The jump operator

Definition
(i) $A \equiv^* B$ if $A \leq^* B \equiv^* A$.

(ii) The Turing degree of A (or the degree of unsolvability) is the set
$$\text{deg}(A) = \{ B \mid B \equiv^* A \}.$$

(iii) $\text{deg}(A) \cup \text{deg}(B) = \text{deg}(A \oplus B)$

(iv) Degrees, i.e., \equiv^* -equivalence classes are denoted by smaller case letters a, b, c in boldface and \mathcal{D} denotes the class of degrees.

(v) (\mathcal{D}, \leq) is defined by $a \leq b$ iff
$$\exists A \in a \exists B \in b \ A \equiv^* B$$

(vi) $a \in \mathcal{D}$ is recursively enumerable if there is an r.e. set $A \in a$

(vii) $a \equiv a$ r.e. c.e. in b. Let $\exists A \in a \exists B \in b$
$$A \equiv a \ \text{r.e. in} \ B.$$
Definition \[KA = \{ x \mid \phi^A_x(x) \uparrow \} \]

This set is called the jump of \(A \) and is also denoted by \(A' \).

By the Myhill isomorphism theorem one can see that \[KA \cong K_A^A = \{ <x,y> \mid \phi^A_y(x) \uparrow \} \]

It is enough to notice that \(K^A_0 \equiv_1 KA \)

Theorem

(i) \(A' \) is r.e. in \(A \)

(ii) \(A' \not\equiv_1 A \)

(iii) If \(A \) is r.e. in \(B \) and \(B \leq_1 C \), then \(A \) is r.e. in \(C \).

(iv) \(B \) is r.e. in \(A \) iff \(B \leq_1 A' \)

(v) \(B \leq_1 A \iff B' \leq_1 A' \)

(vi) \(B \equiv_1 A \rightarrow B' \equiv_1 A' \rightarrow B' \equiv A' \rightarrow B' \equiv_1 A' \)

(vii) \(A \) is r.e. in \(B \) \(\iff \) \(A \) is r.e. in \(\overline{B} \).

(viii) \(A \leq_1 A' \) and \(\overline{A} \leq_1 A' \).
Proof. (i) It is clear, as $A^* = KA = S^*$.

(ii) This follows from relativising the proof at $K \not\vdash \emptyset$. To see what this latter says, notice that $K \leq_T \emptyset$ means that χ_K belongs to the recursive closure of $\exists \chi_\emptyset$, which is just the set of partial recursive functions.

But χ_K is not total recursive, so $K \not\vdash \emptyset$. Working in the class of partial A-recursive functions, one sees that $K^* \not\vdash A$.

(iii) This is also the relativised version of "B is r.e. iff $B \leq_T K$".

(iv) If $A \neq \emptyset$ is r.e. in \emptyset, then $A = \text{rg}(f)$ for some total \emptyset-recursive function f.

Moreover, if $B \leq_T C$ then f belongs to the recursive closure of $\exists \chi_B$ and χ_B belongs to the recursive closure of $\exists \chi_\emptyset$, whence f belongs to the recursive closure of $\exists \chi_C$, witnessing that A is r.e. in C.

\[\exists x \left(\forall y, (\exists z < (x, y, x, y) \land z \in A) \right) \]
(iv) If \(B \leq_A A \) then \(B' \) is re. in \(B \) (by (i)) and hence \(B' \) is re. in \(A \) (by (iii)) and \(B' \leq_A A' \) (by (iv)).

Commonly, if \(B' \leq_A A' \), then by (viii)
\[B, CB \leq_A B' \leq_A A' \text{ and re by (iv)} \]
\[B, CB \text{ are re. in } A \] Therefore, \(B \leq_A A \).

(vi) \[B \equiv_A A \Rightarrow B' \equiv_A A' \Rightarrow B' \equiv_A A' \text{ are known.} \]

So if \(h \) is a recursive permutation of \(N \) such that \(h(B') = A' \), notice that \(X_B = X_A \circ h \Rightarrow X_A = X_B \circ h^{-1} \).

Thus, \(B' \equiv_A A' \Rightarrow A \equiv_A B' \).

(vii) Notice that \(B \equiv_A CB \) (by \(X_B = 1 - X_{CB} \)) so the result follows from (iii).

(viii) Relativise the proof above that \(K \) is 1-complete, i.e., that any re. set \(C \), \(C \leq_1 K \). Now, both \(A \) and \(CA \) are re. in \(A \), so re. in \(A \) and hence \(A, CA \leq_1 KA \equiv_A A' \).
Definition \[A' = \deg (A') \] for any some \(A \).

This is well-defined by \((vi)\) above.

Moreover, put \(\varphi = \deg (\varphi) \), so \(\varphi' = \deg (K) \).

To see this one can use the following

Proposition If \(A \equiv B \), then there is a recursive function \(h : \mathbb{N} \to \mathbb{N} \) such that
\[\phi^A_e = \phi^B_{h(e)} \] for all \(e \in \mathbb{N} \).

Proof Suppose \(\chi_A = \phi^B_{h(e)} \). Then \(h \) will be the function that to the program with index \(e \) calculates \(\chi_A \) of the program such that:

- calculate \(\phi^A_e \) but such that whenever a value \(\chi_A (n) \) is needed, calculate instead \(\phi^B_{h(e)} \).

Notice that \(h \) does not depend on \(A, B \). \(\square \)

By padding one can moreover suppose that \(h \) is injective. So as for acceptable systems of indices, one can show that if \(A \equiv B \) then there is a recursive bijection \(\sigma \) such that
\[\phi^A_{\sigma(e)} = \phi^B_e \] for.