequence of subsets with the Baire property, then G = Bk
n for some n and

k. If there is a k which works for all sequences (Bn), then we say that G is topologically
k-Bergman.

Theorem 3.6. The following are equivalent for a Polish group G.
(i) G has property (OB).
(ii) G is topologically Bergman.
(iii) Any compatible left-invariant metric on G is bounded.
(iv) G is finitely generated of bounded width over any non-empty open subset.

Proof. (iii)⇒(ii): Assume that G is not topologically Bergman as witnessed by some ex-
haustive sequence of subsets with the Baire property

B0 ⊆ B1 ⊆ B2 ⊆ . . . ⊆ G.

By considering B0 ∩ B−1
0 ⊆ B1 ∩ B−1

1 ⊆ . . . we can assume that the Bn are sym-
metric. Then, as G is Polish, some Bn must be non-meagre and contain 1G, whence
V = int(B2

n) 6= ∅ by Pettis’ Lemma (see Kechris [20] (9.9)). Thus,

V Bn ⊆ V Bn+1 ⊆ . . . ⊆ G

is an exhaustive sequence of open sets and (V Bm)k ⊆ (B3
m)k 6= G for all m ≥ n. Put now

Vm = (V Bn+m)3
m

and notice that (Vm)m∈N is an increasing and exhaustive sequence of
open neighbourhoods of the identity satisfying V 3

m ⊆ Vm+1. Supplementing this sequence
with suitable Vm for m < 0 we get a neighbourhood basis (Vm)m∈Z satisfying the condi-
tions (II) and (III) of Lemma 3.4. Also, by replacing Vm by Vm∩V −1

m , we ensure condition
(I). Moreover, as Vm 6= G for all G, the resulting metric d is left-invariant, compatible, but
unbounded, since in this case δ is unbounded.

The proof of the implication (ii)⇒(i) can be done as in the proof of 3 ⇒ 4 in Theorem
2.1, and that (i) implies (iii) is trivial.

(ii)⇒(iv): If V ⊆ G is non-empty open and {gn}n∈N is dense in G, then the sequence
Bn = g0V ∪ . . . ∪ gnV is increasing and exhaustive. So, if G is topologically Bergman,
then G = Bk

n for some n and k. But then G =
(
V ∪ {g0, . . . , gn}

)2k, showing that G is
finitely generated of bounded width over V .

(iv)⇒(ii): Suppose G is finitely generated of bounded width over any non-empty open
set and B0 ⊆ B1 ⊆ . . . ⊆ G is an increasing exhaustive sequence of sets with the Baire
property. Then some Bn is non-meagre and V = intB2

n 6= ∅. Find some g0, . . . , gm ∈ G

and k such that G =
(
V ∪ {g0, . . . , gm}

)k
. Then G =

(
B2

n ∪ {g0, . . . , gm}
)k ⊆ B2k

l for
l ≥ n large enough such that 1, g0, . . . , gm ∈ Bl. ¤

It was shown in Droste and Holland [12] that a group G has strong uncountable cofinal-
ity if and only if G satisfies the conjunction of the following two properties:

- (Uncountable cofinality) Whenever H0 ≤ H1 ≤ . . . ≤ G =
⋃

n Hn, then G =
Hn for some n.

- (Cayley boundedness) Whenever 1 ∈ E = E−1 generates G then G = En for
some n.

In the same manner, we can define these concepts for Polish groups.
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Definition 3.7. Let G be a Polish group. We say that G has uncountable topological
cofinality if G is not the union of a chain of proper open subgroups (or equivalently, a
countable chain of subgroups with the Baire property). G is topologically Cayley bounded
if it has finite width with respect to any analytic generating set.

Proposition 3.8. A Polish group G has property (OB) if and only if it has uncountable
topological cofinality and is topologically Cayley bounded.

Proof. Suppose G has property (OB), H0 ≤ H1 ≤ . . . ,≤ G =
⋃

n Hn are open sub-
groups and 1 ∈ E = E−1 is an analytic set generating G. Then by property (OB) ap-
plied to the sequences H0 ⊆ H1 ⊆ . . . ⊆ G and E ⊆ E2 ⊆ . . . ⊆ G, we see that
G = Hk

n = Hn = (En)k = Enk for some n and k. Thus, G has both uncountable
topological cofinality and is topologically Cayley bounded.

Conversely, suppose G has uncountable topological cofinality, is topologically Cayley
bounded and W0 ⊆ W1 ⊆ . . . ⊆ G =

⋃
n Wn are sets with the Baire property. By

considering instead a tail subsequence of the exhaustive sequence

W0 ∩W−1
0 ⊆ W1 ∩W−1

1 ⊆ . . . ⊆ G

we can suppose each Wn is non-meagre, symmetric and contains 1. Thus, the sequence
〈W0〉 ≤ 〈W1〉 ≤ . . . ≤ G consists of open subgroups and hence one of the Wn generates
G. As Wn is symmetric and non-meagre, intW 2

n is symmetric and non-empty, so Wn ·
intW 2

n ·Wn ⊆ W 4
n is a symmetric generating open subset of G containing 1. So G = W k

n

for some k. ¤

In the case of locally compact groups, uncountable topological cofinality is clearly
equivalent to compact generation. Moreover, if a locally compact, compactly generated
group is also topologically Cayley bounded, then its compact generating set generates by
a finite power and hence the group is compact. Conversely, compact groups trivially have
property (OB). So property (OB) for locally compact Polish groups is just equivalent with
compactness, just as strong uncountable cofinality for countable groups is equivalent with
finiteness. However, we can actually provide a bit more information.

Proposition 3.9. A compact Polish group is topologically 2-Bergman.

Proof. Assume that G is compact and that

B0 ⊆ B1 ⊆ B2 ⊆ . . . ⊆ G

is an exhaustive sequence of subsets with the Baire property. Then there is some Bn0

which is non-meagre and hence comeagre in some open set V f , where V is an open
neighbourhood of the identity. Pick some symmetric open set U ⊆ V such that U2 ⊆ V
and g1, . . . , gm ∈ G such that G = g1U ∪ . . . ∪ gmU . Then if hi ∈ giU , we have
giU = hi(h−1

i gi)U ⊆ hiU
2 ⊆ hiV and thus G = h1U

2∪. . .∪hmU2 = h1V ∪. . .∪hmV .
Considering now the sequences (Bj ∩ giU)j for each i = 1, . . . ,m, we find n1 ≥ n0 such
that Bn1 is non-meagre in each of the giU . Hence, we can find open sets Wi ⊆ giU such
that Bn1 is comeagre in Wi for each i. Pick now hi ∈ Wi ∩ Bn1 ⊆ giU and notice that
G = Gf = h1V f ∪ . . .∪hmV f . But as Bn1 is comeagre in both Wi and V f , we have by
Pettis’ Lemma hiV f ⊆ WiV f ⊆ B2

n1
. Thus, G = B2

n1
, showing that G is topologically

2-Bergman. ¤

As a locally compact, non-compact Polish group cannot have property (OB), we know
that it must have a compatible left-invariant unbounded metric. But actually we can see that
this metric can be chosen to be proper, i.e., such that any bounded closed set is compact.
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Proposition 3.10 (Folklore). Let G be a locally compact Polish group. Then G admits a
left-invariant compatible proper metric.

Proof. We start by fixing an open neighbourhood basis at the identity (Un)n∈N such that
U3

n+1 ⊆ Un, Un = U−1
n and U0 being relatively compact. Since G is σ-compact we can

also find an increasing sequence of symmetric relatively compact sets (Vn)n∈N such that
V0 = U0, V 3

n ⊆ Vn+1 and G =
⋃

n∈N Vn. Letting now V−n = Un, we see that the
sequence (Vn)n∈Z satisfies the conditions of Lemma 3.4. Let now d be the metric given by
the lemma, we claim that d is proper. For any d-bounded set A is δ-bounded and thus there
is some n such that for any g, h ∈ A, g−1h ∈ Vn. In particular, A is contained in some
translate of Vn and thus relatively compact. Hence if A is closed it is compact, showing
that d is proper. ¤

We should mention that locally compact Polish groups have complete left-invariant met-
rics and hence every left-invariant metric is complete, see Becker [2], section 3.

Remark : There are examples of compact Polish groups not having strong uncountable
cofinality. In fact, Koppelberg and Tits [23] prove that if F is a finite non-trivial group,
then FN has uncountable cofinality if and only if F is perfect. So we have examples of
profinite groups without uncountable cofinality.

We also see that the two properties (FH) and (OB) do not coincide. For there are plenty
of examples of locally compact, non-compact Polish groups with property (FH), but of
course without property (OB).

