1. THE G_0 DICHTOMY

A digraph (or directed graph) on a set X is a subset $G \subseteq X^2 \setminus \Delta$. Given a digraph G on a set X and a subset $A \subseteq X$, we say that A is G-discrete if for all $x, y \in A$ we have $(x, y) \not\in G$.

Now let $s_n \in 2^n$ be chosen for every $n \in \mathbb{N}$ such that $\forall s \in 2^{<\omega} \exists n \ s \subseteq s_n$. Then we can define a digraph G_0 on 2^ω by

$$G_0 = \{(s_n0x, s_n1x) \in 2^\omega \times 2^\omega \mid n \in \mathbb{N} \& x \in 2^\omega\}.$$

Exercise 1. Show that if $x, y \in 2^\omega$ differ in only finitely many coordinates, then there is a path $x_0 = x, x_1, \ldots, x_n = y$ such that for all i, either $(x_i, x_{i+1}) \in G_0$ or $(x_{i+1}, x_i) \not\in G_0$.

Hint: The proof is by induction on the last coordinate in which they differ.

Lemma 2. If $f : 2^\omega \to X$ is a continuous function into a Polish space X such that $xG_0x \Rightarrow f(x) = f(y)$, then f is constant.

Proof. If not, by continuity, we can find basic open sets $N_s, N_t \subseteq 2^\omega$ such that $f[N_s] \cap f[N_t] = \emptyset$. Extending s or t, we can suppose that $|s| = |t|$, and thus for any $x \in 2^\omega$, $f(sx) \neq f(tx)$. On the other hand, such sx and tx differ only in finitely many coordinates, so by Exercise 1 they are connected by a path in G_0, which contradicts the properties of f.

Lemma 3. If $B \subseteq 2^\omega$ has the Baire property and is non-meagre, then B is not G_0-discrete.

Proof. By assumption on B, we can find some $s \in 2^{<\omega}$ such that B is comeagre in N_s. Also, by choice of (s_n), we can find some n such that $s \subseteq s_n$, whereby B is comeagre in N_{s_n}. By the characterisation of comeagre subsets of 2^ω, we see that for some $x \in 2^\omega$, we have $s_n0x, s_n1x \in B$, showing that B is not G_0-discrete.

Suppose G and H are digraphs on sets X and Y respectively. A homomorphism from G to H is a function $h : X \to Y$ such that for all $x, y \in X$,

$$(x, y) \in G \Rightarrow (h(x), h(y)) \in H.$$

Also, if Z is any set, a Z-colouring of a digraph G on X is a homomorphism from G to the digraph \neq on Z, i.e., a function $h : X \to Z$ such that for all $x, y \in X$,

$$(x, y) \in G \Rightarrow h(x) \neq h(y).$$

Proposition 4. There is no Baire measurable \mathbb{N}-colouring of G_0.

Proof. Note that if $h : 2^\omega \to \mathbb{N}$ is a Baire measurable function, then for some $n \in \mathbb{N}$, $B = h^{-1}(n)$ is non-meagre with the Baire property and hence not G_0-discrete. So h cannot be a homomorphism from G_0 to \neq on \mathbb{N}.

Date: April 2009.
Theorem 5 (Kechris–Solecki–Todorcevic). Suppose G is an analytic digraph on a Polish space X. Then exactly one of the following holds:
- there is a continuous homomorphism from G_0 to G,
- there is a Borel \mathbb{N}-colouring of G.

Proof. (B. Miller) If X is countable, the result is trivial. So if not, let $f : \mathbb{N}^\mathbb{N} \to P$ be a continuous bijection onto the perfect kernel P of X. By replacing G with $(f \times f)^{-1}[G]$, there is no loss of generality in assuming that $X = \mathbb{N}^\mathbb{N}$.

So suppose $F \subseteq \mathbb{N}^\mathbb{N} \times \mathbb{N}^\mathbb{N} \times \mathbb{N}^\mathbb{N}$ is a closed set such that
\[(x, y) \in G \Leftrightarrow \exists z (x, y, z) \in F.\]

In order to produce a continuous homomorphism h from G_0 to G it suffices to find monotone Lipschitz functions $u, v^m : 2^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$, $m \in \mathbb{N}$, such that for all $m < k$ and $t \in 2^{k-m-1}$,
\[\{N_u(s_m0w) \times N_u(s_m1t) \times N_{v^m}(t)\} \cap F \neq \emptyset.\]

In this case, we can define $h, \tilde{v}^m : 2^{\mathbb{N}} \to \mathbb{N}^\mathbb{N}$ by $h(w) = \bigcup_n u(w|_n)$ and $\tilde{v}^m(w) = \bigcup_n v^m(w|_n)$. For then if $m \in \mathbb{N}$ and $w \in 2^\mathbb{N}$ are given, there are $x_k, y_k, z_k \in \mathbb{N}^\mathbb{N}$ such that $x_k \to h(s_m0w)$, $y_k \to h(s_m1w)$ and $z_k \to \tilde{v}^m(w)$ such that for all k, (x_k, y_k, z_k). So, as F is closed, also
\[(h(s_m0w), h(s_m1w), \tilde{v}^m(w)) \in F,\]

whence $(h(s_m0w), h(s_m1w)) \in G$, showing that h is a homomorphism from G_0 to G.

An n-approximation is a pair (u, v) of functions $u : 2^n \to \mathbb{N}^n$ and $v : 2^{\mathbb{N}} \to \mathbb{N}^\mathbb{N}$. Also, if (u, v) is an n-approximation and (u', v') is an $n + 1$-approximation, we say that (u', v') extends (u, v) if $u(s) \subseteq u'(si)$ and $v(t) \subseteq v'(ti)$ for all $s \in 2^n$, $t \in 2^{\mathbb{N}}$ and $i = 0, 1$.

Suppose $A \subseteq X$ and (u, v) is an n-approximation. We define the set of A-realisations, $\mathbb{R}(A, u, v)$, to be the set of pairs of tuples $(x_s)_{s \in 2^n} \in \prod_{s \in 2^n} (A \cap N_u(s))$ and $(z_t)_{t \in 2^{\mathbb{N}}}$ in $\prod_{t \in 2^{\mathbb{N}}} N_{v^m}(t)$ such that
\[(x_s, x_{s, 1t}, z_t) \in F\]
for all $s \in 2^n$, $m \in \mathbb{N}$ and $t \in 2^{n-m-1}$.

So if (u_0, v_0) is the unique 0-approximation (i.e., $u(\emptyset) = \emptyset$ and v is the function with empty domain), we have $\mathbb{R}(A, u_0, v_0) = \{x_{s_0} \mid x_{s_0} \in A\} = A$. If (u, v) has no A-realised extension, we say that (u, v) is A-terminal.

Lemma 6. Suppose (u, v) is an A-terminal n-approximation, then
\[\mathbb{D}(A, u, v) = \{x_{s_n} \mid ((x_s)_{s \in 2^n}, (z_t)_{t \in 2^{\mathbb{N}}}) \in \mathbb{R}(A, u, v)\}\]
is G-discrete.

Proof. Suppose toward a contradiction that
\[((x_s^0)_{s \in 2^n}, (z_t^0)_{t \in 2^{\mathbb{N}}}), ((x_s^1)_{s \in 2^n}, (z_t^1)_{t \in 2^{\mathbb{N}}}) \in \mathbb{R}(A, u, v)\]
satisfy $(x_{s_n}^0, x_{s_n}^1) \in G$. Then for some $z_{s_0} \in \mathbb{N}^\mathbb{N}$, we have
\[x_{s_0}^0, x_{s_0}^1, z_{s_0} \in F,\]
and hence, setting $x_{si} = x_{si}^1$ and $z_{ti} = z_{ti}^1$ for all $s i \in 2^{n+1}$ and $t i \in 2^{n+1} \setminus \{\emptyset\}$, we get an A-realisation $((x_s)_{s \in 2^{n+1}}, (z_t)_{t \in 2^{\mathbb{N}+1}})$ of an extension of (u, v), contradicting that (u, v) is A-terminal.
Now define $\Phi \subseteq P(X)$ by

$$\Phi(A) \leftrightarrow A \text{ is } G\text{-discrete.}$$

Since G is analytic, Φ is Π^1_1 on Σ^1_1, and so, by the First Reflection Theorem, any G-discrete analytic set A is contained in a G-discrete Borel set A'. Using this, we can define a function D assigning to each Borel set $A \subseteq X$ a Borel subset given by

$$D(A) = A \setminus \bigcup \{ B(A,u,v) \mid (u,v) \text{ is } A\text{-terminal} \}. $$

Note that, as there are only countably many approximations (u,v), the set $A \setminus D(A)$ is a countable union of G-discrete Borel sets.

Lemma 7. Suppose (u,v) is an n-approximation all of whose extensions are A-terminal. Then (u,v) is $D(A)$-terminal.

Proof. Note that if (u,v) is not $D(A)$-terminal, there is some extension (u',v') of (u,v) and some realisation $(x_\xi)_{\xi \in 2^{n+1}} \in \mathbb{R}(D(A),u,v') \subseteq \mathbb{R}(A,u',v')$. But since (u',v') is A-terminal, we have $D(A,u',v') \cap D(A) = \emptyset$, contradicting that $\phi(x_{n+1}) \in \mathbb{R}(A,u',v') \cap D(A)$. \hfill \Box

Now define, by transfinite induction, $D^0(X) = X$, $D^{\xi+1}(X) = D(D^\xi(X))$ and $D^\xi(X) = \bigcap_{\zeta < \xi} D^\zeta(X)$, whenever λ is a limit ordinal. Then $(D^\xi(X))_{\xi < \omega_1}$ is a well-ordered, decreasing sequence of Borel subsets of X, so the sets T_ξ of approximations (u,v) that are $D^\xi(X)$-terminal is an increasing sequence of subsets of the countable set of all approximations. It follows that for some $\xi < \omega_1$, we have $T_\xi = T_{\xi+1}$.

Now if $(u,v) \notin T_{\xi+1}$, then (u,v) is not $D(D^\xi(X))$-terminal and hence admits an extension (u',v') that is not $D^\xi(X)$-terminal either, whereby $(u',v') \notin T_\xi = T_{\xi+1}$. So if (u_0,v_0) denotes the unique 0-approximation and $(u_0,v_0) \notin T_{\xi+1}$, we can inductively construct $(u_n,v_n) \notin T_{\xi+1}$ extending each other. Setting

$$u = \bigcup_n u_n$$

and for $t \in 2^n$

$$v^m(t) = v_{n+m+1}(t),$$

we have the required monotone Lipschitz functions $u,v : 2^{<\omega} \to \mathbb{N}^{<\omega}$ to produce a continuous homomorphism from G_0 to G.

Conversely, if $(u_0,v_0) \in T_{\xi+1}$, then (u_0,v_0) is $D^{\xi+1}(X)$-terminal and hence $D^{\xi+2}(X) \subseteq D^{\xi+1}(X) \setminus D(D^{\xi+1}(X),u_0,v_0)$. But, since (u_0,v_0) is the unique 0-approximation, we have

$$D(D^{\xi+1}(X),u_0,v_0) = \mathbb{R}(D^{\xi+1}(X),u_0,v_0) = D^{\xi+1}(X),$$

whereby $D^{\xi+2}(X) = \emptyset$. It follows that

$$X = \bigcup_{\zeta < \xi+2} D^\zeta(X) \setminus D^{\xi+1}(X)$$

is a countable union of G-discrete Borel sets. We can then define a Borel \mathbb{N}-colouring of G by letting $c(x)$ be a code for the discrete Borel subset of X to which x belongs. \hfill \Box

