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Abstract. M. Gromov has shown that any two finitely generated groups Γ and
Λ are quasi-isometric if and only if they admit a topological coupling, i.e., a com-
muting pair of proper continuous cocompact actions Γ y X x Λ on a locally
compact Hausdorff space. This result is extended here to all (compactly gener-
ated) locally compact second-countable groups.

In his seminal monograph on geometric group theory [1], M. Gromov formu-
lated a topological criterion for quasi-isometry of finitely generated groups (see
0.2.C′2 in [1]). His idea was to replace the geometric objects, that is, the finitely
generated groups, by a purely topological framework, namely, a locally compact
Hausdorff space, which has no intrinsic large scale geometric structure.

As it is, Gromov’s proof easily adapts to characterise coarse equivalence of ar-
bitrary countable discrete groups, but thus far the case of locally compact groups
has not been adressed and indeed Gromov’s construction is insufficient to deal
with these. The present paper presents a solution to this problem by establishing
the following theorem.

Theorem 1. Two locally compact second-countable groups are coarsely equivalent if and
only if they admit a topological coupling.

As coarse equivalence of locally compact, compactly generated groups is just
quasi-isometry, we have the following corollary.

Corollary 2. Two compactly generated, locally compact second-countable groups are
quasi-isometric if and only if they admit a topological coupling.

Let us recall that a topological coupling of two locally compact groups G and H
is a pair G y X x H of commuting, proper and cocompact continuous actions
on a non-empty locally compact Hausdorff space X. Here the actions are proper
if, for every compact subset K ⊆ X, the sets

{g ∈ G | gK ∩ K 6= ∅}, {h ∈ H | Kh ∩ K 6= ∅}
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are both compact. Also, the actions are cocompact if X = G · K = K · H for some
compact subset K ⊆ X.∗

A coarse equivalence between two metric spaces X and Y is a map φ : X → Y
for which φ[X] is cobounded in Y, i.e., supy∈Y d(y, φ[X]) < ∞, and so that, for all
sequences (xn) and (zn) in X, we have

lim
n

d(xn, zn) = ∞ ⇔ lim
n

d(φ(xn), φ(zn)) = ∞.

Alternatively, the latter condition may be expressed by saying that there are non-
decreasing functions κ, ω : R+ → R+ with limt→∞ κ(t) = ∞ so that

κ
(
d(x, z)

)
6 d(φ(x), φ(z)) 6 ω

(
d(x, z)

)
for all x, z ∈ X.

On the other hand, a quasi-isometry is a coarse equivalence in which the bound-
ing functions κ and ω may be taken to be affine.

We note that every locally compact second-countable group G admits a com-
patible left-invariant proper metric d, i.e., whose closed balls are compact [5].
Moreover, any two such metrics turn out to be coarsely equivalent via the identity
map and hence define a unique coarse geometry on G. If, in addition, G is com-
pactly generated, say G = 〈K〉 for some symmetric compact set K, there is a com-
patible left-invariant proper metric d that is quasi-isometric to the left-invariant
word metric ρK induced by K. And as before, any two compact symmetric gener-
ating sets induce quasi-isometric word metrics and hence define a unique quasi-
isometry type of G. Finally, any coarse equivalence between compactly generated,
locally compact second-countable groups will in fact be a quasi-isometry.

The results of the paper here have recently been applied by J. Koivisto, D. Kyed
and S. Raum to problems of measure equivalence between amenable unimodular
groups [3].

Let us begin by verifying the easy direction of Theorem 1. To fix notation, we
let Bd(x, ε) denote the open ball of d-radius ε centred at x and Bd(x, ε) its closure,
while, for any set A, we set (A)ε = {x | d(x, A) < ε}.

Lemma 3. Let G y X x H be a topological coupling of locally compact second-
countable groups. Then G and H are coarsely equivalent.

Proof. Fix compatible left-invariant proper metrics dG and dH on G and H respec-
tively. Let K ⊆ X be a compact subset with X = G · K = K · H and pick a point
x ∈ X. We define a map φ : G → H by requiring that

x ∈ gKφ(g)−1

for all g ∈ G. Observe then that

g−1 f K ∩ Kφ(g)−1φ( f ) 6= ∅

for all g, f ∈ G.

