Does There Exist an Elliptic Curve E / \mathbb{Q} with Mordell-Weil Group $Z_{2} \times Z_{8} \times \mathbb{Z}^{4}$?

Edray Herber Goins
Department of Mathematics, Purdue University
Atkin Memorial Lecture and Workshop:
Elliptic Curves over $\mathbb{Q}(\sqrt{5})$
April 29, 2012
PuRDUE
U N I V E R S I T Y

Abstract

An elliptic curve E defined over the rational numbers \mathbb{Q} is an arithmetic-algebraic object: It is simultaneously a nonsingular projective curve with an affine equation $Y^{2}=X^{3}+A X+B$, which allows one to perform arithmetic on its points; and a finitely generated abelian group $E(\mathbb{Q}) \simeq E(\mathbb{Q})_{\text {tors }} \times \mathbb{Z}^{r}$, which allows one to apply results from abstract algebra. The abstract nature of its rank r can be made explicit by searching for rational points (X, Y).

The largest possible subgroup of an elliptic curve E is $E(\mathbb{Q})_{\text {tors }} \simeq Z_{2} \times Z_{8}$, and, curiously, these curves seem to have the least known information about the rank r. To date, there are twenty-seven known examples of elliptic curves over \mathbb{Q} having Mordell-Weil group $E(\mathbb{Q}) \simeq Z_{2} \times Z_{8} \times \mathbb{Z}^{3}$, yet no larger rank has been found.

In this talk, we give some history on the problem of determining properties of r and analyze various approaches to finding curves of large rank.

Outline of Talk

(1) Motivation

- Challenge Problem
- Elliptic Integrals
- Addition Formulas
(2) Elliptic Curves
- Mordell-Weil Group
- Are the ranks unbounded?
- $Z_{2} \times Z_{4}$ and $Z_{2} \times Z_{8}$
(3) Ranks of $y^{2}=\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)$
- Examples
- Lower Bounds
- 2-Descent

Challenge Problem

$$
E: y^{2}=x^{3}+(5-\sqrt{5}) x^{2}+\sqrt{5} x
$$

- The curve has invariant $j(E)=86048-38496 \sqrt{5}$.
- The curve has conductor $\mathfrak{f}_{E}=\mathfrak{p}_{2}^{6} \mathfrak{p}_{5}^{2}$ in terms of the prime ideals $\mathfrak{p}_{2}=2 \mathbb{Z}[\varphi]$ and $\mathfrak{p}_{5}=\sqrt{5} \mathbb{Z}[\varphi]$, where $\varphi=\frac{1+\sqrt{5}}{2}$.
- This curve is 2 -isogeneous to (a quadratic twist of) its Galois conjugate.

Theorem (G-, 1999)

The elliptic curve E is modular. More precisely, there is a modular form $f(q) \in S_{2}\left(\Gamma_{0}(160), \epsilon\right)$ and a Dirichlet character $\chi: \mathbb{Z}[\varphi] \rightarrow \mathbb{C}$ such that $\chi^{2}=\epsilon \circ \mathbb{N}_{\mathbb{Q}(\sqrt{5}) / \mathbb{Q}}$ and $a_{\mathfrak{p}}(f)=\chi(\mathfrak{p}) a_{\mathfrak{p}}(E)$ for almost all primes \mathfrak{p}.

Challenge

Compute the Mordell-Weil group $E(\mathbb{Q}(\sqrt{5}))$ before the end of this talk!

My Favorite Elliptic Curve:

$$
y^{2}=\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)
$$

Theorem (Galileo Galilei, 1602; Christiaan Huygens, 1673)

Say we have a mass m attached to a rigid rod of length ℓ that is allowed to swing back and forth at one end. The period of the oscillation, given an initial angle θ_{0}, is

$$
\text { Period }=4 \sqrt{\frac{\ell}{g}} \cdot K\left(\sin \frac{\theta_{0}}{2}\right)=2 \pi \sqrt{\frac{\ell}{g}}\left[1+\frac{1}{4} \sin ^{2} \frac{\theta_{0}}{2}+\cdots\right]
$$

in terms of the complete elliptic integral of the first kind:

$$
K(k)=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}=\frac{\pi}{2} \sum_{n=0}^{\infty}\left[\frac{(2 n-1)!!}{(2 n)!!}\right]^{2} k^{2 n} .
$$

