Regular languages and finite automata.

Suppose \(\Sigma \) is a finite alphabet.

Recall the following basic operations on languages \(L, K \subseteq \Sigma^* \):

Concatenation

\[
LK = \{ xy \mid x \in L, y \in K \}
\]

Union

\[
L \cup K = \{ x \mid x \in L \cup x \in K \}
\]

Kleene star

\[
L^* = L^0 \cup L^1 \cup L^2 \cup \cdots
\]

\[
= \{ w_1 w_2 \cdots w_n \mid n \geq 0 \text{ and } w_i \in L \}
\]

Definition The class of regular languages in \(\Sigma \) is the smallest class \(L \) of languages containing \(\emptyset, \Sigma^* \) (but \(\Sigma \neq \emptyset \)) and such that if \(L, K \in L \), then also \(LK \), \(L \cup K \), \(L^* \in L \).

Example All finite languages are regular. Since

\[
\{a, b, \ldots, a_n \} = \{a, b, \ldots, a_{n-1} \} \cup \{a, b, \ldots, a_{n-2} \} \cup \cdots \cup \{a \}
\]
Definition. A determinstic finite state automaton, DFA, consists of a finite directed graph \(G \), where \(V \) is a finite set of vertices and \(E \in V^2 \) is a set of directed edges, along with

(1) a distinguished start state \(s_0 \in V \),

(2) a set \(A \subseteq V \) of accepting states,

(3) a labeling \(l : E \to \mathcal{P}(\Sigma) \). For any \(\sigma \in \Sigma \), there is exactly one edge \((s, t) \in E \) originating at \(s \) and with label \(\sigma \), i.e., \(\sigma = l(s, t) \).

We call \(V \) the set of states of the automaton.

Given an automaton \(\mathcal{M} \) as above and a string \(w = a_1 a_2 \cdots a_n \in \Sigma^* \), we say that \(\mathcal{M} \) accepts \(w \) if the unique edge path \((s_0, a_1, a_2, \ldots, a_n) \) in \(\mathcal{M} \) originating at \(s_0 \) and with edges \(l(s, a_i) \) terminates at an accepting state.

Given \(\mathcal{M} \), we let \(L(\mathcal{M}) \) be the language consisting of the strings accepted by \(\mathcal{M} \). We also say that \(\mathcal{M} \) recognizes \(L(\mathcal{M}) \).
Example: We draw a DFA by a diagram in the plane as a usual directed graph with labeled edges. Moreover, the accepting states are indicated by double circles.

\[\begin{align*}
 & a & \rightarrow & s & \rightarrow & b & \rightarrow a \\
 & b & \rightarrow & s & \rightarrow & b & \rightarrow a
\end{align*} \]

Thus, all has exactly two states and the only accepting state is \(s \). We see that \(\Sigma = \{ a, b \} \) and

\[L(\text{all}) = \{ w \mid |w|_b = \text{# of occurrences of } b \text{ in } w \text{ is even} \} \]

Similarly, \(\Sigma = \{ a, b, c \} \)

\[\begin{align*}
 & a & \rightarrow & c & \rightarrow & a & \rightarrow & c & \rightarrow & a, b, c & \rightarrow & a, b, c \\
 & b & \rightarrow & c & \rightarrow & b & \rightarrow & c & \rightarrow & a, b, c & \rightarrow & a, b, c \\
 & c & \rightarrow & a & \rightarrow & c & \rightarrow & a & \rightarrow & a, b, c & \rightarrow & a, b, c
\end{align*} \]

\[L(\text{all}) = \{ wvcv, bwcv \mid w \in \{ a, b \}^*, v \in \{ a, b, c \}^* \} \]
Definition. A generalized non-deterministic finite state automaton, ε-NFA, is a directed finite graph $\mathcal{A} = (V, E)$ along with

1. a non-empty set of start states $S \subseteq V$,
2. a set of accepting states $A \subseteq V$,
3. a labeling $L : E \rightarrow 2^\Sigma \cup \{\varepsilon\}$.

