
A Finitely Presented Semigroup
with Unsolvable Word Problem1

Gabriel Conant
March 22, 2010

I. Turing Machines

Informally, a Turing machine can be thought of as a box with a tape running
through it. The tape is an infinite row of consecutive squares and the box is capable
of printing a finite number of symbols s1, . . . , sn on the tape (one symbol per square).
Additionally, at any stage of computation, the box can be in one of a finite number
of states q0, . . . , qm and reading a single square on the tape. The computation of the
machine is determined by an initial configuration of the tape, and consists of either
stopping or entering a new state after obeying one of the following instructions:

1. Erase the symbol in the box and print a new one.

2. Move one square to the right and read this square.

3. Move one square to the left and read this square.

The computation may either stop or run forever.

To formalize this definition, fix sets of letters S = {s0, s1, s2, . . .} (possible sym-
bols) and Q = {q0, q1, q2, . . .} (possible states). Let SN = {s0, . . . , sN}.

Definition. An instruction is a quadruple of one of the following types

1. qisjskql (if in state qi and reading symbol sj, erase sj, print sk and enter state ql)

2. qisjRql (if in qi and reading sj, move one square to the right and enter ql)

3. qisjLql (if in qi and reading sj, move one square to the left and enter ql)

These quadruples summarize the informal instructions of the machine given above.

Definition. A Turing machine T is a finite nonempty set of instructions, no two
of which have the same first two letters.

1summary of Rotman, Joseph J. An Introduction to the Theory of Groups, third edition. Allyn
and Bacon, Inc., 1984. pp. 351-361.

1

Note: By demanding that no two instructions of the machine have the same first
two letters, we ensure that the machine is deterministic.

Definition. The alphabet of a Turing machine T is the set SN ⊆ S of all letters
that occur in the instructions of T . Note: We can always ensure T uses all of SN .

Notation: In general, if X is a set of letters then we denote by X∗ the set of all
finite words consisting of nonnegative powers of letters in X.

At this time, we fix the letter s0 as only being used to represent a blank square
of the tape.

Definition. An instantaneous description α of a Turing machine is a finite word
consisting of letters in S and a single instance of a letter in Q (called the state of
α), which is not the last letter of α.

An instantaneous description α should be thought of as a complete description of
the machine at a given moment, c.f., the letters on the tape are given (in order) by
the si in α (with blanks elsewhere), and the machine is in state qj reading the letter
in α that occurs after qj.

Definition. Given a Turing machine T and instantaneous descriptions α, β, we say
α → β if there are words v, w ∈ S∗ such that one of the following conditions holds:

1.
α = vqisjw
β = vqlskw

�
where qisjskql ∈ T

2.
α = vqisjskw
β = vsjqlskw

�
where qisjRql ∈ T

3.
α = vqisj

β = vsjqls0

�
where qisjRql ∈ T

4.
α = vskqisjw
β = vqlsksjw

�
where qisjLql ∈ T

5.
α = qisjw
β = qls0sjw

�
where qisjLql ∈ T

Basically, α → β should be thought to represent how an instantaneous description
of T can change to another after following a single instruction of the machine. The
difference between conditions 2 and 3 deals with the situation where the machine is
moving to the right and there is another letter to read, versus the situation where the
machine is scanning the rightmost symbol of the tape and told to move to the right.
In the latter situation, the string is lengthened by adding s0 (which represents a blank

2

square) to the right of the string. The difference between conditions 4 and 5 is similar.

Definition. A computation of a Turing machine is a finite sequence of instanta-
neous descriptions α1, α2, . . . ,αt, where

αi → αi+1 1 ≤ i ≤ t− 1

and αt is terminal, i.e., there is no α such that αt → α. If α → β is terminal, we
also call the instruction of T determining α → β terminal.

Examples of terminal instructions:

1. qisjskql where no instruction of T begins with qlsk

2. qisj ∗ ql where no instruction of T begins with ql

Remark: Suppose α is an instantaneous description of T , qi is the state of α, and sj

is the letter of α following qi. Then α is terminal if no instruction of T begins with
qisj. Otherwise there is a unique instantaneous description β such that α → β.

