
ANALYTIC DETERMINACY AND MEASURABLE CARDINALS

CHRISTIAN ROSENDAL

1. Analytic determinacy

Definition 1 (S. Ulam). An uncountable cardinal number κ is said to be measur-
able if it carries a κ-additive {0,1}-valued diffuse measure, i.e., there is a function
µ : P (κ)→ {0,1} with the following properties.

(1) µ(κ) = 1,
(2) µ({η}) = 0 for all η ∈ κ,
(3) A ⊆ B ⇒ µ(A) 6 µ(B),
(4) if λ < κ and Aξ ⊆ κ satisfy µ(Aξ) = 0 for all ξ < λ, then µ

(⋃
ξ<λAξ

)
= 0.

We shall not enter into the study of measurable cardinals, but will only need
one property of these. For this we shall need the following notation: If X is a set
andm a natural number, we let [X]m denote the collection ofm-element subsets of
X.

Theorem 2 (F. Rowbottom). Suppose κ is a measurable cardinal. Then for any family
{fi}i∈N of functions fi : [κ]mi → N, there is a subset X ⊆ κ of cardinality ℵ1 that is
monochromatic for all fi , i.e., each fi is constant on [X]mi .

It is a consequence of K. Gödel’s second incompleteness theorem that the exis-
tence of measurable cardinals cannot be shown in ZFC. This follows from the fact
that using a measurable cardinal κ, one can construct a set model Vκ of ZFC, which
would then imply that ZFC is consistent. On the other hand, despite 80 years of
research, no one has thus far been able to prove that measurable cardinals do not
exist and the structural knowledge surrounding these cardinals at least give some
indication that no such contradiction will ever be found.

Theorem 3 (D. A. Martin). Assume that there exists a measurable cardinal κ. Then
analytic games are determined.

Proof. Recall that the Kleene-Brouwer ordering <KB is a strict linear order onN<N

with the property that if S ⊆N<N is a tree, then S is wellfounded if and only if S is
wellordered under <KB, which happens if and only if (S,<KB) embeds into (ω1,<).
Fix also an enumeration u0,u1,u2, . . . of N<N such that |un| 6 n.

Assume now that A is an analytic subset of NN and let T be a tree on N ×N
such that x ∈ A ⇔ ∃y ∈NN (x,y) ∈ [T ], i.e.,

x < A ⇔ (T (x),<KB) embeds into (ω1,<),

where T (x) = {u ∈ N<N
∣∣∣ (x||u|,u) ∈ T } is the section tree. We shall show that the

game G(A) below, in which I and II alternate in playing xi ∈N, is determined.

I x0 x2 x4 · · ·
II x1 x3 x5 · · ·
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Here II wins a run of the game if x = (x0,x1,x2, . . .) < A.
To do this, we introduce another game G?(A) in which I and II alternate in

playing x2i ∈N, respectively pairs (x2i+1,ηi) ∈N×κ,

I x0 x2 x4 · · ·
II x1,η0 x3,η1 x5,η2 · · ·

Again, II wins a run of the game G?(A) if the following holds

ηi = 0 for ui < T (x),

ui <KB uj ⇔ ηi < ηj for all ui ,uj ∈ T (x).

Therefore, if II wins a run of G?(A), then not only is T (x) wellfounded and hence
x < A, but II has simultaneously produced a witness to this effect, that is, an em-
bedding ui 7→ ηi of (T (x),<KB) into (κ,<). Thus, if II has a winning strategy in
G?(A), he also has a winning strategy in G(A).

Note now that, as opposed to G(A), the game G?(A) is open for I and hence
determined. It therefore suffices to show that if I has a winning strategy σ? in
G?(A), he also has a winning strategy σ in G(A). So assume that such a strategy σ?

is given.
For any s ∈N2n, we define Ds = {ui

∣∣∣ i < n & (s||ui |,ui) ∈ T } and note that if s ⊆ t,
then Ds ⊆Dt. Moreover, for any x ∈NN, we have ui ∈ T (x) ⇔ ui ∈

⋃
s⊂xDs.

Assume now that s ∈N2n with |Ds| =m is given. Then for any Q ∈ [κ]m, there is
a unique function mapping i < n to some ξs,Qi < κ such that

ξs,Qi = 0 for ui <Ds,

ξs,Qi ∈Q for ui ∈Ds,

and
ui <KB uj ⇔ ξs,Qi < ξs,Qj for all ui ,uj ∈Ds.

We can therefore define a colouring fs : [κ]m→N by

fs(Q) = σ?
(
s0, s1,ξ

s,Q
0 , s2, s3,ξ

s,Q
1 , . . . , s2n−2, s2n−1,ξ

s,Q
n−1

)
.

By Rowbottom’s Theorem, we can find a subset X ⊆ κ of cardinality ℵ1 that is
monochromatic for all colourings fs with s ∈N<N of even length. It follows that
we can unambiguously define a strategy σ for I in G(A) as follows: If s ∈N2n with
|Ds| =m,

σ
(
s0, s1, . . . , s2n−2, s2n−1

)
= fs(Q) = σ?

(
s0, s1,ξ

s,Q
0 , . . . , s2n−2, s2n−1,ξ

s,Q
n−1

)
for all choices of Q ∈ [X]m.