Definition 3.11. Recall that a mapping f between metric spaces (X, d) and (Y, δ) is called
a Hölder(α) map for some α > 0 if there is a constant c ≥ 1 such that

δ(f(x), f(y)) ≤ c · d(x, y)α

for all x, y ∈ X . Hölder(1) mappings are thus simply Lipschitz mappings.

Proposition 3.12. Let G be a group with strong uncountable cofinality acting by Hölder
maps on a metric space (X, d). Then the action of G is semi-simple, i.e., {G · x}x∈X

partitions X into (bounded) invariant pieces each on which G acts minimally. Moreover,
there is an N such that any g ∈ G is Hölder(α) with constant N for some α ∈ [1/N, N ].

The same holds for Polish groups with property (OB) acting continuously and by Hölder
maps on a Polish metric space (X, d).

Proof. First assume that G has strong uncountable cofinality. For each g ∈ G let αg ≥ 0
and cg ≥ 1 be such that g is Hölder(αg) with constant cg . Thus,

d(g1 · . . . · gnx, g1 · . . . · gny) ≤ cg1d(g2 · . . . · gnx, g2 · . . . · gny)αg1

≤ cg1c
αg1
g2 d(g3 · . . . · gnx, g3 · . . . · gny)αg1αg2

≤ . . .

≤ cg1c
αg1
g2 . . . c

αg1 ...αgn−1
gn d(x, y)αg1 ...αgn .

(5)

Put now Wn = {g ∈ G
∣∣ cg ≤ n & αg ∈ [1/n, n]} and notice that the sequence Wn is

increasing and exhaustive. By strong uncountable cofinality, G = W k
n for some n and k.

By the inequality 5, we see that there is a fixed N such that any g ∈ G is Hölder(α) with
constant N for some α ∈ [1/N, N ]. Thus, we have

(6) ∀ε > 0 ∃δ > 0 ∀x, y ∀g (
d(x, y) < δ → d(gx, gy) < ε

)
.
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So suppose x, y ∈ X and that y ∈ G · x. Then for any x′ ∈ G · x and ε > 0, we
can find δ > 0 as above and x′′ ∈ G · x with d(x′′, y) < δ. Now, if x′ = gx′′, then
d(x′, gy) = d(gx′′, gy) < ε, so x′ ∈ G · y, showing that G · x = G · y. Thus, in G · x
every orbit is dense, and hence if u ∈ G · x∩G · z for any u, z, then G · x = G · z = G · u.
Therefore, {G · x}x∈X partitions X and G acts minimally on each piece of the partition.
The usual argument, as in the proof of Theorem 2.1, will also show that every orbit is
bounded.

Now we only have to indicate the proof in the case that G is a Polish group with property
(OB). In this case we fix a countable dense set {xm} in X and define Wn by

Wn = {g ∈ G
∣∣ ∃α ∈ [1/n, n] ∀m, l d(gxm, gxl) ≤ n · d(xm, xl)α}.

Then Wn is analytic (in fact closed) and hence has the Baire property. Notice also that if
g ∈ Wn then g is indeed Hölder(α) with constant n for some α ∈ [1/n, n]. We can thus
proceed as before using that G is topologically Bergman. ¤

In order to see that the result is not void, we can exhibit an action of Z by Lipschitz
isomorphisms of R such that {Z · x}x∈R does not partition R. Namely, let T (x) = 2x,
whence Tn(x) = 2nx for all n ∈ Z. Then T is a simple dilation of R and 0 ∈ Z · x for
any x ∈ R.

We thus see from statement 6 that a group with strong uncountable cofinality acting by
Hölder maps actually acts equicontinuously. One might wonder if this also holds if the
group acts by, e.g., uniformly continuous homeomorphisms, but this is false. For example,
S∞ acts continuously on 2N, and thus by uniformly continuous homeomorphisms, but the
action fails to be equicontinuous. Moreover, there is no decomposition of 2N into closed
minimal pieces.

4. CLOSURE PROPERTIES

Proposition 4.1. Let G be Polish and H E G a closed subgroup. If both G/H and H
have property (OB), so does G. Conversely, if G has property (OB) and φ : G → K is a
continuous homomorphism into a Polish group K with dense image, then K has property
(OB).

Proof. Let V ⊆ G be an open neighbourhood of the identity in G. Then U = H ∩ V
is non-empty open in H , whence for some finite set A ⊆ H and n ∈ N, (UA)n = H .
Therefore, (V A)n ⊇ H . Since the quotient mapping π : G → G/H is continuous and
open, π[V ] ⊆ G/H is open, non-empty, so for some finite set B ⊆ G and m ∈ N,
(π[V ]π[B])m = G/H . Thus,

∀g ∈ G ∃v1, . . . , vm ∈ V ∃b1, . . . , bm ∈ B
(
π(g) = π(v1b1 · · · vmbm)

)
(7)

and
∀g ∈ G ∃v1, . . . , vm ∈ V ∃b1, . . . , bm ∈ B ∃v′1, . . . , v′n ∈ V

∃a1, . . . , an ∈ A g = v1b1 · · · vmbmv′1a1 · · · v′nan.
(8)

So G = (V B)m(V A)n, showing that G has property (OB).
Now, if G has property (OB) and K acts continuously by isometries on a metric space,

then this induces an action by G. Thus, every G-orbit is bounded and as φ(G) is dense in
K, every K-orbit is bounded. ¤

Proposition 4.2. Suppose {Gn}N are Polish groups. Then G =
∏
NGn has property (OB)

if and only if each Gn has property (OB).
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Proof. Suppose each Gn has property (OB) and assume W0 ≤ W1 ≤ . . . ≤ G is an
exhaustive sequence of subsets with the Baire property. As in the proof of Proposition 3.8
we can suppose that each Wn is a symmetric open neighbourhood of the identity in G.

Thus, there is n ∈ N such that

{1} × . . .× {1} ×
∏

i>n

Gi ⊆ W0

and thus to prove that G = W k
n for some n and k, it is enough to prove that G0× . . .×Gn

is contained in some V l
m, where

Vi = {(g0, . . . , gn) ∈ G0 × . . .×Gn

∣∣ (g0, . . . , gn, 1, 1, . . .) ∈ Wi}.
But V0 ⊆ V1 ⊆ . . . ⊆ G0× . . .×Gn is an increasing exhaustive sequence of open subsets,
and as G0 × . . .×Gn has property (OB) by Proposition 4.1, the result follows. The other
direction follows by Proposition 4.1. ¤

In [6] Bergman poses the problem of whether strong uncountable cofinality passes from
a group to a subgroup of finite index. In an announcement [22] A. Khélif states that this is
indeed the case. We shall see that the concept of induced representations also leads to this
result and, moreover, also solves the corresponding problem for Polish groups.

Proposition 4.3. Let G be a Polish group and H ≤ G a finite index closed subgroup. Then
G has property (OB) if and only if H has.

Proof. First the easy direction. Assume H has property (OB). Then if G acts continuously
by isometries on some space (X, d), so does H and this latter has bounded orbits. Letting
g1 . . . , gn be representatives for the left cosets of H in G, we see that G · x =

⋃
i giH · x,

which is a finite union of bounded sets, and thus bounded.
For the other direction, consider first the abstract case of two groups G and H with H

a finite index subgroup of G. Fix a transversal 1 ∈ T ⊆ G for the left cosets of H in G.
Now assume that H acts by isometries on a metric space (X, d). We define

Y = {ξ : G → X
∣∣ ∀g ∈ G ∀h ∈ H ξ(gh) = h−1ξ(g)}

For example, if x0 ∈ X is some fixed element, we can define ξ0 : G → X by ξ0(ah) =
h−1x0 for all h ∈ H and all a ∈ T . Then clearly ξ0 ∈ Y . So Y is non-empty.

We can now define the following metric ∂ on Y : ∂(ξ, ζ) = supg∈G d(ξ(g), ζ(g)). If
we can show that the supremum is finite, then this is clearly a metric. But

∂(ξ, ζ) = sup
g∈G

d(ξ(g), ζ(g))

= sup
a∈T,h∈H

d(ξ(ah), ζ(ah))

= sup
a∈T,h∈H

d(h−1ξ(a), h−1ζ(a))

= sup
a∈T,h∈H

d(ξ(a), ζ(a))

= sup
a∈T

d(ξ(a), ζ(a))

< ∞,

(9)

where the last inequality holds since T is finite. Now, let G act on Y by left translation

(g · ξ)(f) = ξ(g−1f)
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This is an action by isometries

∂(g · ξ, g · ζ) = sup
f∈G

d((g · ξ)(f), (g · ζ)(f))

= sup
f∈G

d(ξ(g−1f), ζ(g−1f))

= sup
f ′∈G

d(ξ(f ′), ζ(f ′))

= ∂(ξ, ζ).

(10)

Now, if G has strong uncountable cofinality, there is a bounded orbit G · ξ in Y . We now
only need to see how this gives rise to a bounded orbit for H in X , whereby, of course, all
orbits will be bounded. So let x0 = ξ(1) and notice that for h ∈ H

d(x0, h · x0) = d(ξ(1), h · ξ(1))

= d(ξ(1), ξ(h−1))

= d(ξ(1), (h · ξ)(1))

≤ sup
g∈G

d(ξ(g), (h · ξ)(g))

= ∂(ξ, h · ξ)
≤ diam∂(G · ξ).

(11)

This shows that strong uncountable cofinality passes to subgroups of finite index.
For the case of Polish groups G and H , with H being a finite index closed and thus

clopen subgroup, we of course restrict our attention to continuous ξ. Again we see that
ξ0 ∈ Y 6= ∅. We claim that the action of G on Y is separately continuous. In the second
variable this is trivial, as G acts by isometries. On the other hand, if we fix some ξ ∈ Y
and suppose that gn → g in G, then by Equation 9

∂(gn · ξ, g · ξ) = sup
a∈T

d((gn · ξ)(a), (g · ξ)(a)) = sup
a∈T

d(ξ(g−1
n a), ξ(g−1a)) −→

n→∞
0.

(12)

Thus, by Lemma 3.1, the action of G on Y is continuous and we can finish the proof as in
the discrete case. ¤

5. GROUPS OF ISOMETRIES

Definition 5.1. Let (X, d) be a metric space and G ≤ Iso(X, d). We let d∞ denote the
supremum metric on the spaces Xm induced by d. The group G is said to be approximately
oligomorphic if for any n ≥ 1 and ε > 0 there is a finite set A ⊆ Xn such that G · A is
ε-dense in Xn with respect to d∞.

Theorem 5.2. Let (X, d) be a Polish metric space and G a closed subgroup of Iso(X, d)
with the topology of pointwise convergence. If G is approximately oligomorphic, then G
has property (OB).

Proof. We need to show that G is finitely generated of bounded width over any non-empty
open set V ⊆ G. So find x = (x1, . . . , xn) ∈ Xn and ε > 0 such that

U = {g ∈ G
∣∣ ∀i ≤ n d(xi, gxi) < ε} ⊆ V V −1.

We claim that there is a finite set B ⊆ Xn such that U · B is ε
2 -dense in Xn. To see this,

let A ⊆ Xn ×Xn be a finite set such that G · A is ε
2 -dense in Xn ×Xn. Define A′ ⊆ A



14 CHRISTIAN ROSENDAL

to be the set of a = (a1, a2) ∈ A such that for some ga ∈ G, d∞(x, gaa1) < ε
2 . Finally,

put B = {gaa2

∣∣ a ∈ A′}.
Then, if c ∈ Xn, there are a = (a1, a2) ∈ A and g ∈ G such that

d∞
(
(x, c), (ga1, ga2)

)
<

ε

2
.

In particular, a ∈ A′ and thus

d∞(gg−1
a x, x) = d∞(g−1

a x, g−1x)

≤ d∞(g−1
a x, a1) + d∞(a1, g

−1x)

= d∞(x, gaa1) + d∞(ga1, x)
< ε.

(13)

So gg−1
a ∈ U and

d∞(c, gg−1
a · gaa2) = d∞(c, ga2) <

ε

2
.

Thus, U ·B is ε
2 -dense in Xn. Let now B′ ⊆ B be the set of b ∈ B such that

d∞(U · b,G · x) <
ε

2
.

So for some hb ∈ G and gb ∈ U ,

d∞(gbb, hbx) <
ε

2
.

Then, if f ∈ G, we can find b ∈ B and g ∈ U such that d∞(fx, gb) < ε
2 . Thus, b ∈ B′

and
d∞(x, f−1gg−1

b
hbx) = d∞(g−1fx, g−1

b
hbx)

≤ d∞(g−1fx, b) + d∞(b, g−1

b
hbx)

= d∞(fx, gb) + d∞(gbb, hbx)
< ε.

(14)

So f−1gg−1

b
hb ∈ U and if H = {hb

∣∣ b ∈ B′}, we see that G = UU−1HU−1. ¤

Corollary 5.3. Let G be an oligomorphic closed subgroup of S∞. Then G has property
(OB).

Proof. Notice that if we let N have the metric in which all points have distance 1, then G is
approximately oligomorphic as a group of isometries exactly when it is oligomorphic. ¤

The Urysohn metric space U is the unique separable complete metric space containing
each finite metric space and such that any isometry between finite subsets extends to a full
isometry of the space. This space, constructed by Urysohn [37] is also characterised by
being separable, complete and satisfying the following extension property:

If φ : X → U is an isometric embedding of a finite metric space X into
U and Y = X ∪ {y} is a one point metric extension of X , then φ extends
to an isometric embedding of Y .

In the same manner, there is a Urysohn metric space of diameter 1, designated by U1,
which is the unique complete separable metric space whose diameter is at most 1 and
satisfying the extension property, when Y varies over metric spaces of diameter at most 1.

Similarly, one can construct variants of the Urysohn metric space, where the metric
takes values only in Q ∩ [0, 1]. Thus, the rational Urysohn metric space of diameter 1,
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denoted by Ω, is the unique countable metric space whose metric takes values in Q∩ [0, 1]
and satisfying the extension property for Y , whose metric also takes values in Q ∩ [0, 1].

Theorem 5.4. LetU1 be the Urysohn metric space of diameter 1. Iso(U1) is approximately
oligomorphic and hence has property (OB).

For this proof we need some notions of metric theory. Let Dn be the set of n × n ma-
trices [aij ] with entries in [0, 1] such that d(i, j) = aij defines a pre-metric on {1, . . . , n}.
Consider Dn as a subset of [0, 1]n

2
with the supremum metric d∞. Clearly, the triangle

inequality is a closed condition, so Dn is compact.
We define also the following distance d1 on Dn à la Gromov and Hausdorff (see Chapter

3, Gromov [14]):

d1(A,B) = min
(
trace(E)

∣∣
[

A E
Et B

]
∈ D2n

)

Notice that the infimum is indeed attained, as we are minimising over a compact space.
So if A, B ∈ Dn are representing pre-metrics a and b on {1, . . . , n} and {1′, . . . , n′}
respectively (thus of diameter at most 1), d1 is the minimum of

∑
i c(i, i′), where c varies

over all pre-metrics on {1, . . . , n, 1′, . . . , n′} of diameter at most 1 agreeing with a on
{1, . . . , n} and with b on {1′, . . . , n′}. Therefore, d1 measures how far the spaces have to
be from each other, when they are both embedded into a metric space of diameter at most
1.

Lemma 5.5. 2d1 ≤ nd∞ ≤ nd1.

Proof. Let A,B ∈ Dn and let a and b be the corresponding pre-metrics on {1, . . . , n}.
Assume that

δ = d∞(A,B) = sup
i,j
|a(i, j)− b(i, j)|

and let c be defined on {1, . . . , n, 1′, . . . , n′} by

c(i, j) =a(i, j),

c(i′, j′) =b(i, j),

c(i, j′) = c(j′, i) = min
l

(
a(i, l) + δ/2 + b(l, j)

)
.

We claim that c is a pre-metric and that i 7→ i and i 7→ i′ are isometric embeddings of the
spaces given by a and b respectively. Clearly, the triangle inequality is satisfied separately
on {1, . . . , n} and on {1′, . . . , n′}, and

c(i, k′) + c(k′, j) = min
l

(
a(i, l) + δ/2 + b(l, k)

)
+ min

p

(
b(k, p) + δ/2 + a(p, j)

)

= δ + min
l

(
a(i, l) + b(l, k)

)
+ min

p

(
b(k, p) + a(p, j)

)

≥ δ + min
l,p

(
a(i, l) + b(l, p) + a(p, j)

)

≥ min
l,p

(
a(i, l) + a(l, p) + a(p, j)

)

≥ a(i, j)

= c(i, j).

(15)
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Similarly, c(i′, j′) ≤ c(i′, l) + c(l, j′). And

c(i, j′) ≤ min
k

(
a(i, k) + δ/2 + b(k, j)

)

≤ a(i, l) + min
k

(
a(l, k) + δ/2 + b(k, j)

)

= c(i, l) + c(l, j′).

(16)

Similarly, c(i, j′) ≤ c(i, l′) + c(l′, j′), so the triangle inequality is verified. Unfortunately,
c does not necessarily have diameter bounded by 1, but this can be remedied by letting
c′(x, y) = min{c(x, y), 1}. Clearly, this does not affect the distances on {1, . . . , n} and
{1′, . . . , n′} separately, and only decreases other distances. So c′(i, i′) = δ

2 . Let now

C ′ =
[

A E
Et B

]
∈ D2n

be the matrix corresponding to c′, and notice that

d1(A, B) ≤ trace(E) = n
δ

2
=

n

2
d∞(A,B).

Thus, d1 ≤ n
2 d∞.

On the other hand, if the two sets {1, . . . , n} and {1′, . . . , n′} are very close to each
other, pointwise, in some common metric space, then the distance between i and j cannot
differ very much from the distance between i′ and j′. And in fact, d∞ ≤ d1. ¤

Proof of Theorem 5.4: Fix some n ≥ 1 and ε > 0 and let ∂ be the metric on U1. As
Dn is compact, we can find some finite A ⊆ Dn, which is ε-dense in the metric d1. By
the universality property of the Urysohn metric space U1, this means that for any x =
(x1, . . . , xn) ∈ Un

1 , there is y = (y1, . . . , yn) ∈ Un
1 with distance matrix A ∈ A, such

that ∂∞(x, y) ≤ ∑
i ∂(xi, yi) ≤ ε. So pick for each A ∈ A some z ∈ Un

1 with distance
matrix A, and let A be the set of these. Then, if x = (x1, . . . , xn) ∈ Un

1 there is y =
(y1, . . . , yn) as above, and hence some z = (z1, . . . , zn) ∈ A isometric to y. But then as
U1 is ultrahomogeneous, we see that y and z are in the same orbit of Iso(U1), showing that
Iso(U1) is approximately oligomorphic. 2

We will now show that if we consider the isometry group of the rational Urysohn metric
space of diameter 1, Ω, then we actually get strong uncountable cofinality outright. The
results here were finally clear after a late night discussion with Stevo Todorčević.

Two tuples x and y in Ω are said to be uniformly of distance 1 from each other if
d(xi, yj) = 1 for all i, j.

Lemma 5.6. If x and y in Ω are uniformly of distance 1 and some z in Ω is given, then
there are x′ and z′ such that (x, z, y) and (x′, z′, y) are isometric and x is uniformly of
distance 1 from both x′ and z′.

Proof. Notice that the distances between x, y, z′, x′ are completely specified by the lemma,
so we need only specify the distances between z and (x′, z′). We let z be uniformly of
distance 1 from x′ and put

d(zi, z
′
j) = min{1, inf

yl

d(zi, yl) + d(yl, zj)}.

The triangle inequality holds, which can be checked by hand, so let us just give a few
representative cases.
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- Clearly, d(x′i, yj) ≤ d(x′i, v) + d(v, yj) for all v ∈ x, z, y, since x′ is uniformly of
distance 1 from all of x, z, y. Moreover, it also holds for v ∈ x′, z′, since (x′, z′, y) is
isometric to (x, z, y) and thus is a metric space.

- Clearly, for all v ∈ x, y, x′, z′, d(xi, z
′
j) ≤ d(xi, v) + d(v, z′j), since in this case one

of the distances on the right hand side must equal 1. So for v = zj we have

d(xi, zk) + d(zk, z′j) ≥ min{1, inf
yl

d(xi, zk) + d(zk, yl) + d(yl, zj)}
≥ min{1, inf

yl

d(xi, yl) + d(yl, zj)}
≥ 1

= d(xi, z
′
j).

(17)

- Clearly, for all v ∈ x, x′, y, z, d(zi, yj) ≤ d(zi, v) + d(v, yj), since in the first two
cases one of the distances on the right hand side must equal 1 and in the last two cases it
reduces to the triangle inequality on (z, y). And for v = z′j we have

d(zi, z
′
k) + d(z′k, yj) ≥ min{1, inf

yl

d(zi, yl) + d(yl, zk) + d(zk, yj)}
≥ min{1, d(zi, yj)}
≥ d(zi, yj).

(18)

¤

Lemma 5.7. Assume that x is a tuple in Ω. Then there is some l ∈ Iso(Ω) such that

Iso(Ω) =
(
l · Iso(Ω, x)

)4

Proof. Find some y, isometric to x and uniformly of distance 1 from it. Let l(x) = y and
l(y) = x. Then l · Iso(Ω, x) · l = Iso(Ω, y). Let g ∈ Iso(Ω) be any element and put
z = g(x).

By Lemma 5.6, we can find x′, z′ such that (x, z, y) and (x′, z′, y) are isometric and x
is uniformly of distance 1 from both x′ and z′. Thus, there is some h ∈ Iso(Ω, y) such
that h(x) = x′ and h(z) = z′. Now, since (x, z′) and (x, x′) are isometric, there is some
f ∈ Iso(Ω, x) such that f(z′) = x′. And finally, as (y, x′) and (y, x) are isometric, we can
find k ∈ Iso(Ω, y) such that k(x′) = x.

Therefore, kfhg(x) = kfh(z) = kf(z′) = k(x′) = x and kfhg ∈ Iso(Ω, x). So

g = h−1f−1k−1(kfhg) ∈ (
Iso(Ω, y) · Iso(Ω, x)

)2 =
(
l · Iso(Ω, x) · l · Iso(Ω, x)

)2
.

¤

Theorem 5.8. The isometry group of the rational Urysohn metric space of diameter 1,
Iso(Ω), has strong uncountable cofinality.

Proof. The proof relies on the result of S. Solecki [32], also independently announced by
A.M. Vershik, that for any finite rational metric space X there is another finite rational
metric space Y containing X and such that any partial isometry of X extends to a full
isometry of Y .

First of all, we notice that this also implies the corresponding result for rational metric
spaces of bounded diameter 1. For if X is of bounded diameter 1, then we find first some
Y ′ (not necessarily of bounded diameter 1) extending Xsuch that every partial isometry of
X extends to a full isometry of Y ′. Now, if d′ is the metric on Y ′, let d be the metric given
by d(y0, y1) = min{1, d′(y0, y1)} and let Y be the metric space obtained. Then we see
that the distances between points in X are preserved and thus X is still a subspace of Y ,
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and if f is an isometry of Y ′ it is also an isometry of Y . Thus, every partial isometry of X
extends to a full isometry of Y .

We now need the following concept, which will also be used in a later section.

Definition 5.9. Suppose G is a Polish group and consider for each finite m ≥ 1 the
diagonal conjugacy action of G on Gm given by

g · (h1, . . . , hm) = (gh1g
−1, . . . , ghmg−1).

G is said to have ample generics if for each m ≥ 1 there is a comeagre orbit in Gm for
this action.

Notice that since Ω is countable, Iso(Ω) is a Polish group in the permutation group
topology. In section 6 of Kechris and Rosendal [21] it is shown how the above extension
property for finite rational metric spaces of bounded diameter 1 implies that Iso(Ω) has
ample generics and the Proposition 6.18 of [21] imply that a Polish group with ample
generics has strong uncountable cofinality if and only if it has property (OB). Thus, it is
enough to show that Iso(Ω) is finitely generated of bounded width over any non-empty
open subset. But this follows from Lemma 5.7. ¤

6. A DENSE SUBGROUP OF THE UNITARY GROUP WITH STRONG UNCOUNTABLE
COFINALITY

In the following `2 will be the complex Hilbert space on the countable orthonormal
basis (ei)i∈N and with usual inner product

〈
∑

aiei

∣∣ ∑
biei〉 =

∑
aibi

We will also fix a countable algebraically closed field Q ⊆ Q ⊆ C closed under complex
conjugation. In fact, it will only be essential that Q is closed under square root, and we
could therefore work in some subfield of R too. This would give similar results for the
orthogonal group of the real separable Hilbert space, but we shall be content with the
above setting. Notice first that Q is dense in C.

We let V be the Q-vector space with basis (ei) and notice that V is a dense subset of
`2. The inner product restricts to an inner product on V taking values in Q, as Q is a
field closed under complex conjugation. Since Q is algebraically closed, the norm of an
element of V also belongs to Q. This will give us enough space to perform the usual tasks
of Gram-Schmidt orthonormalisation etc.

Lemma 6.1. Let T be a Q-linear isometry of V. Then T extends to a unique unitary
operator on `2.

Proof. Since V is dense in `2 and `2 is complete, any isometry of V extends to a unique
isometry of `2. Hence T extends to an isometry of `2 preserving the origin. A simple
argument shows that the extension is C-linear. ¤

So the group U(V) of Q-linear isometries of V can be seen as a subgroup of U(`2). It
will be useful to represent unitary operators as infinite matrices with respect to the canoni-
cal basis (ei)i∈N. Since we are only considering finite Q-linear combinations, this means
that any row and any column is eventually zero. The following operators in U(V) are of
particular interest.

