Phillip Wesolek Math 503 Context Free Languages April 1, 2010

Context Free Languages

Remark: Much of this discussion comes from:
Elements of the Theory of Computation by Lewis and Papadimitriou.

Remark: I may occasional use e to denote the empty string €.
Motivation:

Finite automata recognize languages. l.e. if you input a string the au-
tomaton will tell you if this string is acceptable. Now it is natural to want
a more constructive approach to languages. Viz. can we construct a lan-
guage which produces a string given a set of rules and some initial data? In
fact regular expressions can be informally - for now - thought of as language
generators:

E.g. Consider a (a* Ub*)b. Clearly this is a regular expression and we
can interpret this expression as follows:

Output a. Then do one of the following: (1) output some finite
number of a’s or (2) output some finite number of ¢'s. Finally
output b and halt.

Goal: Construct a class of formal language generators. These generators
will be Context Free Grammars.

Informal Construction of a Context Free Grammar:
Consider the aforementioned regular expression: a(a*Ub*)b. An arbi-
trary string is of the form:

a ———— b
——

some middle piece

So we might say: a string S can be aMb with M some yet to be determined
middle piece. We abbreviate as S — aMb. Now we consider possible candi-
dates for M: clearly M must either be a string of a’s or a string of b's. Denote
these hypothetical strings A and B respectively. Using our above notation,
we write: M — A, M — B. Now we think of how we might define A and B
as to allow the construction of strings of a’s and 0's in some sort of iterative



Phillip Wesolek Math 503 Context Free Languages April 1, 2010

fashion. One such way is as follows: A — aA and B — bB. (Perhaps make
a brief comment about these.) Since we want the process to halt, we also
include A — e and B — e. Applying all of these rules in sequence, we can
build words. E.g.

Rule Word

S —aMb aMb
M— A aAb
A—aA aadAb

A — aA aaaAb
A—e aaaeb
Output :  aaab

Ol s W N~

So after applying a sequence of the words, we have output a word of the
language. This is an informal description of a Context Free Grammar.

Remark: Why Context Free? The are called context free because the
rules do not account for context. E.g. in step (3) the derived word is aaAb.
The "context" of A can be thought of as aa and b. However the rule A — a A
is independent of the "context". Hence we are "Context Free". (Some more
general grammars account for context.)

Formal Construction:

Definition: A contezt free grammar G is a 4 — tuple (V, 3, R, S) where

e VV is an alphabet
e > C Visaset of terminals. (The output words will be in this alphabet)
e RC(V —3%)x V*is a finite set of rules

e S eV — X is the start symbol.

Notation:

e We call V — ¥ the non-terminals.

e (Aju) € R is denoted A — w. (I drop the subscript in the following
G

discussion.)



Phillip Wesolek Math 503 Context Free Languages April 1, 2010

Definitions:

1. For u,v € V* we write u :G> v iff there is z,y,v" e V*and A € V — %
such that u = zAy, v = xv'y, and A = v' € R. L.e. we can produce v

from u by applying a rule from R. Diagram:

Rule Word
TAy =u
A=V xy=w

2. We define :;> to be the reflexive, transitive closure of :G>

3. L(G) := the language generated by G = {w ey : s :;> w}. We say

that G generates L (G). (Remark: The machine halts when all non-
terminals have been removed from the right-hand side.)

4. Alanguage L is context free if L = L (G) for some context free grammar

G.
5. We call a sequence of the following form

Wy = W1 = ... = W
OG 1G a n

a derivation in G of w, from wy. (in n-steps)

Example 1:
Let G = (V, 3, R, S) withV = {S,a,b}, ¥ = {a,b} and R = {S — aSb, S — e}.

Here we have a possible derivation:
S = aSb = aaSbb = aabb

So from S we derive aabb. The rules we are using can be illustrated as follows:

Rule Word

1 S—aSb aSh
2 S —aSb aaSbb
3 S—e aaebb
Output  aabb

3



Phillip Wesolek Math 503 Context Free Languages April 1, 2010

As a corollary, we see that L(G) = {a"b" : n > 0} which we know to be
non-regular. So the class of context free languages include languages which
are not regular. However, we will see that all regular languages are context
free. (Draw picture.)

