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Abstract

We consider the unitary groupU of complex, separable, infinite-dimensional
Hilbert space as a discrete group. It is proved that, wheneverU acts by isometries
on a metric space, every orbit is bounded. Equivalently,U is not the union of a
countable chain of proper subgroups, and wheneverE ⊆ U generatesU, it does
so by words of a fixed finite length.

A property of uncountable groups that has recently been studied by a number of
authors is a strengthening of the property of uncountable cofinality that originated in
the work of Jean-Pierre Serre on actions of groups on trees [7]. Here an uncountable
group G is said to have uncountable cofinalityif G is not the union of a countable
increasing chain of proper subgroups. Serre proved this to be one of the three conditions
in his reformulation of when a group does not have fixed point free actions without
inversions on trees and it has subsequently been confirmed for a great number of
profinite groups (see, e.g., Koppelberg and Tits [4]) and groups of permutations of N.
The strengthening of this property, in which we are interested, comes from considering
the additional condition on G that whenever E is a symmetric generating set for G
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containing the identity there is some finite n such that G = En, i.e., any element of G
can be written as a word of length n using elements of E. We denote this condition
by Cayley boundednessand it indeed corresponds to any Cayley graph for G being of
bounded diameter in the word metric. George M. Bergman [1] originally proved that
the conjuction of uncountable cofinality and Cayley boundedness holds for the infinite
symmetric group S∞ and subsequently this has been verified for a number of other
groups. The purpose of this paper is to prove it for the unitary group of complex
separable infinite-dimensional Hilbert space `2. However, before we begin, we should
mention some of the equivalent formulations of these properties.

Consider a group G. It is fairly straightforward to see that G has uncountable
cofinality and is Cayley bounded if and only if it satisfies the following property:

Whenever W0 ⊆ W1 ⊆ W2 . . . ⊆ G =
⋃

n Wn is an increasing and ex-
haustive sequence of subsets of G there is some n and some k such that
Wk

n = G.

More interestingly is the fact that it is also equivalent to:

Whenever G acts by isometries on a metric space (X, d) every orbit is
bounded.

Or for another variation:

Any left-invariant metric on G is bounded.

There are several names for these equivalent properties in the literature, but the two
most common seem to be Bergman propertyand strong uncountable cofinality. Moreover,
if the constant k appearing above can be chosen independently of the sequence (Wi),
then we say that the group is k-Bergman.

The reformulation in terms of isometric actions discloses that we are really deal-
ing with a property of geometric group theory and indeed it does have quite evident
geometric implications for other types of actions. For example, one can quite easily
prove that any group with this property must also have properties (FH) and (FA),
meaning that any action of the group by affine isometries on a real Hilbert space has
a fixed point and similarly, any action of the group on a tree without inversions fixes
a vertex. We should stress the fact that despite that we will use a bit of topology in
our proof, the result is really about the unitary group as a discretegroup. Thus there
are no topological assumptions being made. We shall denote the unitary group of
separable infinite-dimensional complex Hilbert space `2 by U = U(`2). We recall that
the inverse of a unitary operator is its adjoint, U−1 = U∗. To avoid confusion, we will
use the blackboard bold font type A, B, . . .. to denote subsets of U and standard fonts
A,B, . . . , a, b, . . . to denote individual operators in B(`2). Thus A∗ = {A∗ ∣∣ A ∈ A}.

Theorem 1

The unitary group U of separable, infinite-dimensional, complex Hilbert space is
Cayley bounded and has uncountable cofinality. More precisely, U is k-Bergman for
some k.
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The proof will proceed through a sequence of reductions showing that the sets
Wn of an exhaustive sequence of subsets are big in both an algebraic and an analytic
sense. We first need the following result.

Theorem 2 (Brown and Pearcy [2])

Any T ∈ U is a multiplicative commutator, i.e., T = ABA∗B∗ for appropriate
A,B ∈ U.