Definition. If SN is the alphabet of T and w ∈ S∗
N then T (w) exists if there is a

computation of T beginning with q1w. (We refer to q1 as the initial state of T .)
Note: q1w completely determines a sequence of instantaneous descriptions since T
is deterministic. Therefore T (w) exists if and only if this sequence is a computation
of T , i.e., if the sequence halts.
We say T enumerates e(T) where

e(T) = {w ∈ S∗
N : T (w) exists}

Definition. For any N , a subset E ⊆ S∗
N is recursively enumerable (r.e.) if there

is some Turing machine T whose alphabet contains SN such that E = e(T).
In particular we can consider subsets E ⊆ N and say that E is recursively enu-

merable if there is a Turing machine on the alphabet S1 such that

E = {n ∈ N : T (sn+1
1) exists}

Example: The set of even natural numbers is recursively enumerable.
Proof

Let T = {q1s0s0q1, q1s1Rq2, q2s0s0q0, q2s1Rq1}. If n = 2k + 1 for k ∈ N then we
have

q1s
2k+1
1 → s1q2s

2k
1 → s2

1q1s
2k−1
1 → s3

1q2s
2k−2
1 → . . . → s2k

1 q1s1 → s2k+1
1 q2s0 → s2k+1

1 q0s0

and s2k+1
1 q0s0 is terminal since no instruction of T begins with q0. Thus T (s2k+1

1)
exists.

Conversely, if n = 2k then we have

q1s
2k
1 → s1q2s

2k−1
1 → s2

1q1s
2k−2
1 → . . . → s2k−1

1 q2s1 → s2k
1 q1s0 → s2k

1 q1s0 → s2k
1 q1s0 → . . .

3

so T (s2k
1) does not exist.

Altogether, {n ∈ N : T (sn+1
1) exists} is exactly the set of even natural numbers. �

Notation: For n ∈ N, we define “T (n) exists” to mean “T (sn+1
1) exists.”

Theorem 1.1 There are subsets of N that are not recursively enumerable.
Proof

A Turing machine T can be thought of as a finite subset of Q×S×(S∪{R,L})×Q,
which is a countable set. Thus there are countably many Turing machines. Since a re-
cursively enumerable subset of N is determined by a Turing machine in a well-defined
way, there are only countably many recursively enumerable subsets of N. �

Definition. A subset E ⊆ SN is recursive if both E and SN\E are recursively
enumerable.

The fundamental distinction between recursive and recursively enumerable is that
for a recursively enumerable set E ⊆ SN , even though w ∈ E or w �∈ E for all w ∈ S∗

N ,
there is no way to know beforehand whether or not T will stop on input w. In other
words, there is no way to universally distinguish between T running for a long time
before halting and T running forever. However, for a recursive set, there is a Turing
machine T1 that will stop if w ∈ E and a Turing machine T2 that will stop if w �∈ E.
Thus one of T1 or T2 is guaranteed to stop and we only need to wait for one of these
two possibilities to happen.

Therefore, for a recursive set E ⊆ SN , there is an algorithm that will decide, on
input w ∈ S∗

N , whether or not w ∈ E. Church’s Thesis proposes that the recursive
sets are exactly those with such an algorithm.

Proposition 1.1 Fix a finite alphabet Σ. The collection of recursively enumerable
subsets of Σ∗ is closed under finite unions and intersections. The collection of recur-
sive subsets of Σ∗ is closed under complementation and finite unions and intersections.

Theorem 1.2 There is a recursively enumerable subset E ⊆ N that is not recursive.
Proof

From the theorem above, we know that there are countably many Turing machines.
We will now effectively enumerate them.2 Assign the number 0 to R, 1 to L, 2i + 2
to qi, and 2i + 3 to si. Now, a Turing machine T is given by M instructions for some
M so juxtapose them to make a word σ of length 4M . Define pi to be the ith prime
number and let

g(T) =
4M�

i=1

pei
i

2A list is effectively enumerated if there is some algorithm which will enumerate the list.
Church’s Thesis implies that “effectively enumerated” and “recursively enumerated” are equivalent.

4

where ei is the number assigned to the ith letter of σ. Uniqueness of prime factor-
ization implies that each Turing machine will be given a distinct number g(T). Now
list these numbers in increasing order and this list will correspond to an effective
enumeration T0, T1, T2, . . . of all Turing machines. For a fixed i, let q1s

i+1
1 → αi+1,2 →

αi+1,3 → . . . be the computation of Ti on input q1s
i+1
1 . Now define E ⊆ N such that

E = {n ∈ N : Tn(n) exists}

Then E is recursively enumerable via a Turing machine which runs Ti on input q1s
i+1
1

simultaneously for all i according to the order of the arrows in the following diagram:

T0 T1 T2 T3 T4 . . .
q1s1

��

q1s2
1

�� q1s3
1

����������
q1s4

1
�� q1s5

1

����������

. . .

α12

����������
α22

����
��

��
��

�
α32

����������
α42

����
��

��
��

�

α13

��

α23

�����������
α33

����
��

��
��

�

α14

�����������
α24

Remark: The computation of this machine is exactly that given above regardless of
the input. In other words, let Ci be the computation of Ti on input q1s

i+1
1 . Then this

machine, regardless of the input, will run the first instantaneous description (i.d.)
of C0, the second i.d. of C0, the first i.d. of C1, the first i.d. of C2, the second
i.d. of C1, the third i.d of C0, the fourth i.d. of C0, the third i.d. of C1, and so
on as indicated by the arrows in the diagram. Let T be this Turing machine. Then
we say T (n) exists if Tn halts at some point of this sole computation of T . Thus
e(T) = {n ∈ N : Tn(n) exists} = E.

To show that E is not recursive, it is enough to show that ¬E = N\E is not
recursively enumerable. So suppose otherwise. Then there is some Turing machine
Tk that enumerates ¬E. Thus we have

k ∈ E iff Tk(k) exists

iff k ∈ ¬E

This contradiction implies ¬E is not recursively enumerable and hence E is not re-
cursive. �

Lemma 1.1 Let T be a Turing machine with e(T) = E. Then there is a Turing
machine T � with the same alphabet such that e(T �) = E and an instantaneous de-
scription α of T � is terminal if and only if α involves the state q0 (in this case we say

5

q0 is the stopping state of T �).
Proof

Since T is finite, let M be such that qM does not occur in any instruction of T .
First, let T0 be the same set as T , but with all instances of q0 replaced by qM . Then
T0 is a Turing machine since if two instructions I, J of T0 begin the the same two
letters (say I = qisj ∗ qk and J = qisj � ql), we must have one of the following:

1. qi = qM , in which case q0sj ∗ q�k and q0sj � q�l are instructions of T (where q�k = qk

iff k �= M and q�k = q0 iff k = M , similarly for q�l). But then since T is a Turing
machine we must have ∗ = � and q�k = q�l, which implies qk = ql and thus I = J .

2. qi �= qM in which case qisj ∗q�k and qisj �q�l are instructions of T (q�k, q
�
l as above),

and so ∗ = � and q�k = q�l, which implies I = J similarly.

Note that e(T) = e(T0) since we have essentially only relabeled a state. Also, both
Turing machines have the same alphabet SN since we have not changed the S letters
of any instruction. Finally, define

T � = T0 ∪ {qlsjsjq0 : sj ∈ SN , ql appears in an instruction of T0, qlsjskqi �∈ T0 ∀ i, k}

Note that T � is finite since the number of added instructions is less than or equal to
N times the number of instructions of T0. Also T � is a Turing machine: no added
instruction qlsjsjq0 can have the same first two letters of an instruction of T0 since
no instruction of T0 begins with qlsj. Clearly, the alphabet of T � is still SN .

Next we show T � has stopping state q0. Suppose α is a terminal instantaneous
description of T �. Let ql be the state of α and sj be the letter in α following ql.
Then α is reached from another instantaneous description via an instruction I ∈ T �.
If I ∈ T0 then T0 involves ql, but no instruction of T0 can begin with qlsj since this
would also be an instruction of T � contradicting that α is terminal. Then by definition
of T �, qlsjsjq0 ∈ T � contradicting that α is terminal. Thus I ∈ T �\T0 so I = qiskskq0

for some i, k. If ql = qk then, by definition of T �, some instruction of T0 involves ql,
which we have shown to be impossible. Thus ql = q0. Conversely suppose that an
instantaneous description α has state q0. Since no instruction of T � begins with q0, α
is terminal. Thus a description of T � is terminal if and only if it involves q0.

Finally we show e(T �) = E. Suppose we have a computation α1 → . . . → αm

of T0. Then αm is terminal with state ql. Suppose sj is the letter following ql in α.
Then since α is terminal, no instruction of T0 can begin with qlsj. Thus qlsjsjq0 is
an instruction of T � so in T � we have the computation α1 → . . . → αm → β where
αm → β via the instruction qlsjsjq0. Note that β is indeed a terminal description of
T � since its state is q0. Therefore we have shown that e(T0) ⊆ e(T �).

Conversely if α1 → . . . → αm is a computation of T � then αm is terminal with
state q0.
Case 1: m = 1. Since q1 is the initial state of T0, q1 �= q0. Then α1 does not involve
q1 so does not contribute to e(T �).