																		Pr																		
																		2.4																		
																		\%																		
																	${ }^{3}$																			
																												$>$								
																		0.										\bigcirc								
																					,								,							
																													\checkmark							
${ }_{-48}$	8		1			-3/2	2		-24	4	-	$-1{ }^{16}$	6	-	-98			f	V		03			11.			24			32						$\xrightarrow[48]{ }$
																									x											
																													/							
																		${ }^{0}$																		
																		4																		
																		F.																		
-																																				

Theorem (Jakob Bernoulli, 1694)

The circumference of the lemniscus $\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right)$ is

$$
\text { Arc Length }=4 a \cdot K(\sqrt{-1})=2 \pi a \sum_{n=0}^{\infty}(-1)^{n}\left[\frac{(2 n-1)!!}{(2 n)!!}\right]^{2} \text {. }
$$

Theorem (Giulio Fagnano, 1718)

Define $w=w(z)$ implicitly via $z=\int_{0}^{w} \frac{d t}{\sqrt{1-t^{4}}}$. Then

$$
w(2 z)=\frac{2 w(z) w^{\prime}(z)}{1+w(z)^{4}} \quad \text { where } \quad w^{\prime}(z)=\sqrt{1-w(z)^{4}}
$$

Theorem (Leonhard Euler, 1751)

Fix a modulus k satisfying $|k|<1$, and define $w=w(z)$ implicitly via the incomplete elliptic integral $z=\int_{0}^{w} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}$. Then

$$
w(z \pm \xi)=\frac{w(z) w^{\prime}(\xi) \pm w^{\prime}(z) w(\xi)}{1-k^{2} w(z)^{2} w(\xi)^{2}}
$$

where $w^{\prime}(z)=\sqrt{\left[1-w(z)^{2}\right]\left[1-k^{2} w(z)^{2}\right]}$.
Remark: $w(z)=\operatorname{sn}(z)$ is a Jacobi elliptic function.

Theorem

- The Jacobi elliptic function sn: $\mathbb{C} / \Lambda \rightarrow \mathbb{C}$ is well-defined modulo the period lattice $\Lambda=\left\{m \omega_{1}+n \omega_{2} \mid m, n \in \mathbb{Z}\right\}$ in terms of the integrals

$$
\begin{aligned}
& \omega_{1}=2 \int_{-1 / k}^{1 / k} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}=\frac{4}{k} \cdot K\left(\frac{1}{k}\right) \\
& \omega_{2}=2 \int_{-1}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}=4 \cdot K(k)
\end{aligned}
$$

- The map $\mathbb{C} / \Lambda \rightarrow \mathbb{C}^{2}$ which sends $z \mapsto\left(\operatorname{sn}(z), \operatorname{sn}^{\prime}(z)\right)$ parametrizes all points (x, y) on the quartic curve $y^{2}=\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)$. Moreover, $0 \mapsto(0,1)$.
- Say that $P=\left(\operatorname{sn}(z), \operatorname{sn}^{\prime}(z)\right)$ and $Q=\left(\operatorname{sn}(\xi), \operatorname{sn}^{\prime}(\xi)\right)$ are on the quartic curve. Then $P \oplus Q=\left(\operatorname{sn}(z+\xi), \operatorname{sn}^{\prime}(z+\xi)\right)$ has coordinate

$$
x(P \oplus Q)=\frac{x(P) y(Q) \pm y(P) x(Q)}{1-k^{2} x(P)^{2} x(Q)^{2}} .
$$

Proposition

$y^{2}=\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)$ is a quadric intersection in \mathbb{P}^{3} and has a Weierstrass model in \mathbb{P}^{2}. It is nonsingular if and only if $k \neq-1,0,1$.

