The McNaughton Theorem

Any Büchi recognizable language in Müller recognizable.

The proof of this theorem will require some amount of preparatory work.

Fix in the following a regular language $W \subseteq \Sigma^*$, but $x \in \Sigma^w$.

We say that j is a good point (of x) if there is some $j < i$ such that

(a) $x[j, i] \in W$

(b) $x[j, i] \in W \Rightarrow x[j, i] \in W$

The smallest such i is said to be the flag point associated with j.

Lemma: If x has infinitely many good points, then $x \in W^w$.

Proof: If x has an infinite sequence of good points, then by passing to a subsequence we can find a sequence (j_n) of good points with corresponding flag points (i_n) such
\[f_1 < f_2 < f_3 < f_4 < \ldots \]

By definition, for all \(n \):
\[xEI, j_n [\in W \]
and
\[xEI, j_n [\wedge \alpha[I, j_n [= \alpha[I, j_n [\in W, \]
Thus, since \(xEI, j_n [\wedge \alpha[I, j_{n+1} [= \alpha[I, j_{n+1} [\in W \),
also \(\alpha[I, j_{n+1} [= \alpha[I, j_n [\wedge \alpha[I, j_{n+1} [\in W \).

It follows that
\[x = xEI, j_n [\wedge xEI, j_2 [\in W^\omega \]

Let \(W^+ = \{ x \in \mathbb{Z}^\omega | x \text{ has infinitely many good points} \} \).

Lemma: Suppose \(WW \subseteq W \). Then \(W^\omega = WW^+ \).

Proof: We have already seen that \(W^+ \subseteq W^\omega \),
so also \(WW^+ \subseteq W^\omega \).

Conversely, suppose \(x \in W^\omega \) and let \(f_1 < f_2 < \ldots \)
in \(xEI, f_1 [\in W \) and \(xEI, f_n [\in W \).

Thus, by Ramsey's Theorem, we can find
an infinite subsequence \((k_n)\) of \((f_n)\)
such that
\[x \in \mathcal{K}_u, k_u \in \mathcal{W} x \in \mathcal{K}^{p}, k_q \in \mathcal{W} \quad \text{whenever} \quad u = w \quad \text{and} \quad p < q \]

Write \(x = x[k_1, k_1] \beta \). Then for any \(v \),

\[\beta [1, k_{u+1}-k_1] = x[k_1, k_2] \cdots x[k_{u+2}, k_{u+1}] \in \mathcal{W}^* \subseteq \mathcal{W}, \]

\[\beta [1, k_{u+2}-k_1] = x[k_1, k_{u+2}] \sim_{W} x[k_{u+1}, k_{u+2}] = \beta [k_{u+1}-k_1, k_{u+2}-k_1]. \]

Thus, \((k_{u+1}-k_1)_{u=1}^{\infty} \) is an infinite sequence of good points of \(\beta \) (\(k_{u+1}-k_1 \) is good as witnessed by \(k_{u+2}-k_1 \)). Since also \(x[k_1, k_1] \in \mathcal{W}^* \), \(\alpha \in \mathcal{W} \mathcal{W}^* \).

\[\square \]

Lemma: For any regular language \(\mathcal{W} \subseteq \Sigma^* \), the language \(\mathcal{W}^+ \) is Muller recognizable.

Proof: Let \(V = \{ x[l, i] : \alpha \in \mathcal{W} \} \) and \(\bar{V} \) is a flag point of \(\alpha \) associated with some good point \(j < i \). Then clearly \(\bar{V} = \mathcal{W}^+ \).

So it suffices to prove that \(\bar{V} \) is regular.
But

\[V = \{ x y | x \in W, \ y \in \Sigma^+ \text{ and } y \text{ has minimal length such that } xy \sim wy \} \]

which is easily seen to be regular.
Lemma: If \(W \in \Sigma^* \) is regular and \(L \subseteq \Sigma^* \)

is Müller recognizable, then also \(WL \) is Müller recognizable.

Proof

Let \(Q = (S_0, s_0, T_0, F_0) \) be a deterministic

Büchi automaton recognizing \(W \)

and \(Q_0 = (S_1, s_1, T_1, F_1) \) be a Müller automaton recognizing \(L \).

Since both \(Q \) and \(Q_0 \) are deterministic,

we can think of \(T_i \) as functions \(T_i : S_i \times \Sigma \to S_i \).

We build another Müller automaton \(Q_2 = (S_2, s_2, T_2, F_2) \)

recognizing \(WL \) as follows:

First let \(\# \) be a symbol not in \(S_1 \) and \(k = |S_1| + 1 \),

Put

\[
S_2 = \left(q_1, t_1, \ldots, t_k \right) \in S_0 \times (S_1 \cup \{\#\})^k
\]

if \(i \neq j \) and \(t_i = t_j \), then \(t_i = t_j = \# \).

So for every \((q_1, t_1, \ldots, t_k) \in S_2 \), at least one \(t_i \) is \(\# \).

Also, set

\[
S_2 = (s_0, \#, \#, \ldots, \#).
\]

Now, suppose \((q_1, t_1, \ldots, t_k) \in S_2 \) and \(w \in \Sigma \).

We define
\[
T_i(t_i, a) \quad \text{if } t_i \neq \# \text{ and for all } j < i \text{ with } t_j \neq \#
\]
\[
T_j(t_j, a) \quad \text{if } j \in F_0, \text{ } i \text{ is minimal with } t_i = \# \text{ and for all } t_j \neq \#, \\
T_1(s_i, a) \quad \text{otherwise.}
\]

Then, the set
\[
T_2((s_1, t_1, ..., t_k), a) = (T_0(s_1, a), r_1, ..., r_k).
\]

Finally, for \(i = 1, ..., k \) let \(\pi_k : S_2 \rightarrow S_1 \cup \{\#\} \) denote the projection onto the \(k \)-th coordinate. Then for \(D \in S_2 \), we put \(D \in T_2 \) if and only if for some \(i = 1, ..., k \), \(\pi_i[D] \in T_1 \).