6

Case 2: m �= 1. Let ql be the state of αm−1. Then αm−1 → αm must occur via the
instruction qlsjsjq0 since no other instruction of T � involves q0. Then, by definition
of T �, no instruction of T0 begins with qlsj so αm−1 is terminal in T0, which implies
α1 → . . . → αm−1 is a computation of T0.
Therefore e(T �) ⊆ e(T0), and altogether we have

e(T �) = e(T0) = e(T) = E

�

We now fix T to be the Turing machine that both satisfies the conditions of the
Lemma and also enumerates the recursively enumerable non-recursive set E defined
in Theorem 1.2.

II. The Word Problem

Definition. Let G be a finitely generated group with presentation �x1, . . . , xn | ri, i > 0�.
Let Σ = {x1, . . . , xn, x-1

1 , . . . , x-1
n }; we call Σ a symmetric generating set for G. De-

fine πG : Σ∗ −→ G such that πG(w) is the element of G representing w.
We say the word problem for G is solvable if there exists an algorithm that will

decide, for any w ∈ Σ∗, whether or not πG(w) = 1. In the language of the previous
section, G has solvable word problem if {w ∈ Σ∗ : πG(w) = 1} is a recursive subset
of Σ∗.
Fact: If G is finitely generated and recursively presented (i.e., defined by a recur-
sively enumerable set of relations), then this definition does not depend on choice of
presentation.

Examples of groups with solvable word problem:

1. Automatic groups

2. Finitely generated free groups

3. Finitely generated free abelian groups

4. Finite groups (since they are automatic)

5. Direct products of groups with solvable word problem

6. Finitely generated abelian groups (follows from 3,4,5)

7. Finitely generated subgroups of finitely generated groups with solvable word
problem

7

We first observe the following corollary of Theorem 1.2.

Corollary 2.1 There exists a finitely generated group G with unsolvable word
problem.
Proof

Let E ⊆ N be a recursively enumerable non-recursive set. Consider the group G
with the following recursive presentation:

G = �a, b, c, d | a-nban = c-ndcn, n ∈ E�

Let Σ = {a, b, c, d, a-1, b-1, c-1, d-1} and let Γ = {w ∈ Σ∗ : πG(w) = 1}. Then
a-nbanc-nd-1cn ∈ Γ if and only if n ∈ E. If G has solvable word problem then Γ
is recursive, which implies E is recursive,⇒⇐. Therefore G does not have solvable
word problem. �
Remark: In light of the fact following the definition of solvable word problem, we
observe that this theorem depends on G being finitely generated. As an example let
F be the free group on countably many generators. Then

P1 = �x1, x2, x3, . . . | Ø� and P2 = �x1, x2, x3 . . . | xi = 1, i ∈ E�

are both (infinitely generated) recursive presentations for F . But the word problem
is solvable for P1, while solvable word problem for P2 would imply that E is recursive.

We now focus our efforts on constructing a finitely presented group with unsolv-
able word problem. Notice that, from our definition, it would seem that in order to
prove that a group G has solvable word problem, it is necessary to to prove that a
certain set is recursive. However, the next theorem will show that for finitely pre-
sented groups the problem can be reduced to showing that a certain set is recursively
enumerable.

Theorem 2.1 Let G be a finitely presented group with presentation

G = �x1, . . . , xn | r1, . . . , rm�

If Σ is the associated symmetric generating set, then Γ = {w ∈ Σ∗ : πG(w) = 1} is
recursively enumerable.
Proof

We order Σ by x1 < x-1
1 < x2 < x-1

2 < . . . < xn < x-1
n . Then we order words in Σ∗

first by length and then lexicographically. Let w1, w2, w3, . . . be an enumeration of Σ∗

which follows this order. For w ∈ Σ∗, say w = a1 . . . at where ai ∈ Σ, let w-1 denote
the word a-1

t . . . a-1
1 where we declare (x-1

i)-1 = xi. Then

Γ0 = {wirjw
-1
i : i > 0, 1 ≤ j ≤ m}

= {w1r1w
-1
1 , w1r2w

-1
1 , . . . , w1rmw-1

1 , w2r1w
-1
2 , w2r2w

-1
2 , . . . , w2rmw-1

2 , . . .}

8

is clearly recursively enumerable. So we have a recursive enumeration Γ0 = {v1, v2, v3, . . .};
say vk = wk̃rk−k̃+1w