We claim that σ is a strategy for I to play in A. To see this, suppose towards a
contradiction that x < A is a run ofG(A) in which I has followed σ. Then (T (x),<KB)
embeds into (ω1,<) and since X ⊆ κ has cardinality ℵ1, we can find an embedding
η : (T (x),<KB)→ (X,<) and extend η to all of N<N by setting η(t) = 0 for t < T (x). A
moment of reflection is now enough to see that

I x0 x2 x4 · · ·
II x1,η(u0) x3,η(u1) x5,η(u2) · · ·

is played according to the strategy σ? and hence x ∈ A, which is absurd. �
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2. Turing reducibility and AD

A function φ : N<N→N
<N is said to be monotone if s ⊆ t ⇒ φ(s) ⊆ φ(t). Note

that in this case, the set

Dφ = {x ∈NN

∣∣∣ |φ(x|n)| −→
n→∞
∞}

is Gδ and φ induces a continuous function φ? : Dφ → N
N by setting φ?(x) =⋃

nφ(x|n). We say that φ is computable or recursive if it is given by an algorithm, i.e.,
if there is a computer program that on input s outputs φ(s). Since there are only
countable many computer programs, there are only countably many computable
φ : N<N→N

<N, which we can list as {φn}.
Using this, we can define an Σ0

3 quasiordering 6T of NN as follows.

x 6T y ⇔ ∃φ computable φ?(y) = x.

Thus, x 6T y holds exactly when there is an algorithm computing x from y. Since
the identity function onN<N is computable and the class of computable functions
is closed under composition, 6T is indeed both reflexive and transitive. Moreover,
since there are only countably many computable functions, for any y ∈ NN, the
initial segment

Iy = {x ∈NN

∣∣∣ x 6T y}
is countable and so ∀y ∀∗x x 
T y. Therefore, using the Kuratowski–Ulam theo-
rem, we have ∀∗x ∀∗y x 
T y, meaning that for all but a meagre set of x ∈NN, the
cone Cx = {y ∈ NN

∣∣∣ x 6T y} is meagre. In particular, picking any z < Ix ∪Cx, we
find that x and z are incomparable with respect to 6T . So 6T is not total.

Any sequence x0,x1, . . . ∈NN has an upper bound in 6T . For if 〈·, ·〉 : N×N→N

is a computable bijection, we can define y ∈NN by y(〈n,m〉) = xn(m) and see that
all of the xn are computable from y, i.e., xn 6T y. Using this, it follows that Cy ⊆⋂
nCxn .
The quasiordering 6T induces the Turing equivalence relation ≡T by

x ≡T y ⇔ x 6T y & y 6T x.

So x and y are Turing equivalent if they can be computed from each other and thus
can be understood as having the same informational content. Note that ≡T is a Σ0

3
equivalence relation with countable classes.

Theorem 4 (D. A. Martin). Suppose A ⊆ NN is a ≡T -invariant Borel set. Then A
either contains a cone or is disjoint from a cone.

Proof. Consider the usual game G(A) for playing in A,

I x0 x1 x2 · · ·
II y0 y1 y2 · · ·

with outcome (x0, y0,x1, y1, . . .).
Assume first that I has a strategy σ : N<N→N for playing in A. Fixing a com-

putable bijection τ : N→N
<N, we see that z = σ◦τ ∈NN and claim thatCz ⊆ A. To

see this, suppose that z 6T y = (y0, y1, . . .) and let II play the sequence y = (y0, y1, . . .)
in G(A), while I responds with x = (x0,x1, . . .) according to the strategy σ. Now
since τ is a computable bijection, σ = z ◦ τ−1 is computable from z, whereby x
is computable from the pair (z,y). So, since z 6T y, it follows that x 6T y and
(x0, y0,x1, y1, . . .) ≡T y. Moreover, since σ is winning for I, (x0, y0,x1, y1, . . .) ∈ A,
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whence by ≡T -invariance, y ∈ A. So Cz ⊆ A and A contains a cone. A similar ar-
gument shows that if II has a winning strategy, then Cz ∩A = ∅ for some z ∈NN.
Finally, since A is Borel the game is determined. �

Corollary 5. Any ≡T -invariant Borel map f : NN→R is constant on a cone.

Proof. Let (Un) be a basis for the topology onR and find inductively x0 6T x1 6T . . .
such that for all n¡ either Cxn ⊆ f

−1(Un) or Cxn ∩ f
−1(Un) = ∅. Picking y such that

xn 6T y for all n, we see that f must be constant on Cy . �

Note that the proofs above only rely on the fact that G(A) is determined. So, as
a corollary, we see that under AD any ≡T -invariant set either contains or is disjoint
from a cone. We shall now use this to show that AD implies that ℵ1 is a measurable
cardinal.

Theorem 6 (R. M. Solovay). If AD holds, then ℵ1 is a measurable cardinal.

Proof. Using any bijection between Q and N, we can identify NQ with N
N and

similarly transfer≡T toNQ. We also recall thatWO is the collection of wellordered
subsets of Q identified with a subset of 2Q ⊆NQ. For every y ∈WO, we let otp(y)
denote its ordertype, which is a countable ordinal.

Define a cofinal map ϑ : NQ → ω1 by ϑ(x) = sup{otp(y)
∣∣∣ y ∈WO & y 6T x}. So

clearly x 6T z ⇒ ϑ(x) 6 ϑ(z), i.e., ϑ is monotone.
We now define a countably additive {0,1}-valued diffuse measure µ on ℵ1 = ω1

by letting

µ(B) =

1 if ϑ−1(B) contains a cone,
0 if ϑ−1(B) is disjoint from a cone.

Monotonicity of µ is clear. Also, to see that µ is diffuse, suppose towards a contra-
diction that µ({ξ}) = 1 for some ξ < ω1 and find a cone Cx contained in ϑ−1({ξ}).
Now pick any y ∈WOwith otp(y) > ξ and choose z such that x,y 6T z. Then z ∈ Cx,
but ϑ(z) > ξ, contradicting our assumption. Finally, µ is countably additive since
the intersection of countably many cones again contains a cone. �


