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Introduction

Notation

H∗ = H ∪Q ∪ {∞} - extended upper Half plane.

Γ(1) = PSL2(Z) = 〈t, s〉, where

t = ±
(

1 1
0 1

)
, s = ±

(
0 −1
1 0

)

Γ be any genus-0 finite index subgroup.

CΓ is the set of all inequivalent cusps of Γ.
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Introduction

Multiplier System

Let ρ : Γ(1) −→ GLd(C) be rank d
representation of Γ(1). We say that ρ is
an admissible multiplier of Γ(1) if ρ(t) is
a diagonal matrix, i.e. for some diagonal
matrix Λ ∈ Md(C), ρ(t) = e2πiΛ.
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Introduction

Remark

For any Γ of Γ(1), admissible
multiplier ρ will require that ρ(tc) is a
diagonalizable matrix for every cusp
c ∈ CΓ.

Here tc denote the generator of the
stabilizer subgroup of cusp c.
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Weakly Holomorphic Vector Valued Modular Form

Weakly Holomorphic Vector Valued Modular Form

Let ρ be an admissible multiplier for Γ(1) of rank d . A
map X : H −→ Cd is said to be weakly holomorphic
vector valued modular form for Γ(1) of weight w and
multiplier ρ, if X is holomorphic throughout H and may
have poles only at the cusps with following functional and
cuspidal behaviour:

Functional behaviour

X(γτ) = ρ(γ)(cτ + d)wX(τ), ∀γ ∈ Γ & ∀τ ∈ H.
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Weakly Holomorphic Vector Valued Modular Form

Weakly Holomorphic Vector Valued Modular Form

Cuspidal behaviour

Since Γ(1) has only one cusp ∞, q−ΛX(τ ) has

periodicity 1 therefore it has Fourier expansion of

the following form,

q−ΛX(τ ) =
∑
n∈Z

anq
n, where q = e2πiτ

which has at most finitely many nonzero an ∈ Cd

with n < 0.
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Weakly Holomorphic Vector Valued Modular Form

For any weight w ∈ 2Z and multiplier ρ of

any Γ, Mw(Γ, ρ, d) denotes the C-Vector

Space of all Weakly Holomorphic Vector

Valued Modular Forms.

More generally, weakly holomorphic vector

valued modular forms for Γ will be holomorphic

on H and may have poles at every cusp.

So if Γ has ` inequivalent cusps then it has

Fourier series expansion at every cusp.
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Weakly Holomorphic Vector Valued Modular Form

Where we are heading to...

Mw(Γ, ρ, d) is a free module of rank d over

the ring of weakly holomorphic modular

functions for Γ.

The ring of weakly holomorphic modular

functions for Γ(1) is C[JΓ(1)].

JΓ(1) = J = q−1 + 196884q + · · · is the

normalised hauptmodul for Γ(1) .
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Weakly Holomorphic Vector Valued Modular Form

Normalised Hauptmodul

If Γ is genus-0 finite index subgroup of Γ(1) and k

be the cusp width of the cusp {∞} then the

normalised hauptmodul of Γ is

JΓ = q−1
k + a1q

1
k + a2q

2
k + a3q

3
k + · · ·

ai ∈ Q,∀i ≥ 1, and qk = e2πiτ/k .
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Weakly Holomorphic Vector Valued Modular Form

Normalised Hauptmodul

For any cusp c ∈ CΓ of cusp width kc, we define

the normalised hauptmodul at c to be the

modular function J cΓ, holomorphic everywhere on

H∗ except at the cusp c where it has local

q−series expansion of the form

J cΓ = q̃−1
kc

+ ac1q̃
1
kc

+ ac2q̃
2
kc

+ ac3q̃
3
kc

+ · · ·

where q̃kc = e2πiA−1(τ̃)/kc and A ∈ Γ(1) such that
A(∞) = c and Aτ = τ̃ .
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Weakly Holomorphic Vector Valued Modular Form

Normalised Hauptmodul For Γ = Γ(2)

Γ is generated by ±t2 and ±st2s.

Γ is genus − 0 congruence subgroup of the modular
group of index 6.

Γ has three cusps, namely ∞, 0&1.

Γ∞ = 〈t∞ = t2〉 ; Γ0 = 〈t0 = st2s〉;
Γ1 = 〈t1 = (ts)t2(st−1)〉.
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Weakly Holomorphic Vector Valued Modular Form

Normalised Hauptmodul For Γ(2)

J
(∞)
Γ = q−1

2 + a1q2 + a2q
2
2 + · · · , where q2 = e

2πiτ
2 .

J
(0)
Γ = q̃2

−1 + b1q̃2 + b2q̃2
2 + · · · where q̃2 = e

2πi(sτ)
2 .

J
(1)
Γ = q̄2

−1 + c1q̄2 + c2q̄2
2 + · · · where q̄2 = e

2πi(st−1τ)
2 .
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Main Result

Main Result

Let’s denote the ring of weakly holomorphic modular
functions for Γ by R(Γ), where
R(Γ)↔ C[J c1Γ , J

c2
Γ , · · · , J

cl
Γ ].

Theorem (J.B.)

Mw(Γ, ρ, d) is a free R(Γ)-module of rank d.
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Main Result

Γ(1)&Γ(2)

Mw(Γ(1), ρ, d) is a free R(Γ(1)) = C[J]-module of
rank d .

Mw(Γ(2), ρ, d) is a free R(Γ(2))-module of rank d .

In general Mw(Γ, ρ, d) is a free R(Γ)-module of rank
d .
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Dedekind η

Dedekind η function

Recall that

η(τ ) = q
1

24

∞∏
n=1

(1− qn)

∆ = η24

∆ is a cusp form for Γ(1) of weight 12.

η is a modular form of weight 1/2 for Γ(1).
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Dedekind η

Dedekind η function

For any w , η2w is a modular form of
weight w with some multiplier ν for
Γ(1).

ηw is holomorphic and nonvanishing
on H.
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Important Observations

Two Simple but Important Observations...

First Observation:
Mw(Γ, ρ, d) and M0(Γ, ρ⊗ ν−2w , d) are

isomorphic as R(Γ)-modules.

Where ν is a multiplier system of Dedekind η.

X 7→ η−2wX.
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Important Observations

Two Simple but Important Observations...

Second Observation:
If [Γ(1) : Γ] = m then there is a C[J ]-module
isomorphism between Mw(Γ, ρ, d) and

Mw(Γ(1), ρ̃, dm), where ρ̃ = Ind
Γ(1)
Γ ρ. Where J

is the normalised hauptmodul of Γ(1), i.e.
J(τ ) = q−1 + 196884q + · · · .
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Important Observations

Two Relations between Scalar-Valued and

Vector-Valued Modular Forms

Restriction to Kerρ: vvmf for Γ(1) will give svmf for
Kerρ(as long as Kerρ is a finite index subgroup of
Γ(1)).

Induction from Γ of finite index m in Γ(1) : Let ρΓ be
the trivial representation of Γ then by inducing this to
a representation of Γ(1), any svmf of Mw(Γ, ρΓ, 1)
will give a vvmf of Mw(Γ(1), ρ,m).
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Important Observations

Relevance of Restriction Idea to noncongruence

modular forms

In dimension 2, ρ has finite image iff Kerρ is
congruence.

In dimension ≥ 3, there are infinitely many
inequivalent irreducble ρ where ρ has finite image and
Kerρ is finite index noncongruence subgroup of Γ(1).

So for example if we ”understand” vvmf for
3−dimensional ρ, then we ”understand” svmf for
infinitely many different noncongruence subgroups.
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Important Observations

Relevance of induction idea to noncongruence

modular forms

Suppose f is a modular form for finite index
noncongruence subgroup Γ of Γ(1) and for trivial
multiplier ρ then f will induce to a vector valued modular
form for Γ(1).
This theory will be able to address the following type of
questions....

Growth of the coefficients of f .

Verifying whether f have unbounded denominator
(Atkin-Swinnerton-Dyer Conjecture).
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The Trick

Principal Part Map or Mittag-Leffler Map

First we define Principal Part Map or Mittag-Leffler Map
for group Γ(1)

Pλ :M0(Γ(1), ρ, d) −→ q−1C[q−1]d

is defined as

Pλ(X) =
∑
n<0

anq
n, an ∈ Cd

in the Fourier expansion of q−λX.
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The Trick

Examples of Principal Part Map

Consider d = 1, trivial multiplier ρ and w = 0

then M0(Γ(1), ρ, d) = C[J ]

Consider exponent λ = (0).

P(0) : C[J ] −→ q−1C[q−1] then

P(0)(J) = q−1

KerP(0) = C
So P(0) for exponent λ = (0) is not injective.
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The Trick

Examples of Principal Part Map

Consider exponent λ = (1).

P(1) : C[J ] −→ q−1C[q−1] then

P(1)(J) = q−2

KerP(1) = {0}
P(1) for exponent λ = (1) is injective.
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The Trick

Key Lemma - An Important Bound

Lemma (Gannon)

There exists a constant C = C (ρ,w) such that for every
X ∈Mw(Γ, ρ, d),

minξl .p.(Xξ) ≤ C .

Here 1 ≤ ξ ≤ d

where X(τ) =


X1(τ)
X2(τ)

...
Xd(τ)


Jitendra Bajpai (U of A) Vector Valued Modular Forms May 1, 2011 25 / 32



The Trick

Key Theorem

Theorem

Let ρ : Γ −→ GLd(C) be an admissible multiplier of Γ
then there exists d linearly independent vector valued
modular forms {Y1,Y2, · · · ,Yd} ∈ Mw(Γ, ρ, d) and an
exponent λ such that Pλ(Yξ) = q−1eξ.

Remark

This result is a consequence of Rohrl’s solution to the
Riemann-Hilbert problem.
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Conclusion

Γ

E(Mw) is the set of bijective exponent of
Mw(Γ, ρ, d).

i.e. those exponent λ for which Pλ is a vector space
isomorphism over C.

For any weight w and multiplier ρ, E(Mw) is
nonempty.
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Conclusion

Γ(1)

For example E(M0(Γ(1), 1, 1)) = {1}.

In general, ∃ an exponent λ for any ρ and any

w such that

Pλ :Mw(Γ(1), ρ, d)) −→ q−1C[q−1]d is an

isomorphism, i.e.

E(Mw(Γ(1), ρ, d)) 6= ∅
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Conclusion

Γ(1)

Existence of injective exponent Λ by using the

key lemma and form set of all injective

exponents.

Existence of surjective exponent λ by using

the key theorem and form set of all surjective

exponents.

Observe the overlap in these two sets.
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Conclusion

Γ(1)

For any exponent λ, KerPλ is finite

dimensional subspace.

For any exponent λ, CokerPλ is finite

dimensional subspace.
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Conclusion

Γ(1)

Theorem
For any exponent λ, there exists an integer KMw

such
that the principal part map Pλ :Mw −→ q−1C[q−1]d has
index

dimKerPλ − dimCokerPλ = −Trλ + KMw
.

For any bijective exponent λ,

KMw = Trλ = (5+w)d
12

+ e
πiw
2

4
TrS + 2

3
√
3
Re(e

−πi
6

+−2πiw
3 TrU), where

S = ρ(s),U = ρ(st−1).
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Conclusion

Thank you all for listening

and

Big Thanks to
Ramin
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