Definition 6.2. An operator T ∈ U(V) is finitary if it is the identity outside of a finite-
dimensional subspace of V.
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So the finitary operators are those that are supported on a finite-dimensional subspace
and hence can be represented as [

A 0
0 I

]
,

where I is the infinite identity matrix and A some finite unitary matrix.
Clearly, the finitary operators form a subgroup of U(V).
The unitary group U(`2) naturally comes with the strong topology, which makes it a

Polish group. The strong topology is the weakest topology that makes all the maps

T 7→ T (x)

continuous, where x varies over the elements of `2.
Similarly, as V is countable, U(V) is naturally isomorphic to a subgroup of the group

Sym(V) of all permutations of V, with the Polish permutation group topology. Moreover,
U(V) is easily seen to be closed in Sym(V) and hence is a Polish group itself. Notice that
this topology is stronger than the topology induced by U(`2).

We need that the Gram-Schmidt orthonormalisation procedure can be done in V.

Lemma 6.3. If W is any subspace of V and w1, . . . , wn is an orthonormal set of vectors
inW, then there is an orthonormal basis ofW extending {w1, . . . , wn}.

Proof. Let {x1, x2, x3, . . .} be a Q-vector space basis ofW such that x1 = w1, . . . , xn =
wn. Now, define inductively ym, wm by

ym+1 = xm −
m∑

i=1

〈xm+1

∣∣ wi〉wi

and notice that as 〈xm+1

∣∣ wi〉 ∈ Q also ym+1 ∈ V. Now, put

wm+1 =
ym+1

‖ym+1‖
and again, as ‖ym+1‖ ∈ Q (using that Q is algebraically closed), wm+1 ∈ V. So as usual,
{w1, w2, . . .} is an orthonormal basis ofW. ¤

Lemma 6.4. Suppose S is a linear isometry between finite-dimensional spaces W0 and
W1. Then S extends to a finitary operator S̃ in U(V).

Proof. This is clear from Lemma 6.3. For choose an orthonormal basis v1, . . . , vn for
W0 and find some sufficiently big i such that W0,W1 ⊆ [e1, . . . , ei]. Then we can ex-
tend v1, . . . , vn and S(v1), . . . , S(vn) respectively to orthonormal bases u1, . . . , ui and
w1, . . . , wi of [e1, . . . , ei]. Letting S̃(uj) = wj for j ≤ i and S̃(ej) = ej for j > i, we
have the result. ¤

In particular, if {v1, . . . , vn} and {u1, . . . , un} are orthonormal sets in V, then there is a
finitary operator F sending the ordered basis {v1, . . . , vn} to the ordered basis {u1, . . . , un}.

We recall the following fact (see, e.g., Proposition 2.2. in [21]).

Proposition 6.5. Let G be a Polish group acting continuously on a Polish space X . Then
the following are equivalent for any x ∈ X:
(i) The orbit G · x is non-meager.
(ii) For every open neighbourhood V ⊂ G of the identity, V · x is somewhere dense.

Proposition 6.6. U(V) has ample generics.
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Proof. By abstract methods (see Truss [36] and Kechris and Rosendal [21]) it is enough
to show that certain amalgamation properties are satisfied, but in our case an outright de-
scription of the comeagre orbits is not much longer, so we give this instead.

So fix an m ≥ 1. We need to construct K1, . . . , Km ∈ U(V) such that the conjugacy
class of the m-tuple (K1, . . . , Km) is comeagre in U(V).

By Lemma 6.4 we see that for any P1, . . . , Pm ∈ U(V) and v1, . . . , vk ∈ V there are
finitary operators H1, . . . , Hm ∈ U(V) such that for all t ≤ m, s ≤ k, Pt(vs) = Ht(vs).

So list all m-tuples K = (K1, . . . , Km) of unitary operators on some common finite-
dimensional subspace Vi = [e1, . . . , ei] as

K1 = (K1
1 , . . . , K1

m), K2 = (K2
1 , . . . , K2

m), . . .

and let an be the dimension of the space [e1, . . . , ei] on which the Kn
1 , . . . , Kn

m act. Let
also bn =

∑n
j=1 aj . We suppose furthermore that each Ki is repeated infinitely often.

We can now paste these operators together as

Mt =




K1
t

K2
t

K3
t

. . .


 .

In other words, M1, . . . , Mm are disjoint sums of unitary operators on finite-dimensional
spaces of the form [el, . . . , ek] such that each conjugacy type of m-tuples appears infinitely
often.

To see that the conjugacy type of (M1, . . . , Mm) is comeagre in U(V)m, we show first
that it is dense and non-meagre. Thus, by Proposition 6.5, it is enough to show that it is
dense and that for every l ∈ N the set

A =
{
(T−1M1T, . . . , T−1MmT )

∣∣ T =
[

Il 0
0 A

]
for some A

}

is somewhere dense in U(V)m, where Il is the l × l identity matrix. To see this latter, find
first some bi ≥ l. We claim that A is dense in the open set consisting of all (P1, . . . , Pm)
such that for every t ≤ m,

Pt =




K1
t

. . .
Ki

t

At


 =

[
Mt ¹Vbi

At

]

for some At. For if (P1, . . . , Pm) is above, then the tuple can be approximated arbitrarily
well by a tuple of finitary operators. So we can suppose that P1, . . . , Pm are finitary them-
selves. Assume that we want to approximate P1, . . . , Pm on Vk = [e1, . . . , ek], where
k > bi is such that Pt(ep) = ep for all t ≤ m and p ≥ k. Then we can find j > i such that
k = bi + aj and

Pt =




Mt ¹Vbi

Kj
t

I


 .
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Find a unitary operator T such that T ¹ [e1, . . . , ebi ] = Ibi and T sends the ordered basis
{ebj−1+1, . . . , ebj

} to {ebi+1, . . . , ebi+aj
}. Then

TMtT
−1 = T




K1
t

K2
t

. . .


 T−1 =




Mt ¹Vbi

Kj
t

Bt




for some Bt. Thus, TMtT
−1 agrees with Pt on Vk = [e1, . . . , ebi+aj ] for every t =

1, . . . , m.
A similar argument shows that the conjugacy class of (K1, . . . , Km) is dense. But in

fact, this also follows from the next proposition. Thus, as there is a dense orbit, the diagonal
conjugacy action of U(V) on U(V)m is generically ergodic, i.e., any invariant Borel set is
either meagre or comeagre. So, as the conjugacy class of (K1, . . . , Km) is non-meagre, it
must be comeagre. ¤
Definition 6.7. A Polish group G is said to have a cyclically dense conjugacy class if there
are elements g, h ∈ G such that {gnhg−n}n∈Z is dense in G. We say that G has an ample
cyclically dense conjugacy class if there is a g ∈ G and some infinite sequence (hk)k ∈ GN

such that the set {(gnhkg−n)k}n∈Z is dense in GN.

Proposition 6.8. U(V) has an ample cyclically dense conjugacy class.

Proof. Notice first that if G is a Polish group and for some g ∈ G there is some m-tuple
(h1, . . . , hm) ∈ Gm such that the set

{(gnh1g
−n, . . . , gnhmg−n)}n∈Z

is dense in Gm, then set of such (h1, . . . , hm) is certainly dense in Gm. Moreover, since it
is also Gδ , it is comeagre. Thus, if for each m ∈ N there is such (h1, . . . , hm) ∈ Gm, then
there is an infinite sequence (hk)k ∈ GN such that {(gnhkg−n)k}n∈Z is dense in GN.

Therefore, we only need to find some unitary operator S that fills the rôle of g. For
this we will consider instead a biinfinite orthonormal basis (ei)i∈Z of V and let S be the
bilateral shift on this basis. Fix also some dimension m.

We can now take Ht = I⊕Mt, where we let the identity I act onV− = [. . . , e−2, e−1, e0]
and let Mt be as in the proof of Proposition 6.6 defined on V+ = [e1, e2, e3, . . .]. One eas-
ily sees that (S−nH1S

n, . . . , S−nHmSn)n∈N is dense in U(V)m. For suppose we wish
to approximate some (P1, . . . , Pm), which we can suppose are finitary, on some space
W = [e−n, . . . , en]. Since each Pt is finitary, we can find k > n such that each Pt is on
the form

Pt =




I
At

I


 ,

where At is a (2k + 1)× (2k + 1) matrix acting on [e−k, . . . , ek]. Now find some j such
that Kj

t = At for each t ≤ m. Then we see that Ht ¹ [ebj−1+1, . . . , ebj ] and thus

S−bj−1−1−kHtS
bj−1+1+k ¹ [e−k, . . . , ek] = At.

Therefore,

(S−bj−1−1−kH1S
bj−1+1+k, . . . , S−bj−1−1−kHmSbj−1+1+k)

agrees with (P1, . . . , Pm) on [e−k, . . . , ek] ⊇W. ¤
It follows from Proposition 6.18 in [21] that a Polish group with ample generics has

strong uncountable cofinality if and only if it has property (OB).
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Proposition 6.9. U(V) has strong uncountable cofinality.

