A CLOSURE PROPERTY FOR THE SOUSLIN OPERATION

CHRISTIAN ROSENDAL

Definition 1. Suppose (X, \mathscr{S}) is a measurable space. A *cover* of a subset $D \subseteq X$ with respect to \mathscr{S} is a measurable set $\hat{D} \supseteq D$ such that if $C \subseteq \hat{D} \setminus D$ is measurable, then any subset of *C* is also measurable. If every set has a cover, we say that (X, \mathscr{S}) admits covers.

Example 2. Suppose *X* is a topological space and BP(*X*) is the σ -algebra of sets with the Baire property. Then (*X*, BP(*X*)) admits covers. To see this, for any $D \subseteq X$, we let $U(\sim D)$ be the largest open set in which $\sim D$ is comeagre or, equivalently, where *D* is meagre and set

$$\hat{D} = \sim U(\sim D) \cup D = \underbrace{\sim U(\sim D)}_{\text{closed}} \cup \underbrace{\left(D \cap U(\sim D)\right)}_{\text{meagre}} \in \operatorname{BP}(X).$$

Note also that if $\hat{D} \setminus D = \sim U(\sim D) \cap \sim D$ is comeagre in an open set *V*, then so is $\sim D$, whereby $V \subseteq U(\sim D)$ and $(\hat{D} \setminus D) \cap V = \emptyset$, from which it follows that *V* is meagre. In other words, any subset of $\hat{D} \setminus D$ with the Baire property must be meagre, whereby all its subsets belong to BP(*X*). So \hat{D} is a cover of *D* with respect to BP(*X*).

Example 3. Suppose X is a standard Borel space and μ is a Borel probability measure on X. We let MEAS_{μ} denote the σ -algebra of all μ -measurable sets, i.e., the class of all sets that differ from a Borel set by a set of outer μ -measure 0. Then (X, MEAS_{μ}) admits covers. To see this, for every set $D \subseteq X$, let $\hat{D} \supseteq D$ be a Borel set realising the outer measure. Then clearly any measurable subset of $\hat{D} \setminus D$ is a null set, whence all its subsets belong to MEAS_{μ} .

Theorem 4 (E. Szpilrajn-Marczewski). Let (X, \mathscr{S}) be a measurable space admitting covers. Then \mathscr{S} is closed under the Souslin operation \mathscr{A} .

Proof. Suppose (A_s) is a Souslin scheme of measurable sets and let $B_s = \bigcap_{t \subseteq s} A_t \in \mathscr{S}$. Then (B_s) is a regular Souslin scheme with $\mathscr{A}(B_s) = \mathscr{A}(A_s)$. Define

$$D_s = \bigcup_{x \in N_s} \bigcap_n B_{x|n} \subseteq B_s$$

and note that $\mathscr{A}(B_s) = D_{\emptyset}$ and $D_s = \bigcup_{n \in \mathbb{N}} D_{sn}$ for all $s \in \mathbb{N}^{<\mathbb{N}}$. Let now \hat{D}_s be the cover of D_s and note that, by intersecting \hat{D}_s with B_s , we can suppose that $\hat{D}_s \subseteq B_s$.

Consider the measurable error term $E_s = \hat{D}_s \setminus \bigcup_n \hat{D}_{sn} \subseteq \hat{D}_s \setminus \bigcup_n D_{sn} = \hat{D}_s \setminus D_s$. By the defining property of covers, all subsets of E_s and thus also of $\bigcup_{s \in \mathbb{N}^{\leq \mathbb{N}}} E_s$ are measurable. Observe now that, for any $s \in \mathbb{N}^{\leq \mathbb{N}}$, we have

$$\hat{D}_s \setminus \bigcup_{t \in \mathbb{N}^{<\mathbb{N}}} E_t \subseteq \bigcup_n \hat{D}_{sn} \setminus \bigcup_{t \in \mathbb{N}^{<\mathbb{N}}} E_t \subseteq \bigcup_n (\hat{D}_{sn} \setminus \bigcup_{t \in \mathbb{N}^{<\mathbb{N}}} E_t)$$

Thus, for any $x \in \hat{D}_{\emptyset} \setminus \bigcup_{t \in \mathbb{N}^{\leq \mathbb{N}}} E_t$, we can inductively define $n_0, n_1, n_2, \ldots \in \mathbb{N}$ such that

$$x \in \hat{D}_{(n_0,\ldots,n_k)} \setminus \bigcup_{t \in \mathbb{N}^{<\mathbb{N}}} E_t$$

CHRISTIAN ROSENDAL

for all k, from which it follows that $\hat{D}_{\emptyset} \setminus \bigcup_{t \in \mathbb{N}^{\leq \mathbb{N}}} E_t \subseteq \mathscr{A}(\hat{D}_s) \subseteq \mathscr{A}(B_s) = \mathscr{A}(A_s)$. Therefore, $\hat{D}_{\emptyset} \setminus \mathscr{A}(A_s) \subseteq \bigcup_{t \in \mathbb{N}^{\leq \mathbb{N}}} E_t$, showing that $\hat{D}_{\emptyset} \setminus \mathscr{A}(A_s)$ and thus also $\mathscr{A}(A_s)$ are measurable.

Corollary 5 (O. M. Nikodým). *The class of sets with the Baire property in any topological space is closed under the Souslin operation.*

Corollary 6 (N. Lusin & W. Sierpiński). Let μ be a Borel probability measure on a standard Borel space X. Then the class of μ -measurable sets is closed under the Souslin operation.

2