∗The G-action written on the left will be a left-action, while the H-action written on the right will
be a right-action. However, both groups G and H will be equipped with their left-invariant coarse
structure, which is that induced by a compatible proper left-invariant metric.
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Now suppose t is a given constant. As the subset BdG (1, t)K is compact and H
acts properly, there is some s so that

BdG (1, t)K ∩ Kh = ∅

whenever dH(h, 1) > s. Then, if dG(g, f ) < t, we have g−1 f K ⊆ BdG (1, t)K and so

BdG (1, t)K ∩ Kφ(g)−1φ( f ) 6= ∅,

i.e., dH
(
φ(g), φ( f )

)
< s.

Similarly, for every t, there is s so that

dH
(
φ(g), φ( f )

)
< t ⇒ dG(g, f ) < s.

Thus to see that φ is a coarse equivalence, we must check that φ[G] is cobounded
in H. So find s so that K ∩ Kh = ∅ whenever dH(h, 1) > s. Then given h ∈ H find
some g ∈ G so that

x ∈ gKh−1 ∩ gKφ(g)−1

and thus also K ∩ Kφ(g)−1h 6= ∅. It follows that dH(h, φ(g)) 6 s, whence φ[G] is
cobounded in H. �

We now proceed to the proof of Theorem 1.

Proof. Suppose G and H are locally compact second-countable groups and let dG
and dH be proper left-invariant compatible metrics on G and H respectively. Let
also µ denote left-invariant Haar measure on G scaled so that the closure of the
unit ball B = BdG (1G, 1) has measure 1.

Assume that φ : H → G is a coarse equivalence and let κφ, ωφ be respectively
the compression and the expansion moduli of φ,

κφ(t) = inf
dH(h1,h2)>t

dG(φh1, φh2),

ωφ(t) = sup
dH(h1,h2)6t

dG(φh1, φh2)

Choose also s > 0 so that κφ(s) > 3.
Let Y ⊆ H be a maximal s-discrete subset, i.e., so that dH(y, y′) > s and hence

also dG
(
φ(y), φ(y′)

)
> 3 for all y 6= y′ in Y. By maximality, Y is s-dense in H, i.e.,

for every h ∈ H there is some y ∈ Y with dH(h, y) < s. For every y ∈ Y, define
θy : H → [0, s + 1] by θy(h) = max{0, s + 1− dH(h, y)}. Note that θy is 1-Lipschitz
and θy > 1 on the ball of radius s centred at y, while θy = 0 outside the ball of
radius s + 1. By properness and left-invariance of the metric dH , it follows that

Θ(h) = ∑
y∈Y

θy(h)

is a bounded Lipschitz function with Θ > 1.
Let now Z = φ[Y] and, for z = φ(y), define αz =

θy
Θ . Then the family {αz}z∈Z

is a partition of unity of H consisting of N-Lipschitz functions αz : H → [0, 1] for
some N > 0, so that

supp(αφ(y)) ⊆ BdH (y, s + 1),
for each y ∈ Y. Thus, for all h ∈ H, we have

Zh = {z ∈ Z | αz(h) > 0} ⊆ BdG

(
φ(h), ωφ(s + 1)

)
.
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So Zh is a 3-discrete subset of G of diameter at most 2ωφ(s + 1). We let M be the
maximal size of a 3-discrete subset of diameter at most 2ωφ(s + 1) in G.

Let λ : G y L1(G, µ) denote the left-regular representation and define a func-
tion ψ : H → L1(G, µ) by

ψh = ∑
z∈Z

αz(h) · χzB = ∑
z∈Zh

αz(h) · χzB ∈ L1(G, µ).

Thus each ψh is the convex combination of at most M disjointly supported left
translates λ(z)χB = χzB of the characteristic function χB. Therefore, for h, f ∈ H,

‖ψh − ψ f ‖L1 =
∥∥∥ ∑

z∈Zh∪Z f

(αz(h)− αz( f )) · χzB

∥∥∥
L1

6 ∑
z∈Zh∪Z f

|αz(h)− αz( f )| · ‖χzB‖L1

6 ∑
z∈Zh∪Z f

N · dH(h, f )

6 2MN · dH(h, f ).

I.e., ψ is 2MN-Lipschitz. Also, ‖ψh‖L1 = 1, while the essential support of ψh,
denoted supp(ψh), satisfies

supp(ψh) ⊆ BdG (φ(h), ωφ(s + 1) + 1).