Proof. Since U(V) has ample generics, it is enough to show that it has property (OB).
We show that U(V) is finitely generated of bounded width over any open neighbourhood
U of the identity. So suppose k is given such that U contains all operators fixing W0 =
[e1, . . . , ek] pointwise. Find an operator M such that M [W0] = W1 = [ek+1, . . . , e2k]
and notice that MUM−1 contains all operators fixing W pointwise. Let now T ∈ U(V)
and find a finite dimensional spaceH0 ⊆ (W0⊕W1)⊥ such that T [W0] ⊆W0⊕W1⊕H0.
Let R0 ∈ U sendW1 into (W0 ⊕W1 ⊕H0)⊥ and fixW0 ⊕H0 pointwise. Thus,

R0T [W0] ⊆ R0[W0 ⊕W1 ⊕H0] ⊆W0 ⊕R0[W1]⊕H0 ⊆W⊥
1 .

We can therefore find some R1 ∈ MUM−1 such that R1R0T is the identity on W0 and
R1 fixes W1 pointwise. Hence, R1R0T ∈ U and T ∈ R−1

0 R−1
1 U ⊆ U−1MU−1M−1U.

Thus, U(V) = U−1MU−1M−1U. ¤
Lemma 6.10. U(V) is dense in U(`2).

Proof. It is enough to see that any unitary T ∈ U(`2) can be approximated arbitrarily
well on any finite set of orthonormal vectors. So suppose x1, . . . , xn is an orthonormal
set and ε > 0. By the continuity of the inner product, we can find δ > 0 such that
if v1, . . . , vn, u1, . . . , un are normalised vectors such that ‖xi − vi‖ < δ and ‖T (xi) −
ui‖ < δ for every i, then if v̂1, . . . , v̂n and û1, . . . , ûn are the orthonormal bases obtained
by applying the Gram-Schmidt orthonormalisation process to v1, . . . , vn and u1, . . . , un

respectively, we still have ‖xi − v̂i‖ < ε/2 and ‖T (xi) − ûi‖ < ε/2 for every i. Thus,
choose vi, ui ∈ V as above and pick some R ∈ U(V) sending the ordered basis v̂1, . . . , v̂n

to the ordered basis û1, . . . , ûn. Then

‖T (xi)−R(xi)‖ ≤ ‖T (xi)−R(v̂i)‖+ ‖R(v̂i)−R(xi)‖ ≤ ε

and hence approximating T on x1, . . . , xn. ¤
So let us sum up the results so far.

Theorem 6.11. U(V) has ample generics, an ample cyclically dense conjugacy class and
strong uncountable cofinality. Thus, U(`2) has property (OB) and an ample cyclically
dense conjugacy class.

Added in proof: It has now been been verified by Éric Ricard and the author [28] that
the unitary group has strong uncountable cofinality.

We should mention that the existence of ample generics in a Polish group has quite
remarkable consequences for the structure of the group, for example, it implies that any
homomorphism from it into a separable group is automatically continuous, and the group
cannot be covered by countably many non-open cosets (see Hodges, Hodkinson, Lascar
and Shelah [19], Kechris and Rosendal [21]).

Theorem 6.12. Let U(`2) act continuously by Hölder maps on a complete metric space
(X, d). If the bilateral shift S induces a relatively compact orbit on X , then U(`2) fixes a
point of X .

Proof. First, we can evidently suppose that X is in fact separable and thus Polish. So
U(`2) acts continuously on K(X). Moreover, if g ∈ G is Hölder(α) with constant c on
(X, d), then g is Hölder(α) with constant c on (K(X), dH), where K(X) is the space of
all compact subsets of X equipped with the Hausdorff metric dH . For

dH(K, L) = max
(

sup
x∈K

d(x, L), sup
x∈L

d(K,x)
)
.
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But

sup
x∈gK

d(x, gL) = sup
x∈K

inf
y∈L

d(gx, gy) ≤ sup
x∈K

inf
y∈L

c · d(x, y)α = c · (sup
x∈K

inf
y∈L

d(x, y))α
(19)

and thus
dH(gK, gL) = max

(
sup

x∈gK
d(x, gL), sup

y∈gL
d(gK, y)

)

≤ max
(
c · (sup

x∈K
inf
y∈L

d(x, y))α, c · (sup
y∈L

inf
x∈K

d(x, y))α
)

= c ·max
(

sup
x∈K

inf
y∈L

d(x, y), sup
y∈L

inf
x∈K

d(x, y)
)α

= c · dH(gK, gL)α.

(20)

Let now O = {Sn · x}n∈Z be compact and find by the proof of Proposition 6.8 some
T ∈ U(`2) such that {SnTS−n}n∈Z is dense in U(`2). Then

dH(T · O,O) = dH(TS−nO, S−nO)

≤ cndH(SnTS−nO, SnS−nO)αn

≤ cndH(SnTS−nO,O)αn ,

(21)

where Sn is Hölder(αn) with constant cn. Using now that U(`2) has property (OB), we
find a universal N such that we can choose all the αn ∈ [1/N, N ] and cn ≤ N . Picking a
subsequence ni such that SniTS−ni → I , we see that

cnidH(SniTS−niO,O)αni → 0

and thus dH(T · O,O) = 0. Hence, O is both S and T invariant and thus also U(`2)-
invariant. Moreover, as O is compact and U(`2) is extremely amenable (this is a result of
Gromov and Milman [15]), U(`2) fixes a point of O. ¤

7. GROUPS OF HOMEOMORPHISMS

7.1. Circle groups. We shall first consider the homeomorphism group of the unit circle
S1 and its model-theoretic counterpart, the automorphism group of the countable dense
circular order, Aut(C).

Let first π : R→ R/Z = S1 and let d be the metric on S1 induced by the metric on R.
I.e., d(x, y) = dist(π−1(x), π−1(y)). So d takes values in [0, 1/2].

Let C ⊆ S1 be a countable dense set, for concreteness we can take C = π[Q], and
Aut(C) the set of all permutations of C that preserve the relation B ⊆ C3 defined as
follows:

For x, y, z ∈ C let B(x, y, z) if and only if
- x, y and z are distinct, and
- going clockwise along the unit circle S1 from x to z one passes through y.

In this case, we say that y is between x and z.

Theorem 7.1. Aut(C) and Homeo(S1) have strong uncountable cofinality.

Proof. Pick distinct x1, x2, x3 ∈ C. Notice that for any y ∈ C, the groups Aut(C, y) and
Aut(Q, <) are naturally isomorphic. Thus, if

W0 ⊆ W1 ⊆ . . . ⊆ Aut(C) =
⋃
n

Wn
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then there are n and k such that Aut(C, xi) ⊆ W k
n for i = 1, 2, 3. This follows from the

result of Droste and Holland [12] that Aut(Q, <) has strong uncountable cofinality. Now,

Aut(C) = Aut(C, x1) ·Aut(C, x2) ∪Aut(C, x1) ·Aut(C, x2).

For given g ∈ Aut(C), either g(x1) 6= x2 or g(x1) 6= x2. Say g(x1) 6= x2. Find
some h ∈ Aut(C, x2) such that h(x1) = g(x1). Then gh−1 ∈ Aut(C, x1) and so g ∈
Aut(C, x1) · Aut(C, x2). Similarly, if g(x1) 6= x3, then g ∈ Aut(C, x1) · Aut(C, x3).
Thus,

Aut(C) = Aut(C, x1) ·Aut(C, x2) ∪Aut(C, x1) ·Aut(C, x3) ⊆ W k
nW k

n = W 2k
n .

The same argument applies to Homeo+(S1), using that for any x ∈ S1 the groups

Homeo+(S1, x) = {g ∈ Homeo+(S1)
∣∣ g(x) = x}

and Homeo+(R) are isomorphic and that Homeo+(R) has strong uncountable cofinality
by the results of Droste and Holland. Now, strong uncountable cofinality for Homeo(S1)
follows, as Homeo+(S1) is a subgroup of index 2 in Homeo(S1). ¤

7.2. Spheres.

Theorem 7.2. Let Homeo(Sm) be the group of homeomorphisms of the m-dimensional
sphere with the topology of uniform convergence. Then Homeo(Sm) has property (OB).

Proof. We let d be the standard Euclidean metric on Rm+1 and d∞ the supremum metric
on Homeo(Sm), d∞(g, f) = supx∈Sm d(gx, fx). We show that Homeo(Sm) is finitely
generated of bounded width over any non-empty open subset U . So pick an ε0 > 0 such
that

V = {g ∈ Homeo(Sm)
∣∣ d∞(g, id) < 3ε0} ⊆ UU−1.

