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ABSTRACT. We prove that any countable index, universally measurable subgroup of a
Polish group is open. By consequence, any universally measurable homomorphism from
a Polish group into the infinite symmetric group S∞ is continuous. We also show that a
universally measure homomorphism from a Polish group into a second countable, locally
compact group is necessarily continuous.

The present work is motivated by an old problem of J.P.R. Christensen, which asks
whether any universally measurable homomorphism between Polish groups is continuous.
To fix the terminology, let us recall that a Polish space is a separable topological space
whose topology can be induced by a complete metric. Also, a topological group is Polish
in case its topology is Polish. A subset A of a Polish space X is said to be Borel if it
belongs to the σ-algebra generated by the open sets and A is universally measurable if
it is measurable with respect to any Borel probability (or equivalently, σ-finite) measure
on X , i.e., if for any Borel probability measure µ on X , A differs from a Borel set by a
set of µ-measure 0. The class of universally measurable sets clearly forms a σ-algebra,
but contrary to the class of Borel sets, there is no “algebraic” procedure for generating the
universally measurable sets from the open sets. Thus, the extent of this class is somewhat
elusive and largely depends on additional set theoretical axioms.

A function f : X → Y between Polish spaces X and Y is said to be Borel measurable,
resp. universally measurable, if f−1(U) is Borel, resp. universally measurable, in X for
all open U ⊆ Y . A classical result due to H. Steinhaus and A. Weil states that if G is
a second countable, locally compact group (and hence Polish) and H is a Polish group,
then any universally measurable homomorphism π : G → H is continuous. Actually,
for this it suffices that π is measurable with respect to left or right Haar measure on G.
However, this result relies heavily on the translation invariance of Haar measure, and, as
any Polish group with a non-zero, quasi-invariant, σ-finite Borel measure is necessarily
locally compact, the proof gives no indication of whether the result should hold for general
PolishG. Nevertheless, in the late 1960’s, J.P.R. Christensen [1] (see also [2]) introduced a
notion of Haar null sets in more general Polish groups and was able to use this to prove an
analogue of the Steinhaus–Weil result for Abelian Polish groups G. In fact, a consequence
of Christensen’s proof is that any universally measurable homomorphism from a Polish
groupG into a Polish groupH , whereH admits a compatible two-sided invariant metric, is
continuous. In particular, this applies to the case whenH is Abelian, compact or countable
discrete. It immediately follows from this that if G is Polish and N 6 G is a countable
index, universally measurable, normal subgroup, then N is open in G. To see this, one just
considers the quotient mapping π : G → G/N , where G/N is taken discrete. Recently,
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S. Solecki [5] was able to prove similar results without assumptions on H , but where, on
the other hand, the domain group G belongs to a class of Polish groups called amenable at
1. However, the general question of whether any universally measurable homomorphism
between Polish groups remains open.

In this paper, we shall provide two extensions of Christensen’s result, by instead weak-
ening the conditions on the range group H . Namely, we show that if H is either second
countable, locally compact or has a neighbourhood basis at 1 consisting of open subgroups
(equivalently, if H embeds into S∞), then any universally measurable homomorphism
π : G→ H from a Polish group G into H is continuous.

We recall that S∞ is the group of all permutations of N, which we give the Polish
topology whose basic open sets are

{g ∈ S∞
∣∣ g(ni) = mi, i 6 k},

where n1, . . . , nk,m1, . . . ,mk are natural numbers. Also, we say that a subset A of a
Polish group G admits a perfect set of disjoint left translates if there is a perfect set C ⊆ G
such that for all x 6= y ∈ C we have xA ∩ yA = ∅. Similarly, we say that a subgroup
K of G has perfect index if it admits a perfect set of disjoint left translates (in particular,
[G : K] = 2ℵ0 ). Finally, a universally measurable subset A of a Polish group G is said to
be left Haar null if there is a Borel probability measure µ on G such that for all x ∈ G we
have µ(xA) = 0. Similarly for right translates and right Haar null. With this we can now
state our main results.

Theorem 1. LetG be a Polish group and F 6 G a universally measurable subgroup. Then
F is either open in G or has perfect index. By consequence, any universally measurable
homomorphism from a Polish group into S∞ is continuous.

Theorem 2. Let π : G → H be a universally measurable homomorphism from a Polish
group G into a second countable, locally compact group H . Then π is continuous.

We begin by first considering the connection between right Haar null sets and the num-
ber of disjoint translates. For this we need the following result.