Set

X = {ξ ∈ L1(G, µ) | ξ =
m

∑
i=1

αiχgi B where {g1, . . . , gm} ranges over 3-discrete

subsets of G with diameter 6 2ωφ(s + 1) and αi > 0 with
m

∑
i=1

αi = 1}.

Observe that X is invariant under the left-regular presentation λ : G y L1(G, µ).
We denote the duality pairing between L1(G) and L∞(G) by 〈· | ·〉, i.e.,

〈ξ | ζ〉 =
∫

ξ(g)ζ(g)dµ(g)

for ξ ∈ L1(G) and ζ ∈ L∞(G).

Claim 4. X is locally compact in the norm topology on L1(G, µ). In fact,

[K, ε] = {ξ ∈ X | 〈ξ | χK〉 > ε}

is norm compact for every compact subset K ⊆ G and ε > 0. Conversely, every compact
subset of X is contained in some [K, ε].

Proof. Observe that, for every compact subset K ⊆ G and ε > 0, the set [K, ε] is
weakly closed and thus also norm closed in X. Moreover, for every ξ ∈ X, there
is a compact subset K ⊆ G so that 〈ξ | χK〉 > 0, whereby, for ε = 1

2 〈ξ | χK〉, the
set [K, ε] is a norm neighbourhood of ξ in X.

To see that [K, ε] is compact and hence X is locally compact, it suffices to show
that every sequence (ξn) in [K, ε] has a convergent subsequence. By passing to
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a subsequence, there is some m 6 M so that each ξn can be written as a convex
combination

ξn =
m

∑
i=1

αi,nχgi,nB

of some 3-discrete subset {g1,n, . . . , gm,n} ⊆ G with diameter at most 2ωφ(s + 1).
Note then that, as 〈ξn | χK〉 > 0, we have gi,nB ∩ K 6= ∅ for some i 6 m and
thus that dG(gj,n, K) 6 2ωφ(s + 1) + 1 for all j. Therefore, by passing to a further
subsequence, we may assume that gi = limn gi,n and αi = limn αi,n exist for all
i 6 m. It follows that {g1, . . . , gm} is a 3-discrete subset of G with radius at most
2ωφ(s + 1), that αi > 0 with ∑i αi = 1 and that

ξ =
m

∑
i=1

αiχgi B ∈ X

is the norm limit of the ξn.
Suppose now instead that C ⊆ X is compact. Then C is covered by open

subsets of the form
(K, ε) = {ξ ∈ X | 〈ξ | χK〉 > ε}

for K compact and ε > 0 and hence may be covered by finitely many of these,
C ⊆ ⋃p

i=1(Ki, εi). It thus follows that C ⊆ [
⋃p

i=1 Ki, minp
i=1 εi]. �

Consider now the space of maps XH and note that ψ ∈ XH . Endow XH with
the product topology and commuting left and right actions G y XH x H by
homeomorphisms given by

(g · ξ)h = λ(g)ξh, (ξ · h) f = ξh f

for g ∈ G, h, f ∈ H and ξ ∈ XH . We set Ω = G · ψ · H. Note that Ω is G × H-
invariant. We will see that Ω is a topological coupling of G and H.

Note first that, for g ∈ G and h, f1, f2 ∈ H,

‖(gψh) f1 − (gψh) f2‖L1 = ‖λ(g)
(
ψh f1 − ψh f2

)
‖L1 6 2MN · dH( f1, f2)

and conclude that for all ξ ∈ Ω and f1, f2 ∈ H,

‖ξ f1 − ξ f2‖L1 6 2MN · dH( f1, f2).

We also have

supp
(
(gψh) f

)
= supp

(
λ(g)ψh f

)
= g · supp

(
ψh f
)
⊆ BdG (gφ(h f ), ωφ(s + 1) + 1).

Therefore,

κφ

(
dH( f1, f2)

)
− 2ωφ(s + 1)− 2 6 dG(gφ(h f1), gφ(h f2))− 2ωφ(s + 1)− 2

6 dG

(
supp

(
(gψh) f1

)
, supp

(
(gψh) f2

))
6 dG(gφ(h f1), gφ(h f2)) + 2ωφ(s + 1) + 2

6 ωφ

(
dH( f1, f2)

)
+ 2ωφ(s + 1) + 2.