Given an ε-NFA \mathcal{A} and a string $w \in \Sigma^*$, we say that \mathcal{A} accepts w if there is an edge path (e_1, \ldots, e_m) and labels $b_i \in L(e_i)$ (where b_i can be ε) such that

$$w = b_1 b_2 \cdots b_m$$

Example. We indicate the start states by an \circ.

$$L(\mathcal{A}) = 2^1 \left(2b\right)^n c^m \mid n \geq 0, \; m \geq 0 \; ?$$
Suppose $L \subseteq \Sigma^*$ is a language and $w \in \Sigma^*$. We define the \textit{cone type} of w in L by

$$\text{cone}_L(w) = \{ x \in \Sigma^* \mid wx \in L \}$$

and let the \textit{cone types} of L be

$$\text{Cone}(L) = \{ \text{cone}_L(w) \mid w \in \Sigma^* \}$$

\textbf{Note:} The set of cone types of L are the cones \textit{of all words} $w \in \Sigma^*$, not just $L \subseteq \Sigma^*$.

\textbf{Example:} Let $L = \{ a^n b^n \mid n \geq 0 \} \subseteq \Sigma^* a b \Sigma^*$. Then

$$\text{cone}_L(b^2) = \emptyset, \quad \text{cone}_L(e) = L, \quad \text{cone}_L(a^2) = \{ a^0 b^0 \}$$

Note also that $\text{cone}_L(a), \text{cone}_L(a^2), \ldots$ are all distinct.

\textbf{Definition:} For $L \subseteq \Sigma^*$ a language define an \textit{equivalence relation} \equiv_L on Σ^* by

$$w \equiv_L v \iff w \in L \text{ and } v \text{ have the same cone type, } \text{ i.e., } \text{cone}_L(w) = \text{cone}_L(v).$$
Lemma: Let M be an e-NFA and let $L = L(M)$ be the language accepted by M. Then L has only finitely many equivalence classes, i.e., M has only finitely many classes.

Proof: We define another equivalence relation \approx on E^* as follows:

$$w \approx v \iff \text{for any start state } s \text{ and arbitrary state } t \text{ of } M, \text{ there is an edge path from } s \text{ to } t \text{ with edge label } w \text{ at } t \text{ and only if there is an edge path from } s \text{ to } t \text{ with edge label } v.$$

Note that if M has n states, then \approx has at most 2^n classes (for each edge (s, t), we have to respond to a yes-no question).

Claim: If $w \approx v$ then also $wx \approx xv$.

For suppose that, e.g., $x \in C_{e_2}^M(w)$. Then there is an edge path beginning at a start state s and terminating at an accepting state t, with edge label wx, let t_1 be any state along this edge path such
that the edge path arises at t_1 with label w.
Then there is an alternative edge path $e_i \ldots e_p$ beginning at s and terminating at t_2 with label v. It follows that there is an edge path from s to t_2 with label vx, where $x \in \text{cone}_2(v)$. Similarly, $\text{cone}_2(v) \subseteq \text{cone}_2(w)$.

Lemma Suppose $L \subseteq \Sigma^*$ is a language with finitely many cone types. Then there is a DFA M with $L(M) = L$.

Proof Let $\Delta_1, \ldots, \Delta_n$ be the finitely many cone types of L and note that for $w, x \in \Sigma^*$ and $a \in \Sigma^*$, if $wxa \in L$ then also $wya \in L$.

Let M have states $\Delta_1, \ldots, \Delta_n$ and put an arrow $\Delta_i \xrightarrow{a} \Delta_j$ if for some
any \(w \in \Sigma^* \) with \(\text{come}_2(w) = \Delta_i \), we have
\(\text{come}_2(wa) = \Delta_j \). Thus a state \(\Delta_i \) is accepting
if \(\exists \Delta_0 \) and \(s = \text{come}_2(\varepsilon) \) is the unique
start state. All is clearly deterministic and
\(L(\Delta_0) = L \).

\[\square \]

Lemma Let \(\Delta_0 \) be a DFA. Then the language
\(L(\Delta_0) \) is regular.

