EXERCISES FOR METAMATH II: THIRD SET

1. EXERCISE

Let $\Sigma_k = \{0, \dots, k-1\}$. Suppose $L \subseteq \Sigma_k^*$ is a regular language and define

 $R = \{x \in L \mid x \text{ is the lexicographically largest element of } L \cap \Sigma_k^{|x|} \}.$

Show that R is regular.

2. EXERCISE

Let *L* be the set of all non-square natural numbers written in base 10, i.e.,

 $L = \{2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, \ldots\}.$

Find the (finite) set of minimal strings in L with respect to the subsequence ordering \preccurlyeq . I.e., find the smallest finite subset $S \subseteq L$ such that for any $x \in L$ there is some $y \in S$ with $y \preccurlyeq x$.

3. EXERCISE

Show that the following are both presentations of the trivial group.

- $\langle x, y | xyx^{-1} = y^2, yxy^{-1} = x^2 \rangle$, $\langle x, y, z | xyx^{-1} = y^2, yzy^{-1} = z^2, zxz^{-1} = x^2 \rangle$.

4. EXERCISE

Suppose Σ is a finite alphabet and $L \subseteq \Sigma^*$ is a regular language. For $x \in \Sigma^*$, define

tree_L(x) = {
$$y \in \Sigma^* \mid \operatorname{cone}_L(xy) \neq \emptyset$$
 }.

So tree_L(x) is a (possibly empty) tree on Σ^* , i.e., a set of strings closed under taking prefixes. Let $[tree_L(x)]$ denote the set of all *infinite branches* of tree_L(x), i.e., the set of $\alpha \in \Sigma^{\omega}$ all of whose finite prefixes belong to tree_L(x). We say that tree_L(x) is well-founded in case [tree_L(x)] = \emptyset .

- Show that there is a constant *K* only depending on *L* such that for any $x \in \Sigma^*$, if $tree_L(x)$ is well-founded, then

$$|\text{tree}_L(x)| \leq K.$$

5. EXERCISE

Find a characterisation of all regular languages $L \subseteq \Sigma^*$ with the following property: For some K dependent on L and for all n,

$$|L \cap \Sigma^n| \leq K.$$

6. EXERCISE

Find the \sim_L equivalence classes of the following languages.

- $L = \{w \in \{0, 1\}^* \mid |w|_0 = |w|_1\},$ $L = \{a^n b^n c^n \mid n \ge 1\}.$

7. EXERCISE

For every $k \ge 1$, show how to construct a regular language L_k over a finite alphabet Σ_k such that for all n,

$$|L_k \cap (\Sigma_k)^n| = n^k.$$

8. EXERCISE

Let $\Sigma = \{1, 2, ..., n\}$. A string $w = a_1 a_2 ... a_k$ is said to be *bipartite* if there is a partition $A \sqcup B = \{1, \ldots, k\}$ such that

$$\sum_{i\in A}a_i=\sum_{i\in B}a_i.$$

(a) Show that there is a constant K depending only on n such that any bipartite string *w* has a bipartite substring $v \preccurlyeq w$ with $|v| \le K$.

(b) Show that the language of bipartite strings is regular.