First order theories

A first order theory of a language L is just a set T of L-formulas. Sometimes we call formulas in T the axioms.

Examples:

Group theory. The language of group theory has one constant e and one binary function symbol \cdot. The theory of group theory has axioms:

\[\forall x \exists y \ (x \cdot y = e \land y \cdot x = e) \]
\[\forall x \forall y \forall z \ (x \cdot (y \cdot z) = (x \cdot y) \cdot z) \]
\[\forall x \ (x \cdot e = x \land e \cdot x = x) \]

The theory of abelian groups moreover has the following axiom:

\[\forall x \forall y \ (x \cdot y = y \cdot x) \]

Here and in what follows we shall use variables x, y, z, \ldots instead of x_0, x_1, x_2, \ldots in order to simplify notation.
The theory of linearly ordered sets is a theory of first language with a single binary relation symbol \(<\) and with axioms

\[\forall x \neg (x < x) \]
\[\forall x \forall y \forall z \ ((x < y \land y < z) \rightarrow x < z) \]
\[\forall x \forall y \ (x = y \lor x < y \lor y < x) . \]

The expressive power of first order logic is greater than that of propositional logic.

Example. Formalize the following in first order logic:

"If every ancestor of an ancestor of an individual is also an ancestor of the same individual and no individual is his/her own ancestor, then there is someone without any ancestors."

Here \(L = \exists R E \), where \(R \) is a binary relation symbol:

\[Rxy \iff x \text{ is an ancestor of } y . \]
Formalised we have:

\[
\left[\left(\forall x \forall y \forall z \left((R_{xy} \land R_{yz}) \rightarrow R_{xz} \right) \right) \land \forall x \neg R_{xx} \right]
\]

\rightarrow \exists x \forall y \exists z R_{yx}

Example