Weakly Holomorphic Vector Valued Modular Forms

Jitendra Bajpai University of Alberta

Presented at:
Atkin Memorial Lecture and Workshop
On
Noncongruence modular forms and Galois representations
University of Illinois at Chicago
April 29 - May 1, 2011

May 1, 2011

Notation

ullet $\mathbb{H}^*=\mathbb{H}\cup\mathbb{Q}\cup\{\infty\}$ - extended upper Half plane.

$$oldsymbol{\Gamma(1)} = PSL_2(\mathbb{Z}) = \langle t,s
angle$$
, where $t=\pm \left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight), s=\pm \left(egin{array}{cc} 0 & -1 \ 1 & 0 \end{array}
ight)$

2 / 32

Notation

- ullet $\mathbb{H}^*=\mathbb{H}\cup\mathbb{Q}\cup\{\infty\}$ extended upper Half plane.
- $oldsymbol{\overline{\Gamma(1)}} = PSL_2(\mathbb{Z}) = \langle t,s
 angle, ext{ where} \ t = \pm \left(egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
 ight), s = \pm \left(egin{array}{cc} 0 & -1 \ 1 & 0 \end{array}
 ight).$
- Γ be any genus-0 finite index subgroup.
- \mathfrak{C}_{Γ} is the set of all inequivalent cusps of Γ .

Multiplier System

Let $\rho:\overline{\Gamma(1)}\longrightarrow GL_d(\mathbb{C})$ be rank d representation of $\overline{\Gamma(1)}$. We say that ρ is an admissible multiplier of $\overline{\Gamma(1)}$ if $\rho(t)$ is a diagonal matrix, i.e. for some diagonal matrix $\Lambda\in M_d(\mathbb{C}),\ \rho(t)=e^{2\pi i\Lambda}$.

3 / 32

Remark

• For any Γ of $\Gamma(1)$, admissible multiplier ρ will require that $\rho(t_{\mathfrak{c}})$ is a diagonalizable matrix for every cusp $\mathfrak{c} \in \mathfrak{C}_{\Gamma}.$

Remark

• For any Γ of $\Gamma(1)$, admissible multiplier ρ will require that $\rho(t_{\mathfrak{c}})$ is a diagonalizable matrix for every cusp $\mathfrak{c} \in \mathfrak{C}_{\Gamma}.$

• Here t_c denote the generator of the stabilizer subgroup of cusp c.

Weakly Holomorphic Vector Valued Modular Form

Let ρ be an admissible multiplier for $\Gamma(1)$ of rank d. A map $\mathbb{X}:\mathbb{H}\longrightarrow\mathbb{C}^d$ is said to be weakly holomorphic vector valued modular form for $\overline{\Gamma(1)}$ of weight w and multiplier ρ , if \mathbb{X} is holomorphic throughout \mathbb{H} and may have poles only at the cusps with following functional and cuspidal behaviour:

Weakly Holomorphic Vector Valued Modular Form

Let ρ be an admissible multiplier for $\Gamma(1)$ of rank d. A map $\mathbb{X}:\mathbb{H}\longrightarrow\mathbb{C}^d$ is said to be weakly holomorphic vector valued modular form for $\overline{\Gamma(1)}$ of weight w and multiplier ρ , if \mathbb{X} is holomorphic throughout \mathbb{H} and may have poles only at the cusps with following functional and cuspidal behaviour:

Functional behaviour

$$\mathbb{X}(\gamma\tau) = \rho(\gamma)(c\tau + d)^{w}\mathbb{X}(\tau), \qquad \forall \gamma \in \Gamma \& \forall \tau \in \mathbb{H}.$$

Weakly Holomorphic Vector Valued Modular Form

Cuspidal behaviour

Since $\overline{\Gamma(1)}$ has only one cusp ∞ , $q^{-\Lambda}\mathbb{X}(\tau)$ has periodicity 1 therefore it has Fourier expansion of the following form,

$$q^{-\Lambda}\mathbb{X}(au) = \sum_{n\in\mathbb{Z}} a_n q^n, \qquad ext{where} \qquad q = e^{2\pi i au}$$

which has at most finitely many nonzero $a_n \in \mathbb{C}^d$ with n < 0.

• For any weight $w \in 2\mathbb{Z}$ and multiplier ρ of any Γ , $\mathcal{M}_w(\Gamma, \rho, d)$ denotes the \mathbb{C} -Vector Space of all Weakly Holomorphic Vector Valued Modular Forms.

