$F_3 : \forall x \forall y \forall z (Rxx \land ((Rxy \land Ryz) \Rightarrow Rxz) \land (Rxy \Rightarrow Ryx))$

$F_4 : \forall x \forall y \forall z (Rxx \Rightarrow Rx \mathrm{*} z \land y \mathrm{*} z)$

$F_5 : \forall x \forall y (Rxy \Rightarrow \neg Ryx)$.

8. The language L consists of a single binary predicate symbol, R.

Consider the L-structure \mathcal{M} whose base set is $M = \{n \in \mathbb{N} : n \geq 2\}$ and in which R is interpreted by the relation ‘divides’, i.e. \overline{R} is defined for all integers m and $n \geq 2$ by the condition: $(m, n) \in \overline{R}$ if and only if m divides n.

(a) For each of the following formulas of L (with one free variable x), describe the set of elements of M that satisfy it.

$F_1 : \forall y (Ryx \Rightarrow x \equiv y)$

$F_2 : \forall y \forall z ((Ryx \land Rzx) \Rightarrow (Ryz \lor Rzy))$

$F_3 : \forall y \forall z (Ryx \Rightarrow (Rzy \Rightarrow Rxz))$

$F_4 : \forall t \exists y \exists z (Rtx \Rightarrow (Ryt \land Rzy \land \neg Rtz))$.

(b) Write a formula $G[x, y, z, t]$ of L such that for all a, b, c and d of M, the structure \mathcal{M} satisfies $G[a, b, c, d]$ if and only if d is the greatest common divisor of a, b and c.

(c) Let H be the following closed formula of L:

$$\forall x \forall y \forall z ((\exists t (Rtx \land Rty) \land \exists t (Rty \land Rtz)) \Rightarrow \exists t \forall u (Rui \Rightarrow (Rux \land Ruz)))$$

(1) Find a prenex form of H.
(2) Is the formula H satisfied in \mathcal{M}?
(3) Give an example of a structure $\mathcal{M}' = (M', \overline{R})$ such that when \mathcal{M} is replaced by \mathcal{M}' in the previous question, the answer is different.