Proposition 3

Suppose W0 ⊆ W1 ⊆ . . . ⊆ U =
⋃

n Wn. Then there is a decomposition `2 =
X ⊕X⊥ into closed infinite-dimensional subspaces, such that for some l ∈ N,

D := {T ∈ U
∣∣ T [X] = X} = U(X)⊕ U(X⊥) ⊆ W20

l

Proof. Suppose W0 ⊆ W1 ⊆ . . . ⊆ U =
⋃

n Wn. By instead considering the sequence

W0 ∩W∗
0 ⊆ W1 ∩W∗

1 ⊆ . . . ⊆ U =
⋃
n

Wn ∩W∗
n

we can suppose that each Wn is symmetric, Wn = W∗
n. Now, write `2 as the direct sum

of infinitely many infinite-dimensional closed subspaces `2 = (
∑

n⊕Xn)`2 . Then for
some n and all T ∈ U, if T [Xn] = Xn then there is some S ∈ Wn with T � Xn = S � Xn.
If not, we would be able to find for each n some unitary operator Tn of Xn such that
for all S ∈ Wn, Tn 6= S � Xn. But then the infinite direct sum T = ⊕mTm is such that
for all n and S ∈ Wn, T � Xn = Tn 6= S � Xn. In particular, T /∈

⋃
n Wn, contradicting

our supposition.
So suppose this holds for n. Find infinite-dimensional closed subspaces X, Y, Z ⊆

`2 such that X = Xn and X ⊕ Y ⊕ Z = `2. Let also N,M ∈ U be such that
N [X] = X ⊕ Y , N [Y ⊕ Z] = Z, M [X] = X ⊕ Z and M [Y ⊕ Z] = Y .

Clearly, if A ∈ U is such that A[X ⊕ Y ] = X ⊕ Y , then for some S ∈ Wn,
S[X] = X, we have

A� X ⊕ Y = NSN∗ � X ⊕ Y

and similarly, if B ∈ U, B[X ⊕ Z] = X ⊕ Z, then there is R ∈ Wn, R[X] = X, with

B � X ⊕ Z = MRM∗ � X ⊕ Z.

Now suppose that T ∈ U, T [X] = X and T � X⊥ = T � Y ⊕ Z = id � X⊥. By the
theorem of Brown and Pearcy, there are unitary operators A and B on X such that
T � X = ABA∗B∗. Extend now A and B to all of `2 by letting A � X⊥ = B � X⊥ =
id� X⊥.

Moreover, find S and R in Wn as above, whence for Â = NSN∗ and B̂ = MRM∗

we have

Â� X ⊕ Y = NSN∗ � X ⊕ Y = A� X ⊕ Y

B̂ � X ⊕ Z = MRM∗ � X ⊕ Z = B � X ⊕ Z

whence
Â� Y = id� Y, B̂ � Z = id� Z, Â[Z] = Z and B̂[Y ] = Y.
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Thus

ÂB̂Â∗B̂∗ � X = ABA∗B∗ � X = T � X,

ÂB̂Â∗B̂∗ � Y = B̂B̂∗ � Y = id� Y = T � Y,

and
ÂB̂Â∗B̂∗ � Z = ÂÂ∗ � Z = id� Z = T � Z.

Therefore,

T = ÂB̂Â∗B̂∗ = (NSN∗)(MRM∗)(NS∗N∗)(MR∗M∗)

= NS(N∗M)R(M∗N)S∗(N∗M)R∗M∗ ∈ W9
m

provided that m > n is large enough such that N,M,N∗M ∈ Wm. Notice however,
that N and M do not depend on T , so V = {T ∈ U

∣∣ T � X⊥ = id� X⊥} ⊆ W9
m. Find

now a K ∈ U such that K[X] = X⊥. Then clearly, if T ∈ U satisfies T [X] = X, we
have T ∈ VKVK∗. Let now l > m be sufficiently big that K ∈ Wl. Then we have
D ⊆ W9

l WlW9
l Wl = W20

l . �

The strong operator topologyon U is the topology of pointwise convergence on `2,
i.e., Ui → U if for all x ∈ `2, Uix → Ux. In this topology U becomes a Polishspace, i.e.,
a separable space whose topology is induced by a complete metric. Actually U is a Gδ

in B(`2) under this topology. A subset A of a Polish space X is said to be analytic if it
is the image of another Polish space by a continuous function. Analytic sets have the
Baire property, meaning that they differ from an open set by a meagre set (see, e.g.,
Kechris [3] for the basics of descriptive set theory). The following result was proved
in [6] as a byproduct of other computations, but for the readers convenience we include
a simple proof here.