Proof Let \(V \) be the finite set of states of \(\Delta_0 \)
and let \(t_0, t_1 \in V \) be arbitrary. For any
\(X \subseteq V \), let
\[G(X, t_0, t_1) = \{ w \in \Sigma^* \mid \text{there is an edge path from } \]
\(t_0 \) to \(t_1 \) only passing through
states in \(X \) and having
label \(w \} \).

By induction on \(|X| \), we show that for any \(t_0, t_1 \),
the language \(G(X, t_0, t_1) \) is regular.

\(|X| = 0 \): In this case \(X = \emptyset \) and so \(w \in G(X, t_0, t_1) \)
if and only if \(w = a \) for some \(a \in \Sigma \) for
which \(\exists w \) is an edge \(t_0 \xrightarrow{a} t_1 \).
So \(G(X, t_0, t_1) \) is a (finite) subset of \(\Sigma \).
and hence is regular.

$|X| = n+1$: Assume the result holds for all subsets of X of size n and assume $|X| = n+1$.

Then we have that

$G(X, t_0, t_1) = \left(\bigcup_{q \in X} G(X \cup q, t_0, t_1) \right) \cup \left(\bigcup_{q \in X} G(X \cup q, t_0, q) \circ G(X \cup q, q, t_1) \right)$

which is regular by the induction hypothesis.

Clearly, the right hand side is contained in $G(X, t_0, t_1)$.

Conversely, suppose $w \in G(X, t_0, t_1)$ and consider the edge path from t_0 to t_1 with label $w = a_1 a_2 \ldots a_n$:

$$t_0 \rightarrow q_1 \rightarrow q_2 \rightarrow \ldots \rightarrow q_{n-1} \rightarrow q_n \rightarrow t_1$$

Thus, if $|w| = n+1$, we have $w \in \bigcup_{q \in X} G(X \cup q, t_0, t_1)$.

Otherwise, note that

- $a_1 \in G(X \cup q_1, t_0, q_1)$
- If q_1 is the last occurrence of q_1 among q_1, \ldots, q_{n-1}, then
\[a_{i+1} \cdots a_n \in G(X; s_0, q_i, t_i) \]

- if \(q_i = q_f = q_1 \) then \(i \leq f \) and \(q_f \neq q_1 \)
- for all \(i < l < f \), then

\[a_i a_{i+1} \cdots a_{l-1} \in G(X; s_0, q_i, t_i) \]

Thus, \(w = a_1 \cdots a_n \) belongs to

\[G(X; s_0, t_0, q_1) \circ G(X; s_0, q_1, t_1) \circ G(X; s_0, q_1, t_1) \]

So also \(L(\mathcal{M}) = \bigcup_{q \in A} G(V; s_0, q) \) is regular.

\[\square \]

Theorem: TFAE for a language \(L \) over a finite alphabet \(\Sigma \)

(a) \(L \) is regular

(b) \(L = L(\mathcal{M}) \) for some DFA \(\mathcal{M} \)

(c) \(L = L(\mathcal{M}) \) for some \(\varepsilon \)-NFA \(\mathcal{M} \)

(d) \(\text{Cone}(L) \) is finite.

This dual equivalence of regular languages and languages recognized by finite automata is known as the *Kleene theorem*, while the equivalence with (d) is the *Myhill–Nerode theorem*.
Proof. We have already proved (c) \Rightarrow (d) \Rightarrow (b) \Rightarrow (a). So we need only prove that regular languages are of the form $L(M)$ for ε-NFA M.

Since one can easily build ε-NFA recognizing any finite language, it suffices to show that if L, K are recognized by DFA, then also $L \cap K$ and L^* are recognized by ε-NFA.