Example 2:

(This example gives a nice technique for proving facts about context free
languages.)

Let G = (V,%, R, S) be a grammar where

o V=1{ab S A}
o ¥ ={a,b}
e R={S — AA A — AAA A — a,A— bA A — Ab}

Claim: L (G) consists of all strings in ¥* with number of occurrences of
a even and greater then zero.

proof: First we will prove that all strings in L (G) have an even, nonzero
number of a’'s. Le. L(G) C {w € X*:|w|, >0 and even}. We do this by

proving the following stronger claim:
Whenever w € V* and S = w, then |w|, +|w|, > 0 and even.

We prove this stronger result by induction on the length of a derivation,
k, for the following hypothesis: For all w € V* such that S = w in k or
fewer steps, then |w|, + |w|, > 0 and even. (x) (NOTE: This approach by
induction on the length of derivation is a typical approach.)

Base Case: k£ = 1. Inspecting the rules, we see that AA is the only
element of V* which can be derived from S. And so (x) trivially holds. Thus
we have the base case.

Inductive Case: Suppose () holds up to k and that w € V* is such that
S = win k + 1 steps. Lets write out the last steps of the derivation:

= w = w

So S = w' in k or fewer steps. By the induction hypothesis, [w'| , + |w'|, > 0
and even. Inspecting the rules which allow G to move from w’ to w, we make
the following observations:



Phillip Wesolek Math 503 Context Free Languages April 1, 2010

o A— AAA and S — AA add two additional A’s.
e A — a replaces A with a.

e A— Aband A — bA do not change the number of a’s or A’s.

So any rule applied to obtain w’ either does not change |w’'|, + |w'|, or
increases it by 2. Hence |w|, + |w|, > 0 and even. So (x) holds in this case.
This finishes the induction and we conclude that (*) holds for all k. Thus all
w such that S = w are such that |w|, + |w|, > 0 and even. In particular all
w € L(G) have this property. And since these do not contain any A’s, they
have an even number of a’'s. Thus L (G) C {w € ¥* : |w|, > 0 and even}.
(Time permitting.) For the reverse inclusion, letw € {w € ¥* : |w|, > 0 and even}.
So we can write w = ™ ab™2a...b™*+! for some n > 0 and my...mo, 1 > 0.
(b° = ¢.) Then w can be produced by G as follows:

Derivation Rule Applied

S = AA S — AA (once)

= A A— AAA (n—1 times)
= P A A — bA (m; times)

= prig Al A — a (once)

= pmighm2 A2 A — bA (my times)

= bmriab™e. b A
= prghmz,, pmen Apmentt A — Ab (may41 times)
= prgh™2 . b gh e+ A — a (once)

So we see that S = w and therefore w € L (G). Thus we conclude that
L(G) ={w € X*: |w|, > 0 and even} and we have the claim.

Goal: Show all regular languages are context free.

Remark: We accomplish this by defining a special sub collection of
context free grammars; viz. regular grammars.



Phillip Wesolek Math 503 Context Free Languages April 1, 2010

Definition: A context free grammar G = (V, 3, R, S) is regular iff R C
(V=3) x I ((V=%)U{e})

(NOTE: A regular grammar is such that every rule contains at most one
non-terminal in the right-hand side; E.g. A — wB.)

Example: (omit?) Let G = (V,X, R, S) be the context free grammar
with

o V={S A B,a,b}

e ¥ ={a,b}

e R={S —bA,S — aB, A — abaS, B — babS,S — e}
A sample derivation performed by this machine:

S = bA = babaS = babaaB = babaababS = babaababe = babaababe
S—bA A—abaS S—aB B—babS S—e

With a bit of work one can show that L (G) = ({abab} U {baba})"

Theorem: A language is regular if and only if it is generated by a regular
grammar.