Proposition 4

Assume that F is a symmetric subset of U, closed in the strong operator topology,
and that U0, U1, U2, . . . is a sequence of unitary operators such that U is generated as
a group by {Un} and F. Then there is some finite n such that

(F ∪ {1, U0, U
∗
0 , . . . , Un, U∗

n})n = U.

Proof. Define Wn = (F∪ {1, U0, U
∗
0 , . . . , Un, U∗

n})n and notice that (Wn) is an increas-
ing, exhaustive sequence of symmetric, analytic subsets of U. Since the sets have the
Baire property there is some k such that Wk is comeagre in an open set and hence
by Pettis’ Theorem (see Kechris [3]), WkW∗

k = W2
k contains an open neighborhood of

the identity in the strong operator topology. This implies that we can find some finite
dimensional space X ⊆ `2 such that if U � X = 1, then U ∈ W2

k. Now find a unitary
operator V such that Y := V [X] ⊆ X⊥. Then V W2

kV
∗ contains all unitaries U such

that U � Y = 1. Suppose now that U is an arbitrary unitary operator and find some
finite dimensional space Z ⊆ (X ⊕ Y )⊥ such that U [X] ⊆ X ⊕ Y ⊕Z. Find now some
W0 ∈ W2

k such that W0[Y ] ⊆ (X ⊕ Y ⊕ Z)⊥, while W0 � X ⊕ Z = I. Then

W0U [X] ⊆ W0[X ⊕ Y ⊕ Z] ⊆ X ⊕W0[Y ]⊕ Z ⊆ Y ⊥.
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There is therefore some W1 ∈ V W2
kV

∗ such that W1W0U � X = I. Thus we get
W1W0U ∈ W2

k and therefore

U ∈ W ∗
0 W ∗

1 W2
k ⊆ W2

kV W2
kV

∗W2
k

and
U = W2

kV W2
kV

∗W2
k.

Find now some sufficiently big m > k such that V, V ∗ ∈ Wm, then

U = W2
kV W2

kV
∗W2

k = W2
kWmW2

kWmW2
k = W8

m = W8m.

So n = 8m works. �

We now fix some increasing, exhaustive sequence (Wn) of subsets of U, and note
that by considering instead (Wn∩W∗

n) we can assume they are symmetric. By Propo-
sition 3, we also fix a decomposition `2 = X ⊕ X⊥ into closed infinite-dimensional
subspaces such that D = U(X)⊕ U(X⊥) ⊆ W20

l for some l.

Proposition 5

U is finitely generated over D.

This means that U is generated by D and a finite number of elements (actually 8),
say Ui’s.

We notice that this will indeed be enough to prove Theorem 1. For combining
Propositions 4 and 5, we get that U has bounded length with respect to D and the
family U1, U

∗
1 , ..., U8, U

∗
8 that we will prove generates U over D, in other words, there

is an integer k such that any unitary U in U can be written as a product U = V1...Vk

where Vi either belongs to D or is one of Ui or U∗
i .

We also note also that, the k in the definition of the Bergman property does not
depend on the sequence (Wi), as D is unique up to inner automorphism. It is known
that this uniformity does not hold in all groups with the Bergman property, as, e.g., it
fails in the full group of a countable measure preserving equivalence relation (see B.D.
Miller [5]).

From now on, we will use identifications of both X and X⊥ with `2 = `2(N) with
its canonical basis and see endomorphisms of X ⊕ X⊥ as two by two matrices with
entries in B(`2).

A partial isometry is a map u on `2 so that u∗u = p and uu∗ = q are orthogonal
projections. We say that u is a partial isometry with initial space Im p and final
space Im q (or from Im p to Im q), where Im T denotes the closure of the range of an
operator T , and notice that, in this case, u is actually an isometric bijection between
Im p and Im q. We recall also the polar decomposition of an operator: Every operator
T can be decomposed as T = u|T |, where |T | = (T ∗T )1/2 is positive, self-adjoint,
Ker |T | = Ker T , and u is a partial isometry from Im |T | = (Ker T )⊥ to Im T .

Let S be the unilateral shift operator on `2 (S(ei) = ei+1), and L be an isometry
from `2 to an infinite codimensional subspace (L(ei) = e2i for instance). For any
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isometry u, pu will be the projection 1− uu∗. Let W be the subgroup of U generated
by D and the matrices[

u pu

0 u∗

]
,

1√
2

[
1 u∗

u −uu∗ +
√

2pu

]
,

1√
2

[
1 u∗2

u2 −u2u∗2 +
√

2pu2

]
,

[
0 1
1 0

]
,

where u is either 1, S or L.
W is generated by D and eight unitaries, that we denote by U1, ..., U8. We will

show that W = U.

Lemma 6

Let
[ A

B

]
be an isometry from `2 to `2 ⊕ `2, then there is a partial isometry v

from Im 1−A∗A to Im B so that B = v(1−A∗A)1/2.

Proof. Since
[ A

B

]
is an isometry, we get that A∗A + B∗B = 1. So we conclude that

|B| = (1 − A∗A)1/2, the last part follows from the polar decomposition and the fact
that for any positive operator T , Im T = Im T 1/2. �

Lemma 7

W contains all matrices of the form[
u pu

0 u∗

]
,

1√
2

[
1 u∗

u −uu∗ +
√

2pu

]
,

where u is an isometry.

Proof. First, remark that up to multiplications by unitaries any isometry u is deter-
mined only by the dimension of Im pu. So multiplying by elements in D, we only need
to prove the lemma for u = Sk, u = L and u = 1. The only non-trivial cases are for
u = Sk. For the first case, we notice that[

S pS

0 S∗

]k

=

[
Sk A
0 S∗k

]
.

Thus
[ A

S∗k

]
and

[ S∗k

A∗

]
are isometries from `2 to `2⊕`2. Hence, as S∗k is an isometry

on (Im pSk)⊥ = [ek+1, ek+2, . . .], we have A � (Im pSk)⊥ = A∗ � (Im pSk)⊥ = 0, while,
as S∗k � Im pSk = 0, A and A∗ must be isometries on Im pSk . Therefore, A is a partial
isometry with initial and final space Im pSk . Letting U = (1 − pSk) + A, we see that
U is unitary and that [

S pS

0 S∗

]k [
1 0
0 U∗

]
=

[
Sk pSk

0 S∗k

]
.
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For the other case, we notice that by definition

1√
2

[ 1 S∗k

Sk −SkS∗k +
√

2pSk

]
is in W for k = 1 and k = 2. Now[

S pS

0 S∗

]∗ [
1 S∗k

Sk −SkS∗k +
√

2pSk

] [
S pS

0 S∗

]
=

[
1 S∗(k+2)

Sk+2 X

]
,

where X = pS + pSS∗(k+1) + Sk+1ps − Sk+1S∗(k+1) +
√

2SpSS∗.
Let V = −Sk+2S∗(k+2) +

√
2pSk+2 and let u be the unitary operator given by

u(e1) = e1+ek+2√
2

, u(ek+2) = e1−ek+2√
2

, while u(ei) = ei for all i 6= 1, k + 2. One can
check, by, e.g., considering the action on vectors, that X = uV and, as u is the
identity on [e1, ek+2]⊥, u∗Sk+2 = Sk+2. Thus[

1 S∗(k+2)

Sk+2 V

]
=

[
1 0
0 u∗

] [
1 S∗(k+2)

Sk+2 X

]
,

and the lemma follows by induction. �

The matrices appearing the preceding lemma are actually special cases of the
more general form of a unitary that will appear in the following.

Proof of Proposition 5: We have to prove that any unitary belongs to W. The strategy
is to start with an arbitrary unitary viewed as a 2 by 2 matrix

U =

[
T M
N K

]

and to multiply it by elements in W to get simpler forms.
First, we can assume that T is positive. To see this, notice that by replacing U

by U∗ we can assume that dim Ker T 6 dim Ker T ∗. We have T = u|T | for some
partial isometry u from Im |T | = (Ker T )⊥ to Im T = (Ker T ∗)⊥, and our hypothesis
dim Ker T 6 dim Ker T ∗ implies that u can be extended to an isometry ũ so that
T = ũ|T |. Then [