So suppose $M_0 = (V_0, E_0, s_0, A_0, l_0)$ and $M_1 = (V_1, E_1, s_1, A_1, l_1)$ are deterministic finite automata recognizing L and K respectively. That is, V_i are the states, $E_i \subseteq V_i \times V_i$ the directed edges, s_i the start state, A_i the accepting states and $l_i : E_i \rightarrow 2(\Sigma) \setminus \emptyset$ the labeling. Why? $V_0 \cap V_1 = \emptyset$.

Let us first build an ε-NFA recognizing $L \cap K$:

Set $N = (V_0 \cup V_1 \cup \Sigma \cup \varepsilon, E_0 \cup E_1 \cup \Sigma(t_0, s_0) \cup \Sigma(t_0, s_1) \cup \varepsilon, A_0 \cup A_1, l)$

where $l(x) = l_0(x)$ whenever $x \in E_0$, $l(x) = l_1(x)$ whenever $x \in \Sigma$, and $l(t_0, s_0) = l(t_0, s_1) = \varepsilon$.
Thus, at the first stage of the computation,
without reading any input at all,
N has to decide to feed the input to either \(M_0 \) or \(M_1 \), so \(L(N) = L \cup K \).

Now let us construct \(N \) to recognize \(L K \).

\[N = (V_0 \cup V_1, E_0 \cup E_1, V, A_0, A_1, l) \]

where \(l(e) = l_1(e) \) for \(e \in E_1 \) and \(l(q, \delta) = \delta \) for \(q \in A_0 \). Thus, on input \(w \), \(N \) begins with a computation in \(M_0 \) and can leave any accepting state of \(M_0 \) jump to \(q_1 \) and continue with a computation in \(M_1 \). So \(N \) accepts \(w \) if and only if \(w = xy \), where \(x \in L \) and \(y \in K \). Thus, \(L(N) = L K \).
Finally, let L^* be a new state and set

$$N = (V_0 \cup \{t_0\}, E_0 \cup \{(t_0, \varepsilon)\}, \varepsilon, \varepsilon, t_0, A_0 \cup \{t_0\}, \varepsilon)$$

where $l(e) = l_0(e)$ for $e \in E_0$, $l(t_0, s_0) = \varepsilon$,

$$l(q, t_0) = \varepsilon \quad \text{for all } q \in A_0.$$

Again, $L(N) = L^*$.

Remark. We can of course also show that regular languages are recognized by DFA by instead using the Myhill-Nerode Theorem, i.e., by showing that they only have finitely many equivalence classes.

For example, suppose L and K have finitely many equivalence classes and let $\Delta_1, \ldots, \Delta_n$ be the equivalence classes of K. Now set

$$W \cong V \iff W \cong_{\Delta_i} V$$

for any $i \leq n$, where W has a decomposition $w = x_1$ with $x_1 \in L$ and $\cong_{\Delta_i} y \Delta_i$ if and only if V has.
Clearly, \(\sim \) is an equivalence relation with finitely many classes (note that the second part is implied by the first question). Moreover, suppose that \(w \sim v \) and that \(w \in LK \). Then either we can write \(w = xy \), where \(y \in K \) and \(x \in L \), whenever also \(v = x'y \) and thus \(\nu = x'y \in LK \), so we can write \(w = xy \), where \(x \in L \) and \(y \in K \). In the second case, let \(\Delta_i = \text{cove}_K(y) \) and note that then \(v \) has a decomposition as \(v = st \), where \(s \in L \) and \(\text{cove}_L(s) = \Delta_i \). It then follows that \(t \in K \), whence \(\nu = stw \in LK \).

In any case, \(\nu \in LK \), so \(\text{cove}_{LK}(w) \subseteq \text{cove}_{LK}(\nu) \).

By symmetry, \(w \nu \nu \). So \(\omega \) defines a \(L \)-cycle and hence \(LK \) has finitely many \(\text{cove} \) types.