Exercise 8. By inspection of the proof of Theorem 5, show that if G is a κ-Souslin digraph on \mathbb{N}^κ, then one of the following holds

- there is a continuous homomorphism from G_0 to G,
- there is a κ-colouring of G.
2. The Mycielski, Silver and Burgess dichotomies

Theorem 9 (Mycielski's Independence Theorem). Suppose X is a perfect Polish space and $R \subseteq X^2$ is a comeagre set. Then there is a continuous injection $\varphi: 2^\mathbb{N} \to X$ such that for all distinct $x, y \in 2^\mathbb{N}$ we have $(\varphi(x), \varphi(y)) \in R$.

Proof. Let $d \leq 1$ be a compatible complete metric on X and choose a decreasing sequence of dense open subsets $U_n \subseteq X^2$ such that $\bigcap_{n \in \mathbb{N}} U_n \subseteq R$. We construct a Cantor scheme $(C_s)_{s \in 2^\mathbb{N}}$ of non-empty open subsets of X by induction on the length of s such that for all distinct $s, t \in 2^n$ and $i = 0, 1$, we have

$$C_{si} \subseteq C_s, \quad \text{diam}(C_s) \leq \frac{1}{|s|+1}, \quad \text{and} \quad C_s \times C_t \subseteq U_{n-1}.$$

To see how this is done, suppose that C_s has been defined for all $s \in 2^n$. Since X is perfect, we can find disjoint, non-empty open subsets D_{s0} and D_{s1} of C_s for every $s \in 2^n$. Now, as U_n is dense, $U_n \cap (D_{s1} \times D_{t1}) \neq \emptyset$ for all distinct $t, t' \in 2^{n+1}$ and so we can inductively shrink the D_t to open subsets C_t such that whenever $t, t' \in 2^{n+1}$ are distinct, we have $C_t \cap C_{t'} \subseteq U_n$. By further shrinking the C_{si} if necessary, we can ensure that $C_{si} \subseteq C_s$ and diam$(C_s) \leq \frac{1}{|s|+1}$. Now letting $\varphi: 2^\mathbb{N} \to X$ be defined by $(\varphi(s)) = \bigcap_{n \in \mathbb{N}} C_{x|_n}$, we see that φ is continuous. Also, if $x, y \in 2^\mathbb{N}$ are distinct, then for all but finitely many n we have $(\varphi(x), \varphi(y)) \in C_{x|_n} \times C_{y|_n} \subseteq U_{n-1}$, so, since the U_n are decreasing, we have $(x, y) \in \bigcap_{n \in \mathbb{N}} U_n \subseteq R$. \hfill \Box

Theorem 10 (J. Silver). Suppose E is a conalytic equivalence relation on a Polish space X. Then exactly one of the following holds

- E has at most countably many classes,
- there is a continuous injection $\varphi: 2^\mathbb{N} \to X$ such that for distinct $x, y \in 2^\mathbb{N}$, $\varphi(x)E\varphi(y)$.

Proof. We define an analytic digraph G on X by setting $G = X^2 \setminus E$. Notice first that if $c: X \to \mathbb{N}$ is a Borel \mathbb{N}-colouring of G, then for all $x, y \in X$,

$$\neg xEy \Rightarrow (x, y) \in G \Rightarrow c(x) \neq c(y).$$

So for any $n \in \mathbb{N}$, $c^{-1}(n)$ is contained in a single equivalence class of E. Moreover, as $X = \bigcup_{n \in \mathbb{N}} c^{-1}(n)$, this shows that X is covered by countably many E-equivalence classes.