- For any weight $w \in 2\mathbb{Z}$ and multiplier ρ of any Γ , $\mathcal{M}_w(\Gamma, \rho, d)$ denotes the \mathbb{C} -Vector Space of all Weakly Holomorphic Vector Valued Modular Forms.
- More generally, weakly holomorphic vector valued modular forms for Γ will be holomorphic on $\mathbb H$ and may have poles at every cusp.

- For any weight $w \in 2\mathbb{Z}$ and multiplier ρ of any Γ , $\mathcal{M}_w(\Gamma, \rho, d)$ denotes the \mathbb{C} -Vector Space of all Weakly Holomorphic Vector Valued Modular Forms.
- More generally, weakly holomorphic vector valued modular forms for Γ will be holomorphic on $\mathbb H$ and may have poles at every cusp.
- So if Γ has ℓ inequivalent cusps then it has Fourier series expansion at every cusp.

Where we are heading to...

- $\mathcal{M}_w(\Gamma, \rho, d)$ is a free module of rank d over the ring of weakly holomorphic modular functions for Γ .
- The ring of weakly holomorphic modular functions for $\overline{\Gamma(1)}$ is $\mathbb{C}[J_{\overline{\Gamma(1)}}]$.
- $J_{\overline{\Gamma(1)}} = J = q^{-1} + 196884q + \cdots$ is the normalised hauptmodul for $\overline{\Gamma(1)}$.

Normalised Hauptmodul

If Γ is genus-0 finite index subgroup of $\Gamma(1)$ and k be the cusp width of the cusp $\{\infty\}$ then the normalised hauptmodul of Γ is

$$J_\Gamma=q_k^{-1}+a_1q_k^1+a_2q_k^2+a_3q_k^3+\cdots$$
 $a_i\in\mathbb{Q}, orall i\geq 1, ext{ and } q_k=e^{2\pi i au/k}.$

Normalised Hauptmodul

For any cusp $\mathfrak{c} \in \mathfrak{C}_{\Gamma}$ of cusp width $k_{\mathfrak{c}}$, we define the normalised hauptmodul at \mathfrak{c} to be the modular function $J^{\mathfrak{c}}_{\Gamma}$, holomorphic everywhere on \mathbb{H}^* except at the cusp \mathfrak{c} where it has local q—series expansion of the form

$$J_{\Gamma}^{\mathfrak{c}} = \tilde{q}_{k_{\mathfrak{c}}}^{-1} + a_{1}^{\mathfrak{c}} \tilde{q}_{k_{\mathfrak{c}}}^{1} + a_{2}^{\mathfrak{c}} \tilde{q}_{k_{\mathfrak{c}}}^{2} + a_{3}^{\mathfrak{c}} \tilde{q}_{k_{\mathfrak{c}}}^{3} + \cdots$$

where $\tilde{q}_{k_{\mathfrak{c}}} = e^{2\pi i A^{-1}(\tilde{\tau})/k_{\mathfrak{c}}}$ and $A \in \overline{\Gamma(1)}$ such that $A(\infty) = \mathfrak{c}$ and $A\tau = \tilde{\tau}$.

Normalised Hauptmodul For $\Gamma = \Gamma(2)$

- Γ is generated by $\pm t^2$ and $\pm st^2s$.
- Γ is *genus* 0 congruence subgroup of the modular group of index 6.
- Γ has three cusps, namely ∞ , 0&1.
- $\Gamma_{\infty}=\langle t_{\infty}=t^2
 angle$; $\Gamma_0=\langle t_0=st^2s
 angle$; $\Gamma_1=\langle t_1=(ts)t^2(st^{-1})
 angle$.

Normalised Hauptmodul For $\Gamma(2)$

•
$$J_{\Gamma}^{(\infty)} = q_2^{-1} + a_1 q_2 + a_2 q_2^2 + \cdots$$
, where $q_2 = e^{\frac{2\pi i \tau}{2}}$.

•
$$J_{\Gamma}^{(0)} = \tilde{q_2}^{-1} + b_1 \tilde{q_2} + b_2 \tilde{q_2}^2 + \cdots$$
 where $\tilde{q_2} = e^{\frac{2\pi i (s\tau)}{2}}$.

•
$$J_{\Gamma}^{(1)} = \bar{q}_2^{-1} + c_1 \bar{q}_2 + c_2 \bar{q}_2^{2} + \cdots$$
 where $\bar{q}_2 = e^{\frac{2\pi i (st^{-1}\tau)}{2}}$.

4 D > 4 D > 4 E > 4 E > E 9 Q P

Main Result

Let's denote the ring of weakly holomorphic modular functions for Γ by $R(\Gamma)$, where $R(\Gamma) \leftrightarrow \mathbb{C}[J_{\Gamma}^{c_1}, J_{\Gamma}^{c_2}, \cdots, J_{\Gamma}^{c_I}].$

Theorem (J.B.)