$$
\begin{aligned}
& y^{2}=\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right) \\
& x_{2}^{2}=\left(x_{3}-x_{0}\right)\left(k^{2} x_{3}-x_{0}\right) \\
& x_{1}^{2}=x_{3} x_{0}
\end{aligned}
$$

$$
(x, y)=\left(\frac{x_{1}}{x_{0}}, \frac{x_{2}}{x_{0}}\right)
$$

$$
\left(x_{1}: x_{2}: x_{3}: x_{0}\right)
$$

$$
\begin{aligned}
Y^{2} Z & =X^{3}+A X Z^{2}+B Z^{3} \\
A & =-27\left(k^{4}+14 k^{2}+1\right) \\
B & =-54\left(k^{6}-33 k^{4}-33 k^{2}+1\right)
\end{aligned}
$$

$$
\frac{X}{Z}=\frac{3\left(5 k^{2}-1\right) x+3\left(k^{2}-5\right)}{x-1}
$$

$$
\frac{Y}{Z}=\frac{54\left(1-k^{2}\right) y}{(x-1)^{2}}
$$

Elliptic Curves

More generally, we consider cubic curves

$$
E: \quad Y^{2}=X^{3}+A X+B
$$

where the rational numbers A and B satisfy $4 A^{3}+27 B^{2} \neq 0$.

Given a field K such as either $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, or even $\mathbb{Q}(\sqrt{5})$, denote

$$
E(K)=\left\{(X: Y: Z) \in \mathbb{P}^{2}(K) \mid Y^{2} Z=X^{3}+A X Z^{2}+B Z^{3}\right\}
$$

Remark: $\mathcal{O}=(0: 1: 0)$ comes from $(x, y)=(1,0)-\operatorname{not}(x, y)=(0,1)$!

Mordell-Weil Group

Conjecture (Henri Poincaré, 1901)

Let E be an elliptic curve over \mathbb{Q}. Then $E(\mathbb{Q})$ is a finitely generated abelian group.

Theorem (Louis Mordell, 1922; André Weil, 1928)

Let E be an elliptic curve over a number field K. There exists a group $E(K)_{\text {tors }}$ and a nonnegative integer r such that $E(K) \simeq E(K)_{\text {tors }} \times \mathbb{Z}^{r}$.

Theorem (Barry Mazur, 1977)

The torsion subgroup of an elliptic curve E over \mathbb{Q} is one of fifteen types:

$$
E(\mathbb{Q})_{\mathrm{tors}} \simeq \begin{cases}Z_{N} & \text { for } 1 \leq N \leq 10 \text { or } N=12 \\ Z_{2} \times Z_{2 N} & \text { for } 1 \leq N \leq 4\end{cases}
$$

Question: What can one say about the Mordell-Weil rank $r=r(E)$?

Rank Conjecture

Conjecture

Let T be one of the fifteen torsion groups in Mazur's Theorem. For any given nonnegative integer r_{0}, there exists an elliptic curve E over \mathbb{Q} with torsion subgroup $E(\mathbb{Q})_{\text {tors }} \simeq T$ and Mordell-Weil rank $r(E) \geq r_{0}$.

Project

Given T and r_{0}, find an elliptic curve E over with torsion subgroup $E(\mathbb{Q})_{\text {tors }} \simeq T$ and Mordell-Weil rank $r(E) \geq r_{0}$.

For each torsion group T, define the quantity

$$
B(T)=\sup \left\{r \in \mathbb{Z} \mid \text { there exists a curve } E \text { with } E(\mathbb{Q}) \simeq T \times \mathbb{Z}^{r}\right\} .
$$

Question: Is $B(T)$ unbounded?

Competing Points of View

Conjecture (Taira Honda, 1960)

If E is an elliptic curve defined over \mathbb{Q}, and K is a number field, then the ratio of the Mordell-Weil rank of $E(K)$ to the degree $[K: \mathbb{Q}]$ should be uniformly bounded by a constant depending only on E.

Remark: If true, this would imply that there are infinite families of elliptic curves over the rational numbers which have a uniformly bounded rank.

Theorem (Igor Shafarevich and John Tate, 1967)

The ranks are not uniformly bounded for elliptic curves defined over function fields $\mathbb{F}_{q}(t)$.