Exercise: Show that if \(L \uparrow K \) have finitely many \(\text{cove} \) types, then also \(L \cup K \) and \(L^* \) have finitely many \(\text{cove} \) types.

Before giving more examples of regular languages, we give some indication of their limitations.
Pumping lemma

Let \(L \subseteq \Sigma^* \) be a regular language. Then there is an integer \(n \geq 1 \) such that any word \(w \in L \) with \(|w| > n \) can be expressed as

\[
w = xyz, \quad y \in \Sigma^+, \quad x, z \in \Sigma^*
\]

where \(|x| \leq n\) and \(xy^iz \in L\) for all \(i \geq 0\).

Proof
First suppose \(L \) is recognized by a DFA \(M \) with \(n \) states. Then if \(w \) is any word of length \(|w| > n \) then there is an edge path labeled by \(w \) which will have to pass through some state \(q \) more than once. Let \(x \) be the shortest prefix of \(w \) at which a state \(q \) is reached for the second time. Clearly \(|x| \leq n\). Also, let \(y \) be the shortest non-empty string \(s \) on edge paths with label \(xy \) arriving to \(q \). Then so does \(xy^iz \) for all \(i \geq 0 \) and \(xy^iz \in L \) for all \(i \geq 0 \).

Example: The languages \(\{a^n b^n \mid n \geq 0\} \) and \(\{a^n \mid n \text{ is a prime}\} \) are not regular.
The subsequence ordering

Definition. Let $< \subseteq$ be a strict partial ordering on a set X, i.e., $<$ is transitive and irreflexive. We say that $<$ is a well-quasi-ordering (wqo) if

(i) any antichain is finite, i.e., in any infinite sequence $(x_i)_{i \in \mathbb{N}}$ there are $i \neq j$ such that $x_i = x_j$ or $x_i < x_j$,

(ii) there is no infinite descending chain, i.e., no infinite sequence $(x_i)_{i \in \mathbb{N}}$ with $x_i > x_{i+1} > x_{i+2} > \cdots$ ($<$ is well-founded).

Exercise. Let $x \leq y$ if $x < y$ or $x = y$.

Show that $<$ is wqo if and only if for any infinite sequence $(x_i)_{i \in \mathbb{N}}$ there are $i < j$ with $x_i < x_j$.

[Hint: Use Ramsey's theorem.]

Definition. Suppose $w = a_1 a_2 \cdots a_n$ and x are words in Σ. We say that w is a subsequence of x if there are words $y_0, \ldots, y_n \in \Sigma^*$ with $x = y_0 a_1 y_1 a_2 y_2 \cdots a_n y_n$ and $w \neq x$. Write $w < x$ to denote this.
Proposition Let \(\Sigma \) be a finite alphabet.
Then \((\Sigma, \prec)\) is a well-graded ordering.

Proof assume towards a contradiction that there is some sequence \((x_i)_{i \in \mathbb{N}}\) s.t. \(i < j \implies x_i \not\approx x_j\) and call any such sequence bad.

We inductively construct a bad sequence as follows:

Let \(y_1 \in \Sigma^*\) be a word of shortest length beginning an infinite bad sequence.

Let \(y_2 \in \Sigma^*\) be a word of shortest length ending \(y_1\) and beginning an infinite bad sequence.

Let \(y_3 \in \Sigma^*\) be a word of shortest length beginning an infinite bad sequence, etc.