 $\mathcal{M}_{w}(\Gamma, \rho, d)$ is a free $R(\Gamma)$ -module of rank d.

$\overline{\Gamma(1)}\&\overline{\Gamma(2)}$

• $\mathcal{M}_w(\overline{\Gamma(1)}, \rho, d)$ is a free $R(\overline{\Gamma(1)}) = \mathbb{C}[J]$ -module of rank d.

• $\mathcal{M}_w(\overline{\Gamma(2)}, \rho, d)$ is a free $R(\overline{\Gamma(2)})$ -module of rank d.

• In general $\mathcal{M}_w(\Gamma, \rho, d)$ is a free $R(\Gamma)$ -module of rank d.

Dedekind η function

Recall that

$$\eta(au) = q^{rac{1}{24}} \prod_{n=1}^{\infty} (1-q^n)$$
 $\Delta = \eta^{24}$

- Δ is a cusp form for $\overline{\Gamma(1)}$ of weight 12.
- η is a modular form of weight 1/2 for $\overline{\Gamma(1)}$.

Dedekind η function

- For any w, η^{2w} is a modular form of weight w with some multiplier ν for $\overline{\Gamma(1)}$.
- η^w is holomorphic and nonvanishing on \mathbb{H} .

Two Simple but Important Observations...

First Observation:

 $\mathcal{M}_w(\Gamma, \rho, d)$ and $\mathcal{M}_0(\Gamma, \rho \otimes \nu^{-2w}, d)$ are isomorphic as $R(\Gamma)$ -modules.

- Where ν is a multiplier system of Dedekind η .
- $\mathbb{X} \mapsto \eta^{-2w} \mathbb{X}$.

Two Simple but Important Observations...

Second Observation:

If $[\Gamma(1):\Gamma]=m$ then there is a $\mathbb{C}[J]$ -module isomorphism between $\mathcal{M}_w(\Gamma,\rho,d)$ and $\mathcal{M}_w(\Gamma(1),\tilde{\rho},dm)$, where $\tilde{\rho}=Ind_{\underline{\Gamma}}^{\Gamma(1)}\rho$. Where J is the normalised hauptmodul of $\overline{\Gamma(1)}$, i.e. $J(\tau)=q^{-1}+196884q+\cdots$.

Two Relations between Scalar-Valued and Vector-Valued Modular Forms

- Restriction to $\operatorname{Ker}\rho$: vvmf for $\Gamma(1)$ will give svmf for $\operatorname{Ker}\rho$ (as long as $\operatorname{Ker}\rho$ is a finite index subgroup of $\Gamma(1)$).
- Induction from Γ of finite index m in $\Gamma(1)$: Let ρ_{Γ} be the trivial representation of Γ then by inducing this to a representation of $\Gamma(1)$, any svmf of $\mathcal{M}_w(\Gamma, \rho_{\Gamma}, 1)$ will give a vvmf of $\mathcal{M}_w(\Gamma(1), \rho, m)$.

Relevance of Restriction Idea to noncongruence modular forms

- In dimension 2, ρ has finite image iff $\mathrm{Ker}\rho$ is congruence.
- In dimension \geq 3, there are infinitely many inequivalent irreducble ρ where ρ has finite image and $\operatorname{Ker}\rho$ is finite index noncongruence subgroup of $\Gamma(1)$.
- So for example if we "understand" vvmf for 3-dimensional ρ, then we "understand" svmf for infinitely many different noncongruence subgroups.

Relevance of induction idea to noncongruence modular forms

Suppose f is a modular form for finite index noncongruence subgroup Γ of $\overline{\Gamma(1)}$ and for trivial multiplier ρ then f will induce to a vector valued modular form for $\overline{\Gamma(1)}$.

This theory will be able to address the following type of questions....

- Growth of the coefficients of f.
- Verifying whether *f* have unbounded denominator (Atkin-Swinnerton-Dyer Conjecture).

Principal Part Map or Mittag-Leffler Map

First we define Principal Part Map or Mittag-Leffler Map for group $\overline{\Gamma(1)}$

$$P_{\lambda}: \mathcal{M}_0(\overline{\Gamma(1)}, \rho, d) \longrightarrow q^{-1}\mathbb{C}[q^{-1}]^d$$

is defined as

$$P_{\lambda}(\mathbb{X}) = \sum_{n < 0} a_n q^n, \qquad a_n \in \mathbb{C}^d$$

in the Fourier expansion of $q^{-\lambda}X$.