Proof: (NOTE: Lewis defines finite automata a bit different then we do;
hence this proof is an adaptation of the one he gives.)

Fix an alphabet ¥ = {a;...a;}

(=) Suppose L C ¥* is a regular language accepted by a deterministic
automaton M = (Q, FE,so, A,l). Let Q = {¢1...¢;»} and define the regular
grammar G = (V, X, R, S) where:

e V=XUQ
o S:SO
e R={qi—ag;:acl(E;;) and E;; e E}U{q—e:qe A}

With £ ; is the edge from ¢; to g;. Observe that G is clearly a regular
grammar since the non-terminals are exactly (2.

claim: L (M) = L(G)

pf: (2). Take w = ay..a, € L (G). Hence there exists some derivation of
the following form:

So = A1G;; = A2Giy--- = A1...AnG;, = A1...0p

6



Phillip Wesolek Math 503 Context Free Languages April 1, 2010

By construction of G, soq;,...q;, is an edge path in Q, E. Moreover, ¢; € A
and w is a label for this edge path. Hence M recognizes w; i.e. w € [ (M).

(C) Take w = ay..a,, € L(M). So there is some edge path s¢q;...q;,in
(Q, E) such that ¢;, € A and ax € | (E;,.,). (Define g, = s9). Hence
the following rules are elements of R: {ql-]. — 541G, 0<j <n— 1} and
qi;, — e. Hence, we have the following derivation:

So = G1¢;; = ...01..0nG;, = A1...0,€ = A7...0p,

Sow € L(G). O

Thus we have this direction of the theorem. (This is enough to accomplish
our goal.)

(<) Let L C ¥* be recognized by G = (V, X, R, Sy) a regular grammar.
Say that V' — X = {A;..A,,}Here we define ae — NFA M = (Q, E, S, A,l)
with

e Q= (V —-X)U{P} with P a new state. (i.e. not appearing in V.)
e F={AB: A—c¢Be€R}U{AP: A—cc R}

o 5={S}

o A={P}

_f{c:A—cBeR} B#P
Z<AB>—{ {c:A—ceR} B=P

It is clear that M is an ¢ — NFA.
claim: L (G) =L (M)
pf: () Take w = ay...a,, € L (G). So there is some derivation; say:

S = wA;, = ... = w.wpd, = W WWe = W

Remark: G might not build w letter by letter; i.e. the w; could be words.
By construction, we have the following edge path in (2, E):

SoAil...AikP (*)

Moreover, w = w;...wy41 is a label for (x) and P is an accepting state; hence
we L(M).



Phillip Wesolek Math 503 Context Free Languages April 1, 2010

(D) Let w = ay...a, € L(M). So there is some edge path sgA;,...A;, P
with label w;...w, = w. This implies that the following derivation exists in
G:

S = wlAz‘l'-- == wl...wk_lA = W1.. Wk

Tg—1
So ay...a, € L(G) and we have the claim. [J
This finishes the proof and we conclude the theorem.

Remark: We have seen that not all context free languages are regular.
So one might attempt to devise some sort of more powerful automaton to
recognize these languages. To accomplish this, we might ask what we must
add to a finite automaton to so that the previous theorem will hold for all
context free languages. NOTE: the machine we build, will appear to be
substantially different from our notion of finite automata as Lewis defines
finite automata differently. Let us consider a context free language and try
to understand the problems which an automaton must overcome. Fix some
alphabet ¥ and let L = {wwR Tw E E*}. Now a machine which recognizes
L by reading from left to right - i.e. like an automaton - must "remember"
the first part of the input string and compare it against the second piece. So
our automata must incorporate a form of memory.

Natural question: What should be stored in the memory?

Answer: (possible) In the proof of the above theorem we could code up
rules of the form A — ¢B by labeled edges between vertices A and B. The
problem for a general context free grammar is there are rules of the form
A — c¢Bd. So we need a way to remember d. Thus we create a form of
memory which records the d in a particular order. This memory is the stack
or pushdown store.