So suppose instead that there is no Borel \mathbb{N}-colouring of G. Then by Theorem 5 there is a continuous homomorphism $h: 2^\mathbb{N} \to X$ from G_0 to G. Now let $F = \{(x, y) \in 2^\mathbb{N} \times 2^\mathbb{N} \mid h(x)Eh(y)\}$. Then F is meagre. For otherwise, by the Kuratowski–Ulam Theorem, there is some $x \in 2^\mathbb{N}$ such that F_x is non-meagre and hence, by Lemma 3, there are $y, z \in F_x$ such that $(y, z) \in G_0$. As h is a homomorphism it follows that $(h(y), h(z)) \in G = X^2 \setminus E$, which contradicts that $h(y)Eh(x)Eh(z)$. Therefore, applying Mycielski’s Theorem to the meagre set F, we get a continuous function $f: 2^\mathbb{N} \to 2^\mathbb{N}$ such that for distinct $x, y \in 2^\mathbb{N}$, $(f(x), f(y)) \notin F$, i.e., $\neg h \circ f(x)Eh \circ f(y)$. Letting $\varphi = h \circ f$, we have the result. \hfill \Box

By the same proof, using instead the G_0-dichotomy for ω_1-Souslin sets, we deduce the following result.

Theorem 11 (J. Burgess, L. A. Harrington–S. Shelah). Let E be a Σ^1_2 equivalence relation on a Polish space X. Then one of the following holds

- E has at most \aleph_1 classes,
there is a continuous injection $\phi : 2^\mathbb{N} \to X$ such that for distinct $x, y \in 2^\mathbb{N}$, $\neg \phi(x)E\phi(y)$.

Now as the isomorphism relation between the countable models of an $L_{\omega_1\omega}$-sentence is an analytic equivalence relation, we have the following corollary, initially proved by analysing the space of complete types.

Corollary 12 (M. Morley). Suppose L is a countable language and σ is a $L_{\omega_1\omega}$ sentence. Then there are either a continuum of non-isomorphic countable models of σ or at most \aleph_1 non-isomorphic models of σ.

Theorem 13 (Lusin–Novikov). Suppose X and Y are Polish spaces and $A \subseteq X \times Y$ a Borel subset. Assume that for every $x \in X$, the vertical section A_x is countable. Then there are Borel sets F_n such that $|(F_n)_x| \leq 1$ for every $x \in X$ and $A = \bigcup_{n \in \mathbb{N}} F_n$.

Proof. Define a Borel digraph G on $X \times Y$ by

$$(x, y)G(x', y') \Leftrightarrow x = x' \& y \neq y' \& (x, y) \in A \& (x', y') \in A.$$

Assume first that $f : X \times Y \to \mathbb{N}$ is a Borel \mathbb{N}-coloring of G. Then for every $n \in \mathbb{N}$, $F_n = A \cap f^{-1}(n)$ is a G-discrete Borel subset of $X \times Y$ and $A = \bigcup_{n \in \mathbb{N}} F_n$. Moreover, since F_n is G-discrete, we see that $|(F_n)_x| \leq 1$ for all $x \in X$.

Now, by Theorem 5, if there is no such colouring, then there is a continuous homomorphism $h : 2^\mathbb{N} \to X \times Y$ from G_0 to G. Composing with the coordinate projections, we obtain continuous functions $h_X : 2^\mathbb{N} \to X$ and $h_Y : 2^\mathbb{N} \to Y$ such that

$$aG_0b \Rightarrow h_X(a) = h_X(b).$$

By Lemma 2, h_X is constant with some value $x_0 \in X$ and so

$$aG_0b \Rightarrow h_Y(a) \neq h_Y(b) \& h_Y(a) \in A_{x_0} \& h_Y(b) \in A_{x_0}.$$

Since A_{x_0} is countable, there is an injection $\pi : A_{x_0} \to \mathbb{N}$, and thus $\pi \circ h_Y : 2^\mathbb{N} \to \mathbb{N}$ is a continuous \mathbb{N}-colouring of G_0, contradicting Proposition 4. So the first option holds. \qed