$E(\mathbb{Q})_{\text {tors }}$	Highest Known Rank r	Found By	Year Discovered
Trivial	28	Elkies	2006
Z_{2}	19	Elkies	2009
z_{3}	13	Eroshkin	2007, 2008, 2009
Z_{4}	12	Elkies	2006
Z_{5}	8	$\begin{gathered} \hline \text { Dujella, Lecacheux } \\ \text { Eroshkin } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2009 \\ & 2009 \\ & \hline \end{aligned}$
Z_{6}	8	Eroshkin Dujella, Eroshkin Elkies Dujella	$\begin{aligned} & \hline 2008 \\ & 2008 \\ & 2008 \\ & 2008 \\ & \hline \end{aligned}$
Z_{7}	5	Dujella, Kulesz Elkies Eroshkin Dujella, Lecacheux Dujella, Eroshkin	$\begin{aligned} & 2001 \\ & 2006 \\ & 2009 \\ & 2009 \\ & 2009 \\ & \hline \end{aligned}$
Z_{8}	6	Elkies	2006
Z_{9}	4	Fisher	2009
Z_{10}	4	Dujella Elkies	$\begin{gathered} \hline 2005,2008 \\ 2006 \\ \hline \end{gathered}$
z_{12}	4	Fisher	2008
$z_{2} \times z_{2}$	15	Elkies	2009
$z_{2} \times z_{4}$	8	Elkies Eroshkin Dujella, Eroshkin	$\begin{aligned} & 2005 \\ & 2008 \\ & 2008 \\ & \hline \end{aligned}$
$z_{2} \times z_{6}$	6	Elkies	2006
$z_{2} \times z_{8}$	3	Connell Dujella Campbell, Goins Rathbun Flores, Jones, Rollick, Weigandt, Rathbun Fisher	$\begin{gathered} \hline 2000 \\ 2000,2001,2006,2008 \\ 2003 \\ 2003,2006 \\ 2007 \\ 2009 \\ \hline \end{gathered}$

http://web.math.hr/~duje/tors/tors.html

Classification

Theorem

Fix a rational $k \neq-1,0,1$ for the curve $E_{k}: y^{2}=\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)$.

- $E_{k}(\mathbb{Q})_{\text {tors }} \simeq\left\{\begin{array}{ll}Z_{2} \times Z_{8} & \text { if } k=\frac{t^{4}-6 t^{2}+1}{\left(t^{2}+1\right)^{2}} \\ Z_{2} \times Z_{4} & \text { otherwise. }\end{array}\right.$ for some rational t,
- Conversely, if E is an elliptic curve over K with torsion subgroup $E(\mathbb{Q})_{\text {tors }} \simeq Z_{2} \times Z_{4}$ or $Z_{2} \times Z_{8}$, then $E \simeq E_{k}$ for some $k \in K$.
- The modular curve $X_{0}(24): Y^{2}=X^{3}+5 X^{2}+4 X$ has Mordell-Weil group $X_{0}(24)(\mathbb{Q}) \simeq Z_{2} \times Z_{4}$, and so corresponds to $k=1 / 3$.
- The modular curve $X_{1}(15): Y^{2}+X Y+Y=X^{3}+X^{2}-10 X-10$ has $X_{1}(15)(\mathbb{Q}) \simeq Z_{2} \times Z_{4}$, and so corresponds to $k=1 / 9$. Moreover, $X_{1}(15)(\mathbb{Q}(\sqrt{5})) \simeq Z_{2} \times Z_{8}$, and so $t=(3-\sqrt{5}) / 2$.