Let also x0 = (1, 0, 0, . . . , 0) ∈ Sm. Then for any ε0 > δ > 0 there is some homeomor-
phism φδ of Sm such that φδ(Bε0(x0)) = Bδ(x0) and d∞(φδ, id) < ε0. Moreover, there
is an involution homeomorphism ψ of Sm fixing ∂Bε0(x0) pointwise, while switching
intBε0(x0) with extBε0(x0) = Sm \ Bε0(x0). Finally, let ι be the orientation inverting
involution

ι(x0, x1, x2, . . . , xm) = (x0,−x1, x2, . . . , xm).

We notice that SO(m + 1) is a compact subgroup of Homeo(Sm), so
⋃

n(SO(m + 1) ∩
V V −1)n is an open subgroup of SO(m + 1). But this latter is connected and compact, so
SO(m + 1) ⊆ (V V −1)k for some k.

Claim 7.3. Homeo(Sm) ⊆ (V V −1)k{ι, id}V 2ψV ψV −1.

To see this, let g ∈ Homeo(Sm) and find f ∈ SO(m+1) such that fg(x0) = x0. Then
put

f̂ =
{

f if fg is orientation preserving,
ιf if ιfg is orientation preserving.

It follows that f̂g preserves the orientation and fixes x0. Therefore, by Lemma 3.1. of
Glasner and Weiss [13], which itself relies on the proof of the annulus conjecture, there is
some ε0 > δ > 0 and a homeomorphism h of Sm such that

∀x ∈ Sm (d(x, x0) > ε0 → hx = f̂gx),

∀x ∈ Sm (d(x, x0) < δ → hx = x).
(22)
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In particular,

d∞(h, f̂g) = sup
x∈Sm

d(hx, f̂gx) = sup
x∈Bε0 (x0)

d(hx, f̂gx) < 3ε0.

So f̂gh−1 ∈ V and g ∈ f̂−1V h. Thus,

φ−1
δ hφδ ¹ Bε0(x0) = id

and
ψφ−1

δ hφδψ ¹ extBε0(x0) = id.

In particular, d∞(ψφ−1
δ hφδψ, id) < 3ε0, so ψφ−1

δ hφδψ ∈ V . Therefore, h ∈ φδψV ψφ−1
δ

and

g ∈ f̂−1V h

⊆ f̂−1V φδψV ψφ−1
δ

⊆ (V V −1)k · {id, ι} · V 2ψV ψV −1.

(23)

¤
Added in proof: Subsequent to the appearance of this paper in preprint, D. Calegari, M.

Freedman, and Y. de Cornulier [7] were able to show that the groups Homeo(Sn) actually
have strong uncountable cofinality, thus strengthening Theorem 7.2.

7.3. The Hilbert cube. Consider now the Hilbert cube Q = [0, 1]N and its homeomor-
phism group Homeo(Q) equipped with the topology of uniform convergence. We let d be
the metric on Q given by

d((xn), (yn)) =
∑

n∈N

|xn − yn|
2n+1

and d∞ the supremum metric on Homeo(Q) given by

d∞(f, g) = sup
~x∈Q

d(f(~x), g(~x)),

which is right invariant.

Theorem 7.4. Homeo(Q), with the topology of uniform convergence, has property (OB).

Proof. Fix some open neighbourhood V of the identity in Homeo(Q), which we can sup-
pose is of the form

V = {g ∈ Homeo(Q)
∣∣ d∞(g, id) < 2ε}

for some ε > 0. Thus, if n is sufficiently large such that 2−n < ε, then for any f ∈
Homeo(Q) that does not change the first n coordinates of any ~x ∈ Q, i.e.,

f((x0, x1, . . . , xn−1, xn, xn+1, . . .)) = (x0, x1, . . . , xn−1, yn, yn+1, . . .)

for all ~x ∈ Q, we have f ∈ V .

Claim 7.5. If 1
k < ε , then there is a finite set F ⊆ Homeo(Q) such that for every ~x ∈ Q,

~0 = (0, 0, 0, . . .) ∈ FV k+1 · ~x.

Proof of claim: Let 1
2n < ε. For each s ∈ {0, 1

2 , 1}n let ~zs = (s0, s1, . . . , sn−1, 0, 0, . . .).
As Q is homogeneous, Homeo(Q) acts transitively on Q (see van Mill, Theorem 6.1.6.
[25]), and we can therefore find some hs ∈ Homeo(Q) such that hs(~zs) = ~0 for each
s. Let F = {hs

∣∣ s ∈ {0, 1
2 , 1}n}. So it is enough to show that ∃s ~zs ∈ V k+1 · ~x.

So first use the homogeneity of Q to adjust the tail (xn, xn+1, . . .) of ~x by some element



26 CHRISTIAN ROSENDAL

of V to become (0, 0, . . .). This can be done since a homeomorphism leaving the first n
coordinates invariant belongs to V . Now we can subsequently adjust each of the first n
coordinates (leaving the tail invariant) to be equal to either 0, 1

2 or 1. For this operation it
is enough to use a product of at most k elements of V . 2

Now, it follows from Brouwer’s fixed point Theorem that any homeomorphism of Q
fixes a point. Thus, up to a conjugate by an element of the set FV k+1 from Claim 7.5, any
homeomorphism of Q fixes ~0. As we wish to show that Homeo(Q) is finitely generated of
bounded width over V , we can suppose that any homeomorphism fixes ~0.

Claim 7.6. (Glasner and Weiss [13]) If f ∈ Homeo(Q) fixes ~0, then there is some δ > 0
and g ∈ Homeo(Q) such that d∞(g, f) < ε and g ¹Bδ(~0)= id.

Proof of claim: Pick δ > 0 sufficiently small such that sup~x∈Bδ(~0) d(f(~x), ~x) < ε. As

both ∂Bδ(~0) and ∂(f [Bδ(~0)]) are Z-sets, we can extend the homeomorphism

f−1 : ∂(f [Bδ(~0)]) → ∂Bδ(~0)

to a homeomorphism h ∈ Homeo(Q) satisfying d∞(h, id) < ε (see van Mill, Theorem
6.4.6. [25]). Thus, d∞(hf, f) = d∞(h, id) < ε and we can let

g(~y) =
{

~y if ~y ∈ Bδ(~0)
hf(~y) otherwise

2

Claim 7.7. For any g ∈ Homeo(Q) and 0 < δ < ε such that g ¹Bδ(~0)= id, there is h ∈ V 2

such that h−1gh¹[0,ε[n+1×[0,1]N= id.

Proof of claim: Notice that [0, δ[n+1+l × [0, 1]N ⊆ Bδ(~0) for some l > 0. Moreover, it is
not hard to see that [0, ε[×[0, 1]l is homeomorphic to [0, δ[l+1 by some function a, which
is a homeomorphism of [0, 1]l+1. Thus,

h0 = id[0,1]n ⊗ a⊗ id[0,1]N : Q → Q

belongs to V and sends

[0, 1]n ×
(
[0, ε[×[0, 1]l

)
× [0, 1]N

to
[0, 1]n × [0, δ[l+1 × [0, 1]N.

Now, let h1 : Q → Q be a homeomorphism that moves the set [0, ε[n × [0, 1]N to [0, δ[n ×
[0, 1]N, preserves all coordinates≥ n and d∞(h1, id) < ε. Then h0, h1 ∈ V and h = h1h0

moves [0, ε[n+1 × [0, 1]N to [0, δ[n+1+l × [0, 1]N. 2

Now, let ι ∈ Homeo([0, 1]) be an involution homeomorphism that fixes ε and switches
0 and 1. Define i ∈ Homeo(Q) by

i(x0, x1, . . . , xn, xn+1, . . .) = (ι(x0), ι(x1), . . . , ι(xn), xn+1, xn+2, . . .).

Then i interchanges [0, ε[n+1 × [0, 1]N and ]ε, 1]n+1 × [0, 1]N.
We can now conclude our result. For suppose f ∈ Homeo(Q). Then, up to a conjugate

by an element of FV k+1 we can suppose that f fixes ~0. By Claim 7.6, we can find g ∈ V f
and 0 < δ < ε such that g ¹Bδ(~0)= id. So pick by Claim 7.7 some h ∈ V 2 such that
h−1gh¹[0,ε[n+1×[0,1]N= id. But then ih−1ghi¹]ε,1]n+1×[0,1]N= id and hence ih−1ghi ∈ V .
All in all, this shows that f ∈ (FV k+1)−1V −1V 2iV iV −2FV k+1. ¤
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Since any Polish group is a closed subgroup of Homeo(Q) (see Uspenskiı̆ [38] or the
exposition in Kechris [20]), we have

Corollary 7.8. Any Polish group is topologically isomorphic to a closed subgroup of a
Polish group with property (OB).