-1
k̃

where k̃ = � k
m�. Let Σn be the finite set of words on v1, . . . , vn

of length at most n. Then the following algorithm, on input w ∈ Σ∗, will halt if w ∈ Γ
and run forever otherwise:

1. Compute v1. Check w = z for all z ∈ Σ1.

2. Compute v2. Check w = z for all z ∈ Σ2.
...

N. Compute vN . Check w = z for all z ∈ ΣN .
...

This gives a recursive enumeration for Γ since

w ∈ Γ iff πG(w) = 1

iff w is an element of the normal closure of {r1, . . . , rm}

iff w =
K�

j=1

vij for some K > 0 and vij ∈ Γ0

Thus if N = max{K, i1, . . . , iK}, then w ∈ ΣN so the algorithm will halt during stage
N . Conversely, if the algorithm halts for some input w ∈ Σ∗, then w ∈ Γ since Σn ⊆ Γ
for all n. �

Corollary 2.2 Suppose G is a finitely presented group with symmetric generating
set Σ. Then G has solvable word problem if and only if

{w ∈ Σ∗ : πG(w) = 1} is recursive

iff {w ∈ Σ∗ : πG(w) = 1} and {w ∈ Σ∗ : πG(w) �= 1} are recursively enumerable

iff {w ∈ Σ∗ : πG(w) �= 1} is recursively enumerable.

We are now ready to continue the process of constructing a finitely presented semi-
group with unsolvable word problem (this is the first step in constructing a finitely
presented group with unsolvable word problem). For this, we must alter our definition
slightly.

Definition. Suppose G is a finitely generated semigroup with generating set Σ =
{x1, . . . , xn}. Then G has solvable word problem if there is an algorithm that, for
any words v, w ∈ Σ∗, will determine whether or not πG(v) = πG(w). Equivalently,
G is has unsolvable word problem if there is a word w0 ∈ Σ∗ such that {w ∈ Σ∗ :

9

πG(w) = π(w0)} is not recursive.
Suppose G has presentation

�x1 . . . , xn | r1 = r̂1, . . . , rm = r̂m�

Then for v, w ∈ Σ∗, we say v → w if v = w or there are words z1, z2 ∈ Σ∗ and some
1 ≤ i ≤ m such that v = z1riz2 and w = z1r̂iz2 or w = z1riz2 and v = z1r̂iz2.

Now, for v, w ∈ Σ∗ we have πG(v) = πG(w) if and only if there are z1, . . . , zt ∈ Σ∗

such that v → z1 → . . . → zt → w.

Definition. Let T be a Turing machine. Let SN = {s0, . . . , sN} be the alphabet of
T and let QM = {q0, . . . , qM} be the states occurring in the instructions of T . Let
q, h be letters not in SN or QM . Let ΣT = {q, h} ∪ SN ∪ QM . Define the following
semigroup

G(T) = �ΣT | R(T)�

where R(T) is a finite set of relations consisting of the following:

qisj = qlsk if qisjskql ∈ T

and for all b = 0, 1, . . . , n

qisjsb = sjqlsb

qisjh = sjqls0h

�
if qisjRql ∈ T

sbqisj = qlsbsj

hqisj = hqls0sj

�
if qisjLql ∈ T

q0sb = q0

sbq0h = q0h

hq0h = q

The first five types of relations capture the basic moves of T , with the letter h dis-
tinguishing between moves within the tape and moves at the ends of the tape. Thus
we think of h as marking the ends of the tape. In practice, we will work with Turing
machines that contain a stopping state q0 (as suggested by the final three relations).
It will become apparent that we may think of q as representing configurations of the
tape that will halt.

We call a word in Σ∗
T h-special if it is hq0h or of the form hαh for some instanta-

neous description α of T . Thus an h-special word describes the entire tape at a given
moment of computation.

10

Lemma 2.1 Let T be a Turing machine with associated semigroup G(T).

1. For V, W ∈ Σ∗
T such that V �= q �= W and V → W , we have that V is h-special

if and only if W is h-special.

2. If V = hαh, W �= q, and V → W via a relation from among the first five types,
then W = hβh where either α → β or β → α is a basic move of T .