Theorem 3 (J. Mycielski [4]). LetX be an uncountable Polish space equipped with a non-
zero, σ-finite, continuous Borel measure µ and suppose that R ⊆ X2 is a binary relation
on X of µ× µ-measure 0. Then there is a Cantor set C ⊆ X such that

∀x 6= y ∈ C (x, y) /∈ R.
In attempting to prove results of automatic continuity, the passage from A to A−1A is

often without consequence, so the following consequence of Mycielski’s Theorem could
be a useful reformulation of being left Haar null.

Lemma 4. Suppose G is a Polish group and A,B ⊆ G are universally measurable.
(1) If A admits a perfect set of disjoint right translates, then A is left Haar null.
(2) If A−1A ⊆ B and B is left Haar null, then A has a perfect set of disjoint right

translates.

Proof. (1) Suppose P ⊆ G is a perfect set such that for distinct x, y ∈ P , we have
Ax ∩Ay = ∅. Then for any z ∈ G, as

x−1, y−1 ∈ zA⇔ z−1 ∈ Ax ∩Ay,
we see that zA intersects P−1 in at most one point. Therefore, if µ is any continuous Borel
probability measure supported on P−1, we have µ(zA) = 0 for all z ∈ G, which shows
that A is left Haar null.
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(2) On the other hand, if A−1A ⊆ B and B is left Haar null as witnessed by a Borel
probability measure µ on G, we see that

µ(xB) = 0, for µ-a.e. x ∈ G,
and so by Fubini’s Theorem

µ× µ({(x, y) ∈ G2
∣∣ x−1y ∈ B}) = 0.

Therefore, by Theorem 3, there is a Cantor set C ⊆ G such that for distinct x, y ∈ C, we
have x−1y /∈ B ⊇ A−1A, i.e., Ax−1 ∩Ay−1 = ∅. Setting P = C−1, we see that A has a
perfect set of disjoint right translates. �

One should note the use of the external set B in (2) above. This is needed since there is
in general no reason to conclude that A−1A is universally measurable from the fact that A
is universally measurable.

Now for the proof of our theorems, we shall need two results.

Theorem 5 ( J.P.R. Christensen [1]). Suppose G is a Polish group and An ⊆ G is a chain
of universally measurable subsets covering G, i.e.,

A0 ⊆ A1 ⊆ A2 ⊆ . . . ⊆ G =
⋃
n

An.

Then there are n and elements h1, . . . , hn ∈ G such that

h1AnA
−1
n h−1

1 ∪ . . . ∪ hnAnA
−1
n h−1

n

is a neighbourhood of the identity in G.

The second result we need is proved by just slightly amending Christensen’s proof of
Theorem 5 (see [6] for a complete proof of the exact statement below).

Theorem 6. Suppose G is a Polish group and A ⊆ G is a universally measurable sub-
set which is not right Haar null. Then for any open W 3 1 there are finitely many
h1, . . . , hn ∈W such that

h1AA
−1h−1

1 ∪ . . . ∪ hnAA
−1h−1

n

is a neighbourhood of the identity.

We now come to the proof of Theorem 1.

Proof. By Lemma 4, we know that if F does not have perfect index in G, then F fails to
be right Haar null. So, by Theorem 6, there are g1, . . . , gn ∈ G such that

V = g−1
1 Fg1 ∪ . . . ∪ g−1

n Fgn

is a neighbourhood of 1 in G, and, in particular, there is a countable set D ⊆ G such that

G = DV = DFg1 ∪ . . . ∪DFgn.

We claim that then F must have countable index in G. For if G 6= DF = DFg1g
−1
1 F−1,

pick a ∈ G \DFg1g−1
1 F−1, whereby aFg1 ∩DFg1 = ∅, and so

aFg1 ⊆ DFg2 ∪ . . . DFgn

and
G = (Da−1D ∪D)Fg2 ∪ . . . ∪ (Da−1D ∪D)Fgn.

Continuing this way, we either see that F coversG by a countable number of left translates
or that

G = D′Fgn
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for some countable set D′, whereby also G = D′F . In any case, F has countable index in
G.

Now let the gi and V be chosen as above. Then

K = g−1
1 Fg1 ∩ . . . ∩ g−1

n Fgn

is a subgroup of countable index in G, whereby K is a closed subgroup of countable index
and hence is open in G by the Baire Category Theorem. We then have

K ⊆ V K = (g−1
1 Fg1 ∪ . . . ∪ g−1

n Fgn)(g−1
1 Fg1 ∩ . . . ∩ g−1

n Fgn)

⊆ g−1
1 Fg1 ∪ . . . ∪ g−1

n Fgn.

