EXERCISES FOR METAMATH I

1. EXERCISE

Find all solutions to the equation $(vu)^n = u^n v^n$ in non-empty words u, v and $n \ge 1$.

2. EXERCISE

If

 $\alpha = w_1 w_2 w_3 \dots = w_{k+1} w_{k+2} w_{k+3} \dots$ for $w_i \in \Sigma^+$ and $k \ge 1$, show that $\alpha = (w_1 \dots w_k)^{\omega}$.

3. EXERCISE

Let $x, y, z \in \Sigma^+$ and suppose that xyz = zyx. Show that there are words $u, v \in \Sigma^+$ and $i, j, k \ge 0$ such that $x = (uv)^i u$, $y = (vu)^j v$ and $z = (uv)^k v$.

4. EXERCISE

An infinite word α is *recurrent* if any finite subword that occurs in α actually occurs infinitely often.

(a) Show that α is recurrent if and only if any finite subword that occurs in α occurs at least twice.

Given a finite word $w = a_1 a_2 \dots a_n$, define its *reversal* \breve{w} by $\breve{w} = a_n \dots a_2 a_1$. An infinite word α is *mirror invariant* if for any word w occurring in α , also \breve{w} occurs in α .

(b) Show that any mirror invariant infinite word α is recurrent.