We claim that \(\mathcal{C} = (S_2, s_2, T_2, T_2) \) recognizes \(W_L \).

Suppose first that \(x \in L(\mathcal{C}) \) and let
\[
(t, \sigma_1, \sigma_2, ..., \sigma_k) \in S_0 \times (S_1 \cup \{\#\})^* \times ... \times (S_1 \cup \{\#\})^*
\]
be the successful run of \(\mathcal{C} \) on \(x \).

Then, for some \(i = 1, ..., k \), writing \(\sigma_i = p_1 p_2 p_3 ..., \)
we must have
\[
\exists t \in S_1 \cup \{\#\}^* \mid \exists^* \ t = p_1^j \in T_1.
\]
In particular, \(p_f \neq \# \) for all but finitely many \(f \).

So pick \(f_0 \) maximal \(\# p_{f_0} = \# \) and set

\[G = g_1 g_2 g_3 \ldots \quad \text{and} \quad \alpha = a_1 a_2 a_3 \ldots \].

Then, by the definition of \(T_2 \), we must have \(\alpha_{f_0} \in F_0 \),

whence

\[\alpha \in [1, \alpha_{f_0}] \in W \].

Also, letting \(\sigma = s_p f_{j+1} f_{j+2} f_{j+3} \ldots \in S^w \), we see that \(\sigma \) is a successful run of \(S_0 \)

on \(\alpha \in [1, \alpha_{f_0}] \in W \), so \(\alpha \in [1, \alpha_{f_0}] \in W \), whence

\[\alpha = \alpha \in [1, \alpha_{f_0}] - \alpha \in [1, \alpha_{f_0}] \in W \).

Thus, \(\alpha \in W \).

Conversely, suppose \(\alpha \in W \) and write \(\alpha = w \beta \),

where \(w \in W \) and \(\beta \in L \).

Let \((\sigma_0, \sigma_1, \ldots, \sigma_k) \in S^w \times (S_0 \times \#) \times \ldots \times (S_0 \times \#) \)

be the run of \(\beta \) on \(\alpha = w \beta \) and let \(\sigma \in S^w \)

be the successful run of \(S_0 \) on \(\beta \).

Thus \(\sigma [1, |\beta| + 1] \in F_0 \), since \(w \in L(\alpha) = W \).

So for some \(k \geq i_1 > i_2 > \ldots > i_{k+1} \geq 1 \) and

\[1, |\beta| + 1 = j_1 < j_2 < \ldots < j_{k+1} \],

we have by construction

\[\sigma = s_0 \sigma_0 \sigma_1 \sigma_{i_1} e_1 d_1 \sigma_{i_2} e_2 d_2 \sigma_{i_3} e_3 d_3 \ldots \sigma_{i_{k+1}} e_{k+1} d_{k+1} \).

\[\sigma \in [1, \alpha_{f_0}, \alpha_\infty] \in W \).
Now, since σ is successful, we have
\[
\prod_i \left(\{ s \in S_k \mid \exists \sigma^i, s = (\tau[\pi_i], \sigma[\pi_i], \ldots, \sigma_k[\pi_i]) \} \right)
\]
\[
\prod_i \left(\{ s \in S_2 \mid \exists \sigma^i, s = (\tau[\pi_i], \sigma[\pi_i], \ldots, \sigma_{k-1}[\pi_i]) \} \right)
\]
\[
\prod_i \left(\{ p \in S_1 \mid \exists \sigma^i, p = \sigma[\pi_i] \} \right)
\]
So $(t, \sigma_1, \ldots, \sigma_k)$ is a successful run of L on x, which $x = w^2 \in L(\Sigma)$. Thus, $L(\Sigma) = W_L$.

Theorem (McNaughton)

Any Büchi recognizable language is Müller recognizable.

Proof Suppose $K \subseteq \Sigma^\omega$ is Büchi recognizable. Then since all regular languages V_i and W_i such that $K = \bigcup_i V_i W_i^\omega$. Since the Müller recognizable languages form a Boolean algebra, it now suffices to prove that each $V_i W_i^\omega$ is Müller recognizable.

But, as W_i^* is regular and $W_i^* W_i^* = W_i^*$, we have
\[
V_i W_i^\omega = V_i (W_i^*)^\omega = V_i W_i^* (W_i^*)^+
\]
which is Müller recognizable by the two preceding lemmas.
Finally, let us sum up all our results on ω-languages.

Theorem. Let $Σ$ be a finite alphabet. TFAE for a language $L \subseteq \Sigma^ω$.

1. L is recognized by a Büchi automaton,
2. L is recognized by a Müller automaton,
3. L is recognized by a sequential Rabin automaton,
4. There are regular languages $V_i, W_i \subseteq \Sigma^*$ with $L = \bigcup_{i \geq 1} V_i W_i^{ω}$,
5. L is a Boolean combination of languages \overline{W}, where $W \subseteq \Sigma^*$ are regular.

Theorem. A language $L \subseteq \Sigma^ω$ is recognized by a deterministic Büchi automaton if and only if it is of the form \overline{W} for $W \subseteq \Sigma^*$ regular.

Theorem. The class of Büchi recognizable languages form a Boolean algebra.