Examples of Principal Part Map

Consider d=1, trivial multiplier ρ and w=0 then $\mathcal{M}_0(\overline{\Gamma(1)}, \rho, d) = \mathbb{C}[J]$

Consider exponent $\lambda = (0)$.

$$P_{(0)}:\mathbb{C}[J]\longrightarrow q^{-1}\mathbb{C}[q^{-1}]$$
 then

$$P_{(0)}(J) = q^{-1}$$

$$\operatorname{Ker} P_{(0)} = \mathbb{C}$$

So $P_{(0)}$ for exponent $\lambda = (0)$ is not injective.

Examples of Principal Part Map

Consider exponent $\lambda = (1)$.

$$P_{(1)}:\mathbb{C}[J]\longrightarrow q^{-1}\mathbb{C}[q^{-1}]$$
 then

$$P_{(1)}(J) = q^{-2}$$

$$Ker P_{(1)} = \{0\}$$

 $P_{(1)}$ for exponent $\lambda = (1)$ is injective.

Key Lemma - An Important Bound

Lemma (Gannon)

There exists a constant $C = C(\rho, w)$ such that for every $X \in \mathcal{M}_w(\Gamma, \rho, d)$,

$$min_{\xi}I.p.(\mathbb{X}_{\xi}) \leq C.$$

Here $1 \le \xi \le d$

where
$$\mathbb{X}(au)=\left(egin{array}{c} \mathbb{X}_1(au) \\ \mathbb{X}_2(au) \\ dots \\ \mathbb{X}_d(au) \end{array}
ight)$$

Key Theorem

Theorem

Let $\rho: \Gamma \longrightarrow GL_d(\mathbb{C})$ be an admissible multiplier of Γ then there exists d linearly independent vector valued modular forms $\{\mathbb{Y}^1, \mathbb{Y}^2, \cdots, \mathbb{Y}^d\} \in \mathcal{M}_w(\Gamma, \rho, d)$ and an exponent λ such that $P_{\lambda}(\mathbb{Y}^{\xi}) = q^{-1}e_{\xi}$.

Remark

This result is a consequence of Rohrl's solution to the Riemann-Hilbert problem.

- $\mathcal{E}(\mathcal{M}_w)$ is the set of bijective exponent of $\mathcal{M}_w(\Gamma, \rho, d)$.
- i.e. those exponent λ for which P_{λ} is a vector space isomorphism over \mathbb{C} .
- For any weight w and multiplier ρ , $\mathcal{E}(\mathcal{M}_w)$ is nonempty.

$\overline{\Gamma(1)}$

- \bullet For example $\mathcal{E}(\mathcal{M}_0(\overline{\Gamma(1)},1,1))=\{1\}.$
- In general, \exists an exponent λ for any ρ and any w such that

 $P_{\lambda}: \mathcal{M}_{w}(\overline{\Gamma(1)}, \rho, d)) \longrightarrow q^{-1}\mathbb{C}[q^{-1}]^{d}$ is an isomorphism, i.e.

$$\mathcal{E}(\mathcal{M}_w(\overline{\Gamma(1)}, \rho, d)) \neq \emptyset$$

$\overline{\Gamma(1)}$

- Existence of injective exponent Λ by using the key lemma and form set of all injective exponents.
- Existence of surjective exponent λ by using the key theorem and form set of all surjective exponents.
- Observe the overlap in these two sets.

$\overline{\Gamma(1)}$

- For any exponent λ , $\operatorname{Ker} P_{\lambda}$ is finite dimensional subspace.
- For any exponent λ , $\operatorname{Coker} P_{\lambda}$ is finite dimensional subspace.

Theorem

For any exponent λ , there exists an integer $K_{\mathcal{M}_w}$ such that the principal part map $P_{\lambda}: \mathcal{M}_w \longrightarrow q^{-1}\mathbb{C}[q^{-1}]^d$ has index

$$dim \operatorname{Ker} P_{\lambda} - dim \operatorname{Coker} P_{\lambda} = -Tr\lambda + K_{\mathcal{M}_{w}}.$$

For any bijective exponent λ ,

$$K_{\mathcal{M}_w} = Tr\lambda = \frac{(5+w)d}{12} + \frac{e^{\frac{\pi i w}{2}}}{4} TrS + \frac{2}{3\sqrt{3}} Re(e^{\frac{-\pi i}{6} + \frac{-2\pi i w}{3}} TrU), \text{ where } S = \rho(s), U = \rho(st^{-1}).$$

Thank you all for listening

Thank you all for listening

and

Thank you all for listening

and

Big Thanks to Ramin

