Example: Let $\Sigma = \{e, a, a^{-1}, b, b^{-1}\}$ and let $L = \text{all reduced words in } \Sigma$.

Then it is easy to see that L has finitely many coset types, so L is regular.

The word problem:

Let G be a group and $\Sigma = \Sigma^{-1} \subseteq G$ a symmetric generating set. We define $\pi: \Sigma^* \to G$ be the canonical semigroup homomorphism, where the operation on Σ^* is concatenation.

Assume Σ is finite.

We let $WP(G, \Sigma) = \{ \omega \in \Sigma^* | \pi(\omega) = e \}$

Theorem: If G is a finitely generated group, Σ a finite, symmetric, generating set.

Then $L = WP(G, \Sigma)$ is regular if and only if G is finite.

Proof: Note that if $\omega, \sigma \in \Sigma^*$, then:

$\text{coset}_L(\omega) = \text{coset}_L(\sigma) \iff \pi(\omega) = \pi(\sigma)$. \Box
Normal Forms

Suppose \(\Sigma \) is a finite, symmetric, generating set for a group \(G \). Let \(\pi : \Sigma^* \to G \) be the canonical subgroup homomorphism.

Definition. A normal form \(L \subseteq (G, \Sigma) \) is a language \(L \subseteq \Sigma^* \) such that \(\pi : L \to G \) is bijective.

Examples.
- The freely reduced words are a regular normal form for \(\Sigma_2 \) (since there are only finitely many such words).
- Let \(\Sigma^2 \) be the free abelian group on generators \(a \) and \(b \). Then \(L = \{ a^i b^j : i, j \in \Sigma^2 \} \) is a regular normal form.

Proposition. Suppose \(\Sigma \) and \(\Lambda \) are finite, symmetric, generating sets for a group \(G \). Then \(G \) has a regular normal form \(\Sigma \) if and only if it has a regular normal form \(\Lambda \).

Theorem. Suppose \(L \subseteq \Sigma^* \) is a regular normal form.

For every \(s \in \Sigma \) let \(w_s \in \Lambda^* \) be a rewriting of \(s \) in base \(\Lambda \). So if \(\mathcal{H} \) is an FSA accepting \(L \), we can build a generalized FSA by replacing labels \(s \) on \(\mathcal{H} \) by new labels \(w_s \).

The language \(L' \subseteq \Lambda^* \) accepted is a regular normal form \(L' \in G \) w.r.t \(\Lambda \).
Example: \(D_{10} = \mathbb{Z}_2 \ast \mathbb{Z}_2\) is generated by two reflections \(a\) and \(b\), but it is also generated by a reflection \(a\) and a translation \(T = ab\).
Since \(a = s^{-1}\), \(b = t^{-1}\), \(S = \{s, t\}\), \(\Lambda = \{s, t, T\}\) are symmetric generating sets.

Also, \(L = \frac{1}{2} (ab)^n, (ab)^n a, b(ab)^n \) for \(n < 0\) is a regular normal form:

\[
\begin{array}{c}
\xrightarrow{a} \circ \xrightarrow{b} \circ \\
\xrightarrow{b} \circ \xrightarrow{a} \circ
\end{array}
\]

Now \(b = at\), so \(L = \frac{1}{2} (aat)^n, (aat)^n a, at (aat)^n \) for \(n < 0\) is a regular normal form:

\[
\begin{array}{c}
\xrightarrow{a} \circ \xrightarrow{r} \circ \\
\xrightarrow{a} \circ \xrightarrow{r} \circ
\end{array}
\]

Proposition: If \(G, H\) have regular normal forms,
then so do \(G \ast H\) and \(G \ast H\). In particular,
if \(G, H\) are finite, then \(G \ast H\) has a regular
normal form.

Proof: If \(L, K\) are regular normal forms for \(G\) and
\(H\) respectively, then \(L, K\) and
\((L, K)^* \cup (K, L)^* \cup K(LK)^*\) are regular.
normal forms for \(G \oplus H \) and \(G \rtimes H \) respectively.

(\text{Thm \textsc{R. Gilman}})

Suppose \(G \) is an infinite group with a regular normal form. Then \(G \) has an element of infinite order.

Let \(\Sigma \) be the finite symmetric generating set and \(L \subseteq \Sigma^* \) the regular normal form. Then by the pumping lemma, which applies since \(L \) is infinite, there is some \(w \beta \in L \) s.t. \(w \neq \varepsilon \) and \(\omega w^n \beta \in L \) for all \(n \geq 0 \). Since \(L \) is a normal form, \(\pi(\omega w^n \beta) \neq \pi(\omega w^m \beta) \) for \(n \neq m \), whence

\[
\pi(L)^n = \pi(\pi^{-1}(\pi(\omega w^n \beta) \pi(\pi^{-1}(\pi(\beta))) = \pi(\pi(\omega)^m)
\]

for all \(m \geq 0 \).

Finitely generated subgroups of free groups

Suppose \(G \) is a group with a finite, symmetric, generating set \(\Sigma \subseteq G \). A subgroup \(H \subseteq G \) is said to be an image of a regular language over \(\Sigma \) if there is a regular language \(L \subseteq \Sigma^* \) such that \(\pi(L) = H \).