Proof

1. The only relation that creates or destroys h is hq0h = q.

2. W �= hq0h since V → W via a relation from among the first five types. So
W = hβh by part (1). If the relation is of the first five types then since T is
deterministic we either have β obtained from α via the basic move corresponding
to this relation, or vice versa. Thus α → β or β → α. �

Lemma 2.2 Let T be a Turing machine with stopping state q0. Let SN be the
alphabet of T , let E = e(T), and let π = πG(T). Then for w ∈ S∗

N we have

w ∈ E if and only if π(hq1wh) = π(q)

Proof
Suppose w ∈ E. Then we have a computation q1w → α1 → . . . → αt for

instantaneous descriptions αi and αt terminal (so αt has state q0). Thus we may use
the relations in G(T) corresponding to the basic moves of T to see that π(hq1wh) =
π(hαth). But αt = vq0w where v, w ∈ S∗

N . Thus repeated use of the relation q0sb = q0

gives π(hαth) = π(hvq0h); and then repeated use of the relation sbq0h = q0h give
π(hvq0h) = π(hq0h). Altogether we have

π(hq1wh) = π(hαth) = π(hvq0h) = π(hq0h) = π(q)

since hq0h = q is also a relation.
Conversely suppose π(hq1wh) = π(q). Then there are words Wi ∈ Σ∗

T such that
hq1wh = W1 → . . . → Wt → q (we assume Wi �= q for all i). Then by part (1) of
the previous lemma, we conclude that Wi is h-special and we can write Wi = hαih
where αi is either q0 or an instantaneous description of T . Now, hαth → q so, by
inspection of the relations of G(T), we must conclude that q0 is the state of αt. Let
t0 ≤ t be minimal such that αt0 is an instantaneous description of T and the state
of αt0 is q0. Note that t0 > 1 since q1 �= q0. By part (2) of the previous lemma,
αi → αi+1 or αi+1 → αi for all i < t0. Now, if we have αi−1 ← αi → αi+1 then since
T is deterministic, αi−1 = αi+1 so Wi−1 = Wi+1 and we shorten the sequence:

W1 → . . . → Wi−2 → Wi+1 → . . . → Wt0

Furthermore, αt0−1 → αt0 since αt0 is terminal and αt0−1 does not involve q0. Thus
by induction we may assume αi → αi+1 for all i < t0. But αt0 is terminal so

11

q1w → . . . → αt0 is a computation of T . Therefore w ∈ E. �

Theorem 2.2 Let T be the Turing machine specified at the end of the last section.
Then G(T) is a finitely presented semigroup with unsolvable word problem. There
is no algorithm to determine, for an arbitrary h-special word hαh, whether or not
π(hαh) = π(q).
Proof

Let T be a Turing machine with the same conditions and notation as the previous
lemma. Define Γ = {W ∈ Σ∗

T : π(W) = π(q)}. We can identify S∗
N with the following

subset S̄N of Σ∗
T :

S̄N = {hq1wh : w ∈ S∗
N}

Then E ⊆ S∗
N corresponds to the following subset Ē of S̄N :

Ē = {hq1wh : w ∈ E}

In other words, S̄N = hq1S∗
Nh and Ē = hq1Eh. By the previous lemma, w ∈ E if and

only if π(hq1wh) = π(q), i.e.,
Ē = Γ ∩ S̄N

Now suppose T = T . If G(T) has solvable word problem then Γ is recursive.
Clearly, S∗

N recursive implies S̄N is recursive, which, by Proposition 1.1, implies Ē
is recursive. But Ē recursive clearly implies E is recursive, which is a contradiction.
Therefore G(T) has unsolvable word problem.

Finally, let F̄ = {hαh : π(hαh) = π(q)}. If F̄ is recursive then Ē = F̄ ∩ S̄N is
recursive,⇒⇐. Thus F̄ is not recursive, which proves the second statement of the
theorem. �

We restate Theorem 2.2 in a more general way, which does not use the language
of Turing machines.

Corollary 2.3 There is a finitely presented semigroup

G = �q, q1, . . . , qm, s1, . . . , sn | uiqi1vi = wiqi2zi, i ∈ I�

with unsolvable word problem (where ui, vi, wi, zi ∈ {s1, . . . , sm}∗ and
qi1 , qi2 ∈ {q, q1, . . . , qm}). There is no algorithm to determine, given arbitrary v, w ∈
{s1, . . . , sm}∗ and qj, whether or not π(vqjw) = π(q).
Proof

The first statement only requires a relabeling of the semigroup in Theorem 2.2.
For the second statement, if F̄ is as in the theorem and X = {vqjw : π(vqjw) = π(q)},
then F̄ = X ∩ {hαh : α an instantaneous description of T }. So X recursive implies
F̄ recursive. �

12

