EXERCISES FOR METAMATH I

1. EXERCISE

An DFA \mathcal{M} over a finite alphabet Σ is said to be *minimal* if there is no DFA \mathcal{N} with $L(\mathcal{N}) = L(\mathcal{M})$ having fewer states than \mathcal{M} . Given a regular language L, what is the connection between the number of states in a minimal automaton accepting L and the number of cone types of L?

2. EXERCISE

Let *L* be a language accepted by a DFA \mathcal{M} having *n* states. Show that for any $x \in \Sigma^*$, if cone_{*L*}(x) $\neq \phi$, then there is some $y \in \Sigma^*$ with |y| < n such that $xy \in L$.

3. EXERCISE

Suppose $L,R\subseteq\Sigma^*$ are languages. We define the quotient of R by L as follows

$$R/L = \{x \in \Sigma^* \mid \exists y \in L \ xy \in R\}.$$

(a) Show that if R is regular, then so is R/L.

(b) Show that if R is regular, then so is

 $\operatorname{prefix}(R) = \{x \in \Sigma^* \mid \exists y \ xy \in R\}.$

4. EXERCISE

Suppose Σ and Λ are finite alphabets. A *homomorphism* from Σ^* to Λ^* is simply a homomorphism of monoids, i.e., $\pi: \Sigma^* \to \Lambda^*$ is a homomorphism if $\pi(\epsilon) = \epsilon$ and $\pi(xy) = \pi(x)\pi(y)$. Note that any homomorphism is completely determined by its images of the letters of Σ .

(a) Show that if $\pi: \Sigma^* \to \Lambda^*$ is a homomorphism and $L \subseteq \Sigma^*$ is regular, then so is $\pi(L) \subseteq \Lambda^*$.

(b) Show that if $\pi: \Sigma^* \to \Lambda^*$ is a homomorphism and $L \subseteq \Lambda^*$ is regular, then so is $\pi^{-1}(L) \subseteq \Sigma^*$.

5. EXERCISE

Find a language *L* over the alphabet $\{0, 1\}$ such that for any distinct $x, y \in \{0, 1\}^*$, cone_{*L*}(*x*) \neq cone_{*L*}(*y*).