8. ACTIONS ON TREES

Comeagre conjucagy classes. We give first a simple proof of a result of Dugald Macpher-
son and Simon Thomas. We will actually prove a result stronger than theirs, for which we
need some basic computations by M. Culler and J.W. Morgan [10]. Note first that if a
group G acts by isometries on an R-tree T , then each g ∈ G has associated a characteristic
non-empty subtree Tg of T , which either is the set of points fixed by g (in which case g
is called elliptic) or a line on which g acts by translation (in which case g is called hyper-
bolic). We let ‖g‖ = inf(r ∈ R+

∣∣ ∃x ∈ T d(x, g · x) = r). This infimum is in fact
attained as shown in [10]. Thus, g is elliptic if and only if ‖g‖ = 0.

The interested reader should consult the very readable article by Culler and Morgan for
more information on the general theory of group actions on R-trees.

Lemma 8.1. [10] Suppose g and h are isometries of an R-tree T . If Tg ∩ Th is empty,
then

‖gh‖ = ‖g‖+ ‖h‖+ 2dist(Tg, Th)

Lemma 8.2. [10] Let g and h be hyperbolic isometries of an R-tree T such that Tg∩Th 6=
∅. Then

max(‖gh‖, ‖gh−1‖) = ‖g‖+ ‖h‖
From Lemma 8.1 follows the following important special case.

Theorem 8.3. (Serre’s Lemma) Suppose g, h and gh are elliptic isometries of an R-tree
T . Then Tg ∩ Th 6= ∅.

Theorem 8.4. (D. Macpherson and S. Thomas for combinatorial trees [24].) Suppose G
is a Polish group with a comeagre conjugacy class C acting by isometries on an R-tree T .
Then every element of G is elliptic.

Proof. We claim that ‖ ·‖ is constantly 0 on C. Assume towards a contradiction that this is
not the case. Notice first that ‖ · ‖ is conjugacy invariant, so constant on C. Pick g, h ∈ C
such that also gh, gh−1 ∈ C. By Lemma 8.1, if Tg ∩ Th = ∅ then

‖gh‖ = ‖g‖+ ‖h‖+ 2dist(Tg, Th) > ‖g‖
contradicting that ‖ · ‖ is constant on C. So Tg ∩ Th 6= ∅, whence by Lemma 8.2,

max(‖gh‖, ‖gh−1‖) = ‖g‖+ ‖h‖ > ‖g‖
again contradicting that ‖ · ‖ is constant on C and thus proving the claim.

Assume now that f is an arbitrary element of G and pick g, h ∈ C such that f = hg.
Then

C−1 ∩ C ∩ hC−1 ∩ gC−1 ∩ fC−1 6= ∅
so we can find k0, k1, k2, k3 ∈ C with k0 = hk−1

1 = gk−1
2 = fk−1

3 , k−1
0 ∈ C, i.e.,

k0k1 = h, k0k2 = g and k0k3 = f = k0k1k0k2.
Notice that k0, k1, k0k1 ∈ C, k1, k0k2, k1k0k2 = k3 ∈ C and k−1

0 , k0k2, k
−1
0 k0k2 =

k2 ∈ C, so applying Serre’s Lemma to each of these three situations, we have Tk0 ∩Tk1 6=
∅, Tk1 ∩ Tk0k2 6= ∅ and Tk0 ∩ Tk0k2 6= ∅. The three trees Tk0 , Tk1 and Tk0k2 therefore
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intersect pairwise, and thus there is some x in their common intersection. But then clearly
f · x = k0k1k0k2 · x = x, whence f is elliptic. ¤

Notice that if a group G acts by automorphisms on a tree T , then the action extends to
the tree T ′ obtained from T by adding a midpoint on every edge. Moreover, the action on
T ′ is without inversion, i.e., there are no vertices a 6= b in T ′ such that {a, b} is an edge
and g · a = b, g · b = a for some g ∈ G. We also see that G fixes a vertex if T ′ if and only
if G fixes either a vertex or an edge of T . Thus, to see that a group has property (FA) it is
enough to show that any action without inversion on a tree has a fixed vertex.

The proof of Theorem 8.4 translates word for word into the corresponding proof for Λ-
trees (a generalisation of R-trees with a metric taking values in an arbitrary ordered abelian
group). The only thing that has to be checked is that the appropriate lemmas are true also
in this setting. Well, here they are. In the following, Λ is a fixed ordered abelian group
and (X, d) a given Λ-tree. We define the norm of elements of G in the same manner as for
actions on R-trees.

Lemma 8.5. (Lemma 2.1.11 in [8]) Suppose X1, . . . , Xn are subtrees of X such that
Xi ∩Xj 6= ∅ for all i, j. Then X1 ∩ . . . ∩Xn 6= ∅.

Lemma 8.6. (Lemma 3.2.2 in [8]) Suppose g and h are isometries of (X, d), which are
not inversions, such that Tg ∩ Th = ∅. Then

‖gh‖ = ‖g‖+ ‖h‖+ 2dist(Tg, Th)

Lemma 8.7. (Lemmas 3.2.3 and 3.3.1 in [8]) Suppose g and h are hyperbolic isometries
of (X, d) such that Tg ∩ Th 6= ∅. Then

max(‖gh‖, ‖gh−1‖) = ‖g‖+ ‖h‖
From Lemma 8.6 we have again a version of Serre’s Lemma.

Lemma 8.8. Suppose g, h and gh are elliptic isometries of a Λ-tree (X, d). Then Tg∩Th 6=
∅.

Theorem 8.9. Suppose G is a Polish group with a comeagre conjugacy class C acting by
isometries and without inversion on a Λ-tree (X, d). Then every element of G is elliptic.

Dense conjugacy classes.
Lemma 8.10. Suppose a topological group G acts continuously and without inversion on
a tree T , i.e., such that the stabilisers of vertices in T are open in G. Then ‖·‖ : G → N is
continuous.

Proof. Suppose first that ‖g‖ = 0. Then for some a ∈ T , g · a = a, i.e. g ∈ Ga and Ga is
an open neighbourhood of g on which ‖·‖ is constantly 0.

Now, suppose ‖g‖ = n > 0. Then by a theorem of Tits (Proposition 24 in [30]) there is
a line `g = (ai

∣∣ i ∈ Z) in T such that g ·ai = ai+n for all i. Now, if h ∈ G is elliptic, then
for any a ∈ T , h fixes the midpoint of the geodesic from a to h·a. So if h·a0 = g ·a0 = an

then n = 2m, m > 0 and h · am = am 6= g · am, by uniqueness of the geodesic. Hence if

U = {f ∈ G
∣∣ f · a0 = g · a0, . . . , f · an = g · an}

then U is an open neighbourhood of g containing only hyperbolic points of norm ≤ n.
Moreover, if h is hyperbolic of norm k < n, then `h would contain exactly the k + 1

midpoints of the arc a0, a1, . . . , an from a0 to h · a0 = an. So for some 0 < i < n,

distT (ai, h · ai) = k 6= n

which is a contradiction. So U only contains hyperbolic points of norm n. ¤
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Proposition 8.11. Suppose G is a Polish group with a dense conjugacy class, which is
not the union of a countable sequence of proper open subgroups. Then whenever G acts
continuously and without inversion on a tree T , it fixes a vertex of T . In other words, G
has property (topFA).

Proof. Notice first that ‖·‖ is conjugacy invariant and continuous, so must be constantly 0
on G. I.e. every element of G is elliptic. So if G does not fix a vertex, it fixes an end α =
(a0, a1, . . .) ⊆ T (Tits, Exercise 2, page 66 [30]). But then G =

⋃
n G(an,an+1,...), where

G(an,an+1,...) is the pointwise stabiliser of the set {an, an+1, . . .}. Since these subgroups
are closed, almost all of them must be open, as G satisfies Baire’s category theorem. And
as G is not the union of a countable chain of proper open subgroups, G = G(an,an+1,...)

for some N , contradicting that G did not fix a vertex. ¤

S. Solecki [32] has shown that the isometry group of the rational Urysohn metric space,
Iso(UQ), with the permutation group topology, has ample generics and a cyclically dense
conjugacy class. Moreover, in Kechris and Rosendal [21] it is shown that Polish groups
with ample generics and a cyclically dense conjugacy class cannot be written as the union
of a countable chain of proper subgroups. So this means that Iso(UQ) has property (FA).
Moreover, V.G. Pestov [27] shows that Iso(U) has no non-trivial continuous represen-
tations by isometries in a reflexive Banach space, so in particular it has property (FH).
However, this does not solve the corresponding problem for Iso(UQ).
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