[\boxed{\text{\qed}}]
Theorem: Suppose \(G \) is a group with a finite symmetric generating set \(\Sigma \subseteq G \).

Then, a subgroup \(H \leq G \) is the image of a regular language \(L \) over \(\Sigma \) if and only if \(H \) is finitely generated.

Proof: If \(H \) is finitely generated, let \(S \) be a generating set for \(H \), \(S = S^{-1} \). Also, for every \(s \in S \), let \(w_s \in \Sigma^* \) be a word with \(\pi(w_s) = s \).

Then \(L = \{ w_s \mid s \in S \} \subseteq \Sigma^* \) is regular and \(\pi(L) = H \).

Conversely, suppose \(L \) is a regular language in \(\Sigma^* \) with \(\pi(L) = H \). Pick a finite selector \(T_0 \subseteq \Sigma^* \) of all non-empty cone types of \(L \), i.e., for every \(w \in \Sigma^* \) with \(\text{cone}(w) \neq \emptyset \), there is \(\sigma \in T_0 \) with \(\text{cone}(\sigma) = \text{cone}(w) \). Let \(n = \max \{ |w| : w \in T_0 \} \) and set

\[
S = \pi\left(L \cap \Sigma^{\leq n} \right) \cup \left\{ \pi(w) \pi(\sigma)^{-1} \mid \sigma \in \Sigma^{n+1}, w \in T_0 \right\}.
\]

First, to see that \(S \subseteq H \), note that if \(\sigma \in \Sigma^*, w \in T_0 \) and \(\text{cone}(w) = \text{cone}(\sigma) \), then, in particular, \(\text{cone}(w) \neq \emptyset \). So for some \(\beta \in \Sigma^* \),
\[\omega, \sigma \in L, \text{ i.e., } \pi(\omega) \pi(\sigma) \pi(\omega') \in H, \]
whence
\[\pi(\omega) \pi(\sigma)^{-1} = \pi(\omega) \pi(\sigma) \pi(\sigma)^{-1} \in H. \]
Now, we claim that if \(\omega \in H, 1|\omega| > n \), then there
is \(\beta \in L, |\beta| < |\omega| \), such that
\[\pi(\alpha) \in S^{-1} \pi(\beta). \]
To see this, let \(\alpha = \sigma \delta \), \(|\alpha| = n+1 \), and find
\(\omega \in H \). Since \(\omega \) is \(\text{cone} \) of \(\alpha \), then \(\pi(\omega) \pi(\sigma)^{-1} \in S \)
and \(\beta = \omega \delta \in L \), whence
\[\pi(\omega) \pi(\sigma)^{-1} \pi(\alpha) = \pi(\omega) \pi(\sigma)^{-1} \pi(\sigma) \pi(\delta) = \pi(\omega \delta) = \pi(\beta). \]
It then follows that \(H = \left< S \right> \). □

Proposition. Suppose \(\Sigma \) is a finite symmetric subset
of a group \(G \) and \(L \) is a regular language
over \(\Sigma \). Then \(L R \) is the set of all words
obtained by freely reducing a word in \(L \).
\(R \) is regular.

Proof. Suppose \(L \) is the language accepted by some
finite automaton \(M \). Let \(M' \) be the automaton
obtained from \(M \) as follows: If there is a path
from state \(s_1 \) to state \(s_2 \), labeled \(\Sigma \), \(\Sigma' \),
add an edge from \(s_1 \) to \(s_2 \), labeled \(\Sigma \). Then
if \(S \) is the language accepted by \(M' \), a freely
reduced word in \(S \) belongs to \(S \) if and only
if it belongs to \(R \). So \(R \) is the intersection of
\(S \) with the regular language of freely reduced words. □
Howson's Theorem. The intersection $H \cap K$ of the finitely generated subgroups H, K of F_n is finitely generated.

Proof. Let $\Sigma = \{a_1, a_1^{-1}, \ldots, a_n, a_n^{-1}\}$ be the basis for F_n. Since H and K are finitely generated, there are regular languages $L_H, L_K \subseteq \Sigma^*$ such that $H = \pi(L_H)$ and $K = \pi(L_K)$. Let R_H, R_K be the regular languages obtained by freely reducing words in L_H and L_K respectively.

Then since $H, K \subseteq F_n$ and Σ is the symmetric basis for F_n, $\pi : R_H \rightarrow H$ and $\pi : R_K \rightarrow K$ are bijections, whence $\pi : R_H \cap R_K \rightarrow H \cap K$ is a bijection too.

Since $R_H \cap R_K$ is regular, $H \cap K$ is finitely generated. \[\square \]

Automata on pairs of strings

Suppose Σ and Λ are finite alphabets, and $\$ is a symbol not occurring in any of Σ, Λ. For $(\omega, \sigma) \in \Sigma^* \times \Lambda^*$, let
\[
(\omega, \sigma)^{\$} = \begin{cases}
(\omega, \sigma) & \text{if } |\omega| = |\sigma| \\
(\omega, \sigma^{\$n}) & \text{if } |\omega| = |\sigma| + n \\
(\sigma^{\$n}, \sigma) & \text{if } |\omega| + n = |\sigma|.
\end{cases}
\]