ũ pũ

0 ũ∗

]∗
U =

[
|T | ∗
∗ ∗

]
,

which proves our claim.
Applying Lemma 6 twice, we only need to prove that a unitary of the form

U =

[
T (1− T 2)1/2v∗

u(1− T 2)1/2 X

]

is in W, where u and v are partial isometries with initial space Im (1 − T 2)1/2 =
(Ker (1−T 2))⊥ = (Ker (1−T ))⊥ (as T is positive). So u∗u = v∗v is the projection onto
Im (1−T 2)1/2. Let uu∗ = 1−p and vv∗ = 1−q and note that u∗p = pu = v∗q = qv = 0.
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The fact that U is a unitary means that U∗U = UU∗ = 1, and writing down the
computation on matrices, this implies that
(i) u(1− T 2)u∗ + XX∗ = 1,
(ii) v(1− T 2)v∗ + X∗X = 1,
(iii) u(1− T 2)1/2T + Xv(1− T 2)1/2 = 0,
(iv) v(1− T 2)1/2T + X∗u(1− T 2)1/2 = 0.

Now u∗u = v∗v is the projection onto Im (1−T 2)1/2, so as T and (1−T 2)1/2 commute,
we have by (iii)

uT (1− T 2)1/2 + Xv(1− T 2)1/2 = 0,

whence −uT and Xv agree on Im (1− T 2)1/2 = Im v∗. So

−uTv∗ = Xvv∗ = X(1− q).

Similarly, using (iv) we have

−vTu∗ = X∗uu∗ = X∗(1− p).

Thus −uTv∗ = X(1− q) = (1− p)X.
Using (ii) we have |X| = (X∗X)1/2 = (1− v(1−T 2)v∗)1/2 = (q + vTv∗)1/2. Now,

q is the projection onto (Im v)⊥, so qvT 2v∗ = 0 = vT 2v∗q, and, using that m1/2 is the
operator limit of polynomials in m, we therefore have (as v∗v commutes with T )

(q + vT 2v∗)1/2 = q1/2 + (vT 2v∗)1/2 = q + vTv∗.

Hence, by the polar decomposition, there is a partial isometry α with initial space
Im (q + vTv∗)1/2 so that X = α(q + vT 2v∗)1/2. The initial space of α is Im q + vTv∗ =
Im q + Im vTv∗ and therefore α∗α > q. Now,

X = Xq + X(1− q) = α(q + vTv∗)q − uTv∗ = αq − uTv∗.

Similarly, using (i), we see that X = (p + uTu∗)β∗, where β is a partial isometry
with initial space Im p + uTu∗ = Im p + Im uTu∗, whence β∗β > p, and

X = pX + (1− p)X = pβ∗ − uTv∗.

So pβ∗ = αq = pX = Xq = pXq.
Using α∗α > q, we see that αq = pβ∗ is an isometry with initial space Im q, and,

as β∗β > p, αq = pβ∗ has final space Im p.
To summarise,

U =

[
T (1− T 2)1/2v∗

u(1− T 2)1/2 −uTv∗ + δ

]
,

where u is a partial isometry from (Ker 1 − T )⊥ to Im 1 − p, v is a partial isometry
from (Ker 1 − T )⊥ to Im 1 − q and δ = αq = pβ∗ is a partial isometry from Im p to
Im q.

Consequently, one can find a unitary s so that v = su and that coincides with δ
on Im p. So

U ′ = U

[
1 0
0 s

]
=

[
T (1− T 2)1/2u∗

u(1− T 2)1/2 −uTu∗ + p

]
.

In particular, U ′ is self-adjoint, and note that Ker 1− uTu∗ = {0}.
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The next step is to show that we can suppose that u is an isometry. To do this,
it suffices to write T ′ = T − q′ where q′ is the projection onto Ker 1 − T . So then
Ker 1 − T ′ = {0}. Then T ′q′ = 0, q′T ′ = q′ − q′T = q′ − (Tq′)∗ = q′ − q′ = 0, and
q′u∗ = 0, so (1− T 2)1/2u∗ = (1− T ′2)1/2u∗ and

U ′ =

[
T ′ + q′ (1− T ′2)1/2u∗

u(1− T ′2)1/2 −uT ′u∗ + p

]

where u is a partial isometry from Im 1− q′ onto Im 1− p and Ker 1− T ′ = {0}.
The previous formula is now symmetric in terms of T and uTu∗ as Ker 1− T ′ =

Ker 1 − uT ′u∗ = {0}. We mean that T = T ′ + q′ and −uTu∗ + p = −uT ′u∗ + p play

exactly the same role in the above formula. So, using a conjugation with
[ 0 1

1 0

]
to reverse the roles of p and q′, we therefore can assume that dim Im p > dim Im q′.
Using other conjugations with elements in D, we can assume that q′ 6 p and u is a
partial isometry from 1− q′ to 1− p.

With these choices, it is then easy to find an isometry w extending u, that is
(w − u)(1− q′) = 0, so that replacing T ′ + q′ by T ′, we can suppose that U ′ is of the
form [

T ′ (1− T ′2)1/2u∗

u(1− T ′2)1/2 −uT ′u∗ + p

]
(∗)

were u is an isometry from `2 to Im 1− p. Note that the matrices of Lemma 7 are of
this form.

T ′ is a self-adjoint positive contraction on `2, so using the functional calculus,
define A = exp(i arccos T ′) and B = exp(−i arccos T ′). These are two unitaries with

A + B = 2 cos(arccos T ′) = 2T ′ and A−B = 2i sin(arccos T ′) = 2i(1− T ′2)1/2.

Notice also that uBu∗ − p is unitary, actually p = pu with the notations of Lemma 7.
Finally,

1√
2

[ 1 u∗

u −uu∗ +
√

2p

]
.

[
A 0
0 uBu∗ − p

]
.

1√
2

[
1 u∗

u −uu∗ +
√

2p

]

=

[
T ′ i(1− T ′2)1/2u∗

iu(1− T ′2)1/2 uT ′u∗ − p

]

=

[
1 0
0 −i

]
.

[
T ′ (1− T ′2)1/2u∗

u(1− T ′2)1/2 −uT ′u∗ + p

]
.

[
1 0
0 −i

]

So U ∈ W. �

The drawback of using a Baire category argument is that it does not provide an
explicit bound for the number k for which U is k-Bergman. Actually it is not hard to
modify the proof of Lemma 7 to get it. It relies on the following observation: assume
that there is a decomposition `2 = X ⊕ X⊥ into two infinite dimensional subspaces

that are reducing for all block elements of a matrix U =
[ A B

C D

]
, then conjugating U
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with an element in D, we can assume that X is fixed and another conjugation with the
unitary V of `2⊕ `2 that identifies (X ⊕X⊥)⊕ (X ⊕X⊥) with (X ⊕X)⊕ (X⊥⊕X⊥),
we end up with an element in D. We can add V to the list of unitaries U1, ..., U8. This
can be applied to the matrices[

u pu

0 u∗

]
,

1√
2

[
1 u∗

u −uu∗ +
√

2pu

]
,

where u is an even power of the shift (with X = span{e2i, i > 0}), this is enough
to conclude to the bounded length of U over D. The resulting estimate k 6 200 is
probably far from being optimal.

Along the same lines, one can ask if the Cayley graph of U is uniformly bounded
with respect to any generating set. The answer is of course negative as one can take
En = {e2iπH ;H = H∗, ‖H‖ ≤ 1/n}. En is clearly a generating set and En

n = U. From
the triangular inequality,

dist(Id,Ek
n) ≤ k.(e2π/n − 1)

so if −Id ∈ Ek
n then k > n/eπ.

We have focused on the unitary group, but one can easily adapt the arguments
for the orthogonal group O. Indeed, the result of Brown and Pearcy still holds for O.
The only place in the proof where we used the orthogonal group is at the very end in
the diagonalization procedure. We briefly explain how to adapt it to the case of O. We
start with any orthogonal matrix O on the form (∗) with respect to a decomposition
`2 = Y ⊕Y . Since T ′ is self-adjoint, there is a decomposition Y = X⊕X⊥ into infinite
dimensional reducing subspaces. Conjugating with elements in D with can assume
that X, u and p depend only on the dimension of Im p. Moreover, as u is an isometry,
it means that there is a decomposition of `2 = Y ⊕ Y ⊕ Im p, so that the matrix of O
with respect to it is  T ′ (1− T ′2)1/2 0

(1− T ′2)1/2 −T ′ 0
0 0 Id

 .

As explained above, the 3×3 matrix of O is then block diagonal for the decomposition
(X ⊕X)⊕ (X⊥ ⊕X⊥)⊕ Im p. Since X and X⊥ are infinite dimensional, there is an
orthogonal transformation identifying (X ⊕ X) ⊕

(
(X⊥ ⊕ X⊥) ⊕ Im p

)
with Y ⊕ Y ,

which means that conjugating O with a matrix that depends only on Im p, we end up
in D. Hence, we have that O is generated by D, a finite number of orthogonal maps and
another sequence of orthogonal transformations corresponding to the possible values of
the dimension of Im p. So Proposition 4 allows us to conclude the k-Bergman property
for O. On the other hand, as GL(`2) acts unboundedly on `2 by Lipschitz maps, it is
fairly easy to check that the Bergman property fails for GL(`2) (see [6]).

As a possible extension of the main result, one can wonder what happens for the
group of invertible isometries U(X) on a separable Banach space X. In some particular
cases, one can give a precise answer.

If X = `p with 1 6 p 6= 2 < ∞ or c0, it is well known that U(X) is the semi-
direct product of TN by S∞ with the natural action σ.(zi) = (zσ(i)) for σ ∈ S∞ and
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(zi) ∈ TN. Using Bergman’s theorem saying that S∞ is 17-Bergman, Proposition 3 can
be adapted to show that U(X) has the 72-Bergman property. We give a brief sketch
of it. We keep the notations TN and S∞ for their copy in TN o S∞ = U(X) = U.

Let Wi be an increasing sequence of symmetric sets such that
⋃

Wi = U. Since
S∞ has the 17-Bergman property, there is some n so that W17

n contains S∞. As in
Proposition 3, decompose N =

⋃
Xi as an infinite partition of infinite sets. Then there

must be an i so that pi(Wi ∩ TN) = TXi where pi is the natural projection of TN onto
TXi . Let Xi = X. Now we have partition N = X ∪ Y with Y infinite and write
((xl), (yl)) for elements in TN according to this decomposition. Identify X with Z,
and let σ ∈ S∞ be the permutation corresponding to the bilateral shift on X and the
identity on Y . The following equality holds in U:

((x−1
l xl+1), (1)) = ((xl), (yl))−1.σ.((xl), (yl)).σ−1.

As elements on the form (x−1
l xl+1) describe all of TX , we get that WiσWiσ

−1 contains
all elements of the form (x, (1)) x ∈ TX . Using a permutation τ that exchanges X and
Y , we get that

TN ⊂ WiσWiσ
−1τWiσWiσ

−1τ−1.

Since any element in U is the product of one element in TN and one element in S∞,
we see that W 72

max{i,n} = U.

It is also possible to provide Banach spaces whose group of invertible isometries
does not have the Bergman property. Consider the space C([0, 1]) of continuous func-
tions on [0, 1]. By the Banach-Stone theorem, a surjective isometry g of C([0, 1]) comes
from the composition with a continuous homeomorphism φ of [0, 1] and the multiplica-
tion by a unimodular continuous function u, that is g(f)(x) = u(x)f(φ(x)) for x ∈ [0, 1]
and f ∈ C([0, 1]). As a group U(C([0, 1]) is the semi-direct product of unimodular con-
tinuous functions by continuous homeomorphisms. Of course homeomorphisms of [0, 1]
have to let {0, 1} invariant. So, by restriction, there is a surjection of U(C([0, 1])) onto
T2 o Z/2Z = G, where Z/2Z acts by permutation of the coordinates of T2. But, it
is easy to see that G and so U(C([0, 1])) do not have the Bergman property as T has
countable cofinality.

For more elaborated counterexamples, one can think of X as hereditarily inde-
composable. Then, any endomorphism of X is of the form λId + S with S strictly
singular and λ ∈ C. Since strictly singular operators form an ideal, it follows that there
is a surjective group homomorphism U(X) → C. Since C does not have the Bergman
property, U(X) also fails it.
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