Thus, \(\Sigma\) is finite, there is an infinite subsequence, say \((y_{n_i})_{i \in \mathbb{N}}\), with constant first letter, e.g. \(y_{n_i} = z n_i\). Note again that \(z n_i \not\approx z n_j\) for \(i < j\) and \(z n_i < y_{n_i}\), so

\[y_1, y_2, \ldots, y_{n_1}, z n_1, z n_2, \ldots \]

is also an infinite bad sequence, but with \(\|z n_1\| < \|y_{n_1}\|\) contradicting the minimality of \(y_1, y_2, \ldots, y_{n_1}, y_{n_1}, y_{n_1+1}, \ldots\). \(\square\)
Definition Let \((X, \prec)\) be a strict partial ordering and \(B \subseteq Y \subseteq X\) subsets. We say that \(B\) is a basis for \(Y\) if
\[
Y = \{ x \in X \mid \exists z \in B \, z \preceq x \}\text{.}
\]

Exercise Show that \((X, \prec)\) is wpo if and only if any \(Y \subseteq X\), which is closed upwards, i.e., \((y \preceq x \land y \in Y) \implies x \in Y\), has a finite basis.

Corollary Let \(L \subseteq \Sigma^*\) be a language closed under subsequences, i.e., if \(x \in L\) and \(x \preceq y\), then \(y \in L\).

Then \(L\) has a finite basis \(B = \{ x_1, \ldots, x_n \}\),
\[
\text{or } L = \{ y \in \Sigma^* \mid x_i \preceq y\ \text{for some } i = 1, \ldots, n \}.
\]

Theorem Let \(L \subseteq \Sigma^*\) be any language closed under subsequences. Then \(L\) is regular.

Proof Let \(B = \{ x_1, \ldots, x_n \}\) be a finite basis for \(L\) and let \(C\) be the finite set of all prefixes of elements in \(B\).
\[
\text{set } w \preceq v \iff \text{for any } x \in C\text{, } x \preceq w \text{ it and only if } x \preceq v\text{.}
\]
Then $\forall \omega \in \Sigma^* \setminus L$, and since L has only finitely many classes, so does $\Sigma^* \setminus L$, whence L is regular.

Theorem. Let $L \subseteq \Sigma^*$ be regular, then so is

$\Sigma^* \setminus L$.

Proof. Note that $\text{cone}_{\Sigma^* \setminus L}(w) = \Sigma^* \setminus \text{cone}_L(w)$, so if L has only finitely many cone types, the same holds for $\Sigma^* \setminus L$.

Corollary. Let $L \subseteq \Sigma^*$ be a language closed under taking subsequences. Then L is regular.

Proof. Just note that $\Sigma^* \setminus L$ is closed under subsequences, so $\Sigma^* \setminus L$ and thus also L are regular.

Example. Let $\Sigma = \{0,1, \ldots, 9\}$ and let $L \subseteq \Sigma^+$ be the set of all prime numbers written in base 10 and $K = \{ x \in \Sigma^+ | \exists y \in L \ y \leq x \}$. Then K has a finite basis $B = \{ x_1, \ldots, x_n \}$, where x_1, \ldots, x_n are actually prime numbers written in base 10.
Example: Let \(S = \{2, 1, 2^r\} \) and let \(L \subseteq S^+ \) be the set of all prime numbers written in base 3. Then \(2, 10, 111 \) is a basis for
\[
\sup(L) = \exists y \in S^+ \mid \exists x \in L \quad x \cdot y = y.
\]
To see this, note first that 2 \(\sim \) 2 \(\sim \) 10 \(\sim \) 111 (where 2, 3, 13 are in base 10). So 2, 10, 111 \(\in L \).

Also, suppose \(x \in L \). Then if 2 \(\not\mid x \), we have \(x \in S_0, S^+ \), and 2 \(\not\mid \) but \(10 \mid x \), also \(x \in 0^*1^* \). Now, unless \(x \) represents the number 0, \(x \) has no leading 0 and hence \(x \in 1^* \).

So suppose \(x \in 1^* \). Then as neither 1, nor 11 represent prime numbers, we must have \(x \in 111^* \), etc., \(111 \leq x \).

Notation: Let \(x \equiv y \) if \(x \) is a prefix of \(y \).

Theorem: Suppose \(L \) is a regular language.

Then \(\text{pref}(L) = \{x \in S^* \mid \exists y \in L \quad x \equiv y\} \)

is regular too.

Proof: Exercise. \(\square \)