By Neumann’s Lemma this implies that there is some i such thatL = g−1
i Fgi∩K has finite

index inK. By a lemma of Poincaré, it follows that there are finitely many k1, . . . , km ∈ K
such that M =

⋂m
i=1 kiLk

−1
i is a finite index, normal subgroup of K. So, as it is also

universally measurable, it is open in K by Christensen’s Theorem. Since K is itself open
in G this shows that M , g−1

i Fgi and thus also F are open in G.
Now suppose π : G→ S∞ is a universally measurable homomorphism. Then if V 3 1

is a neighbourhood of the identity in S∞, there is an open subgroup H 6 S∞ of countable
index such that H ⊆ V . But then U = π−1(H) is a universally measurable, countable
index subgroup of G and hence open. Since π(U) ⊆ V , this shows that π is continuous at
1 and therefore continuous everywhere. �

Using this, we can extract some additional information.

Theorem 7. Let A be a universally measurable, symmetric subset of a Polish group G
containing 1 and covering G by countably many left translates. Then there is a k such that
Ak is a neighbourhood of 1.

Proof. Let H = A<ω be the set of all finite products of elements in A and notice that H is
a subgroup of G of countable index. Notice also that as A ⊆ H , we have

gA ∩H 6= ∅ ⇔ g ∈ H.

So if G =
⋃

n∈N gnA, we see that H =
⋃

gn∈H gnA, i.e., H is a countable union of
universally measurable sets, and therefore universally measurable itself. So, by Theorem
1, H is open in G. Using Theorem 5, we find h1, . . . , hm ∈ H such that

h−1
1 A2h1 ∪ . . . ∪ h−1

m A2hm

is a neighbourhood of 1 and letting k be large enough such that hi ∈ Ak for all i, we see
that A2k+2 is a neighbourhood of 1. �

The above result is short of solving Christensen’s problem by only an alternation of
quantifiers. That is, if for any Polish group G one could find a k that works simultaneously
for all A ⊆ G, then this would suffice to prove that any universally measurable homomor-
phism between Polish groups is continuous. However, the techniques presented here do
not seem to suffice for this.

Instead, one could make an attempt at other test questions. One case where the group
theoretical approach used above might be successful is for homomorphisms defined on
S∞.

Problem 8. Suppose G is a closed subgroup of S∞ and

π : G→ H
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is a universally measurable homomorphism from G into a Polish group H . Is π continu-
ous?

We should mention that for G = S∞ and many other specific closed subgroups the
answer is positive, in fact, any homomorphisms (universally measurable or not) from S∞
into a Polish group is continuous (see [3]). So the question is really only interesting when
all closed subgroups G are considered.

Our second result, Theorem 2, which we will prove now, deals with locally compact
groups and will rely on both Theorems 5 and 6.

Proof. Suppose G is Polish, H is second countable, locally compact and π : G → H
is a universally measurable homomorphism. Since H is second countable, we can find
symmetric compact sets

K0 ⊆ K1 ⊆ K2 ⊆ . . . ⊆ H =
⋃
n

Kn

covering H and such that KnKn ⊆ Kn+1 for all n.
Set An = π−1(Kn). Then

A0 ⊆ A1 ⊆ A2 ⊆ . . . ⊆ G =
⋃
n

An

is a chain of universally measurable subsets covering G. So, by Theorem 5, there is some
n and g1, . . . , gn ∈ G such that

g1AnA
−1
n g−1

1 ∪ . . . ∪ gnAnA
−1
n g−1

n

is a neighbourhood of 1 in G. Let m ≥ n be large enough such that g1, . . . , gn ∈ Am.
Then,

g1AnA
−1
n g−1

1 ∪ . . . ∪ gnAnA
−1
n g−1

n ⊆ AmAmA
−1
m A−1

m ⊆ Am+2

and so Am+2 is a neighbourhood of 1.
To see that π is continuous, it suffices to prove continuity at 1 ∈ G. So suppose V is

any neighbourhood of 1 ∈ H and find some smaller open neighbourhood U 3 1 such that
for any h ∈ Km+2,

hUU−1h−1 ⊆ V.

This is possible, since Km+2 is compact.
Now, π−1(U) is universally measurable and covers G by countably many right trans-

lates, so π−1(U) is not right Haar null. Thus, by Theorem 6, there are finitely many
f1, . . . , fp ∈ Am+2 so that

W = f1π
−1(U)π−1(U)−1f−1

1 ∪ . . . ∪ fpπ
−1(U)π−1(U)−1f−1

p

is a neighbourhood of 1 in G. But π(fi) ∈ Km+2, so

π(W ) ⊆ π(f1)UU−1π(f1)−1 ∪ . . . ∪ π(fp)UU−1π(fp)−1 ⊆ V.

Since V is arbitrary, this shows that π is continuous at 1. �
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