By consequence, we have that for all ξ ∈ Ω and f1, f2 ∈ H,

κφ

(
dH( f1, f2)

)
−2ωφ(s + 1)− 2 6 dG

(
supp

(
ξ f1

)
, supp

(
ξ f2

))
6 ωφ

(
dH( f1, f2)

)
+ 2ωφ(s + 1) + 2.
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Claim 5. The space Ω = G · ψ · H is locally compact.

Proof. Indeed, given ξ ∈ Ω, let K = supp
(
ξ1
)

and consider the neighbourhood

{η ∈ Ω | η1 ∈ [K, 1/2]}
of ξ. Then, if ζ ∈ {η ∈ Ω | η1 ∈ [K, 1/2]}, we have K ∩ supp

(
ζ1
)
6= ∅ and thus

supp
(
ζ f
)
⊆ (K)ωφ(dH( f ,1))+6ωφ(s+1)+6.

By consequence

{ζ ∈ Ω | ζ1 ∈ [K, 1/2]} ⊆ ∏
f∈H

[(K)ωφ(dH( f ,1))+6ωφ(s+1)+6, 1],

where the latter product is compact. �

Claim 6. The action Ω x H is continuous and proper.

Proof. To show continuity at (ξ, h) ∈ Ω × H, we must show that, for all f ∈ H
and ε > 0, there are neighbourhoods V and W of ξ and h respectively so that
‖(ξ · h) f − (ζ · k) f ‖L1 < ε whenever ζ ∈ V and k ∈W.

So assume f ∈ H and ε > 0 are given and define

V = {ζ ∈ Ω | ‖ξh f − ζh f ‖L1 <
ε

2
}

and
W = {k ∈ H | dH(h f , k f ) <

ε

4MN
}.

Then, for all ζ ∈ V and k ∈W, we have

‖(ξ · h) f − (ζ · k) f ‖L1 6 ‖ξh f − ζh f ‖L1 + ‖ζh f − ζk f ‖L1

<
ε

2
+ 2MN · dH(h f , k f )

< ε

as required.
To see that the action is proper, observe that, for any compact subset of Ω, the

projection on the coordinate 1 ∈ H is also compact, hence the subset is contained
in a set of the form

{ξ ∈ Ω | ξ1 ∈ [K, ε]},
for some compact K ⊆ G and ε > 0.

So suppose that ξ, ζ ∈ Ω satisfy ξ1, ζ1 ∈ [K, ε], while h ∈ H satisfies

κφ

(
dH(h, 1)

)
> diamdG (K) + 2ωφ(s + 1) + 2.

Then supp
(
ξ1
)

and supp
(
ζ1
)

must both intersect K. Therefore,

diamdG (K) < κφ

(
dH(h, 1)

)
− 2ωφ(s + 1)− 2

6 dG

(
supp

(
ζh
)
, supp

(
ζ1
))

and so supp
(
ζh
)

must be disjoint from K, whence supp
(
ζh
)
6= supp

(
ξ1
)
. In

particular, (ζ · h)1 = ζh 6= ξ1.
By consequence,

{ξ ∈ Ω | ξ1 ∈ [K, ε]} ∩ {ξ ∈ Ω | ξ1 ∈ [K, ε]} · h = ∅
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for all h ∈ H with κφ

(
dH(h, 1)

)
> diamdG (K)+ 2ωφ(s+ 1)+ 2, witnessing proper-

ness of the action. �

Claim 7. The action Ω x H is cocompact.

Proof. Fix R > supg∈G dG(g, φ[H]) and let K ⊆ G be the closed ball of radius
R + ωφ(s + 1) + 1 centred at 1G. We will show that

Ω = {ξ ∈ Ω | ξ1 ∈ [K, 1/2]} · H.

To see this, fix ζ ∈ Ω and set C = supp
(
ζ1
)
. Now, suppose that supp

(
(gψh)1

)
intersects C for some g ∈ G and h ∈ H, whence dG(C, gφ(h)) 6 ωφ(s + 1) + 1.
Pick f ∈ H so that dG(gφ(h f ), 1G) = dG(φ(h f ), g−1) < R and observe that then

κφ

(
dH( f , 1)

)
6 dG(gφ(h), gφ(h f ))

6 dG(gφ(h), C) + diamdG (C) + dG(C, 1G) + dG(1G, gφ(h f ))

6 ωφ(s + 1) + 1 + diamdG (C) + dG(C, 1G) + R.