Formal Construction:

Definition: A pushdown automaton is a six tuple M = (K, X, ', A s, F)
where

e K is a finite set of states

e Y is an alphabet (called input symbols)

8



Phillip Wesolek Math 503 Context Free Languages April 1, 2010

[" is an alphabet (called stack symbols)

s € K is the wnitial states

e [ C K is the set of final states

A is the transition relation and is a finite subset of: (K x ¥* x I'*) x
(K xTI™)

Intuition: If ((p,u,3),(¢,7)) € A then whenever M is in state p with
[ at the top of the stack we have the following possible operation: M may
read u from the input, replace 8 by v on the top of the stack, and enter state

q.
Definitions:
e ((p,u,B),(q,7v)) € A is called a transition.
e To push a symbol is to add it to the top of the stack.

e To pop a symbol is to remove it from the top of the stack.

Example: The transition ((p,u,€), (q,a)) pushes a while ((p, u,a) , (g, €))
pops a.

Definition: A configuration (k,e,g) of a pushdown automaton M is
defined to by a member of K x ¥* x I'* where

e [ is the state of the machine

e ¢ is the portion of the input yet to be read.

e ¢ is the pushdown store read top down.

E.g. If (¢,w,abc) is a configuration then a is the top of the stack and ¢
is the bottom.

Definition: For every ((p,u,f),(¢,7)) € A and z € ¥*, o € ™ we
define:

(p, uz, o) Far (g, x,ya)

9



Phillip Wesolek Math 503 Context Free Languages April 1, 2010

We say that - holds between configurations when they can be represented
in the above form for some transition, =, and .

More Definitions:

e The reflexive, transitive closure of I-); is denoted by 3,

e We say that M accepts a string w € ¥* iff (s,w,e) 4, (p,e,e) with
peF

o Alternatively: M accepts a string w € X* iff there is a sequence of
configurations Cy, .., C,, withn > 0, Cy = (s,w,e), C,, = (p,e,e) p € F,
and

CoFyu Cr.. by C

e A sequence Cy,..C}, such that C; Fy Cii1 0 <7 < n —1is called a
computation of length n. (alt: a computation with n-steps)

e The language accepted by M - denoted L (M) - is the set of all strings
accepted by M.

Theorem: The class of languages accepted by pushdown automata is
exactly the class of context free languages.

proof:

See text reference page 112.

Example:

Goal: Create a pushdown automaton M which accepts L = {wcwR cw € {a, b}*}
E.g. ababcbaba € L.

Let M = (K, %, T, A, s, F') where

o K= {sf}
o > ={a,b,c}
o I'={a,b}

10



Phillip Wesolek Math 503 Context Free Languages April 1, 2010

« F={/}

e A contains the following transitions

ATl o S
~~ I~ —~ —~
A~~~ I~ —~ —~

)

o

o

S~—

—~

=

o

S—

S—

The automaton operates in the following manner: As it reads the first
half of its input, it remains in its initial state s and uses transitions 1 and 2
to transfer symbols from the input string onto the pushdown stack. When
the machine sees ¢ in the input string, it switch from state s to state f
without changing the stack. Hereafter only transitions 4 and 5 are used.
these permit removal of the top symbol on the stack provided that it matches
the next input symbol. If there is no match then the operation ceases. If
the automaton reaches the configuration (f,e,e) then the input is in the
form wew® and the automaton accepts the input. On the other hand, if the
automaton detects a mismatch between input and the stack symbols, or if
the input is exhausted before the stack is emptied, then it does not accept.
For a concrete illustration, consider the following table:

State Unread Input Stack Transition Used

S abbcbba e —
S bbebba a 1
S bebba ba 2
S cbba bba 2
f bba bba 3
f ba ba 5
f 5
f e e 4

FSo we conclude that abbcbba is accepted by M.

11