Letting

r = sup
{

t | κφ(t) 6 ωφ(s + 1) + 1 + diamdG (C) + dG(C, 1G) + R
}

,

we find that for all g ∈ G and h ∈ H for which supp
(
(gψh)1

)
intersects C, there

is some f ∈ BdH (1H , r) with dG(gφ(h f ), 1G) < R, whence also

supp
(
(gψh) f

)
⊆ K.

and 〈(gψh) f | χK〉 = 1. It follows that ζ is a limit of points gψh ∈ Ω for which
there are f ∈ BdH (1H , r) with 〈(gψh) f | χK〉 = 1.

Assume for a contradiction that (ζ · f )1 = ζ f /∈ [K, 1/2] for all f ∈ H and let
f1, . . . , fn be 1

5MN -dense in BdH (1H , r). Choose gψh ∈ Ω close enough to ζ so that
(gψh) fi

/∈ [K, 1/2] for all i 6 n, while, on the other hand, 〈(gψh) f | χK〉 = 1 for
some f ∈ BdH (1H , r). Pick then i with dH( fi, f ) 6 1

5MN , whereby

1/2 6
∣∣〈(gψh) fi

| χK〉 − 〈(gψh) f | χK〉
∣∣

6 ‖(gψh) fi
− (gψh) f ‖L1

6 2MN · dH( fi, f )

< 1/2,

which is absurd.
Thus, ζ ∈ {ξ ∈ Ω | ξ1 ∈ [K, 1/2]} · f for some f ∈ H. Since ζ ∈ Ω was arbitrary

and {ξ ∈ Ω | ξ1 ∈ [K, 1/2]} relatively compact in Ω, this proves cocompactness
of the action. �

Claim 8. The action G y Ω is continuous, proper and cocompact.

Proof. Continuity is trivial since already the action of G on X and hence on XH is
continuous. For properness, it suffices to see that, for every ε > 0 and compact
subset 1 ∈ K ⊆ G, the set of g ∈ G for which

{ξ ∈ Ω | ξ1 ∈ [K, ε]} ∩ g · {ξ ∈ Ω | ξ1 ∈ [K, ε]} 6= ∅
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is relatively compact in G. But, if ξ1 ∈ [K, ε] and λ(g)ξ1 = (g · ξ)1 ∈ [K, ε], then
supp

(
ξ1
)

intersects both K and g−1K, whereby

dG(K, g−1K) 6 diamdG

(
supp

(
ξ1
))
6 2ωφ(s + 1) + 2

and thus dG(g, 1) 6 2ωφ(s + 1) + 2 + 2 diamdG (K).
Finally, for cocompactness, let K be the ball of radius 4ωφ(s + 1) + 4 centred at

1G. Then every subset of G of diameter at most 2ωφ(s + 1) + 2 can be translated
via an element of G into K. But this means that, if ξ ∈ Ω, then

supp
(
(g · ξ)1

)
= g · supp

(
ξ1
)
⊆ K

for some g ∈ G and thus g · ξ ∈ {ζ ∈ Ω | ζ1 ∈ [K, 1]}. In other words,

Ω = G · {ζ ∈ Ω | ζ1 ∈ [K, 1]},

showing cocompactness. �

As both of the actions are proper, cocompact and continuous, we have a topo-
logical coupling. �

As stated, Theorem 1 only applies to locally compact second-countable groups.
However, every locally compact group G comes equipped with a canonical coarse
structure induced by the entourages

EC = {(g, f ) ∈ G× G | g−1 f ∈ C},

where C ranges over compact subsets of G, and thus one may wonder if Theorem
1 still applies to them. While we have not investigated the general case, it is
easy to extend our result to locally compact σ-compact groups, since, by the
Kakutani–Kodaira Theorem [2], every such G contains arbitrarily small compact
normal subgroups K so that G/K is locally compact second-countable. As G
is then coarsely equivalent to G/K via the quotient map, a coarse equivalence
between two such groups G and H would give rise to a topological coupling of
their respective quotients and hence of G and H themselves.

In this connection, it is perhaps more interesting to note that, with appropriate
adjustments, one may formulate and prove a generalisation of Theorem 1 for a
larger class of Polish groups, i.e., separable and completely metrisable topological
groups, namely those with bounded geometry. This forms part of the forthcom-
ing monograph [4].
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