$$
\begin{aligned}
& X(2,8)=\frac{\mathcal{H}^{*}}{\Gamma(2) \cap \Gamma_{1}(8)} \xrightarrow{2} X_{1}(8)=\frac{\mathcal{H}^{*}}{\Gamma_{1}(8)} \xrightarrow{2} \quad X_{0}(8)=\frac{\mathcal{H}^{*}}{\Gamma_{0}(8)} \\
& \downarrow 4 \\
& \begin{array}{ccc}
X(2,4)= & \frac{\mathcal{H}^{*}}{\Gamma(2) \cap \Gamma_{1}(4)} \xrightarrow{2} & X_{1}(4)=\frac{\mathcal{H}^{*}}{\Gamma_{1}(4)} \xrightarrow{1} \\
\downarrow_{2} & \downarrow_{0}(4)=\frac{\mathcal{H}^{*}}{\Gamma_{0}(4)}
\end{array} \\
& \\
& X(1)=\frac{\mathcal{H}^{*}}{S L_{2}(\mathbb{Z})} \quad \stackrel{1}{\longrightarrow} X_{1}(1)=\frac{\mathcal{H}^{*}}{S L_{2}(\mathbb{Z})} \xrightarrow{1} X_{0}(1)=\frac{\mathcal{H}^{*}}{S L_{2}(\mathbb{Z})}
\end{aligned}
$$

$$
\begin{aligned}
& k(q)=4\left[\frac{\eta(q)}{\eta\left(q^{2}\right)}\right]^{4}\left[\frac{\eta\left(q^{4}\right)}{\eta\left(q^{2}\right)}\right]^{8} \longrightarrow \mu_{4}(q)=\left[\frac{\eta\left(q^{2}\right)}{\eta(q)}\right]^{8}\left[\frac{\eta\left(q^{2}\right)}{\eta\left(q^{4}\right)}\right]^{16} \longrightarrow \quad \nu_{4}(q)=\left[\frac{\eta(q)}{\eta\left(q^{4}\right)}\right]^{8} \\
& =\frac{t(q)^{4}-6 t(q)^{2}+1}{\left(t(q)^{2}+1\right)^{2}} \\
& \downarrow \\
& \lambda(q)=\frac{1}{16}\left[\frac{\eta(q)^{3}}{\eta\left(q^{1 / 2}\right) \eta\left(q^{2}\right)^{2}}\right]^{8} \\
& \mu_{2}(q)=\left[\frac{\eta(q)}{\eta\left(q^{2}\right)}\right]^{24} \\
& \nu_{2}(q)=\left[\frac{\eta(q)}{\eta\left(q^{2}\right)}\right]^{24} \\
& =256 \lambda(q)(\lambda(q)-1) \\
& =\mu_{2}(q) \\
& =\frac{4 k(q)}{(k(q)+1)^{2}} \\
& \begin{array}{c}
=\frac{\left(\mu_{4}(q)-16\right)^{2}}{\mu_{4}(q)} \\
\downarrow
\end{array} \\
& \begin{array}{c}
=\frac{\nu_{4}(q)^{2}}{\nu_{4}(q)+16} \\
\downarrow
\end{array} \\
& j(q)=256 \frac{\left(\lambda(q)^{2}-\lambda(q)+1\right)^{3}}{\lambda(q)^{2}(\lambda(q)-1)^{2}} \\
& j(q)=\frac{\left(\mu_{2}(q)+256\right)^{3}}{\mu_{2}(q)^{2}} \\
& \longrightarrow j(q)=\frac{\left[1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}\right]^{3}}{q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}}
\end{aligned}
$$

http://phobos.ramapo.edu/~kmcmurdy/research/Models/index.html

Example

On the quartic curve $y^{2}=\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)$, the rational point (x, y) has order 2 if and only if $[2](x, y)=(1,0)$. There are only four:

$$
\left(\frac{1}{k}, 0\right), \quad(1,0), \quad(-1,0), \quad \text { and } \quad\left(-\frac{1}{k}, 0\right) .
$$

Example

On the quartic curve $y^{2}=\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)$, the rational point (x, y) has order 4 if and only if $[2](x, y)=(*, 0)$. There are only four:

$$
(0,1), \quad(0,-1), \quad \text { and } \quad \text { (two points at infinity). }
$$

$E(\mathbb{Q}) \simeq Z_{2} \times Z_{4} \times \mathbb{Z}_{r}^{r}$

Rank $\mathrm{r}=8$:

Author(s)	Fiber k	Year Discovered
Elkies	$556536737101 / 589636934451$	2005
Eroshkin	$14124977 / 18685325$	2008
	$9305732817 / 11123766133$	2008
Dujella, Eroshkin	$14426371 / 71784369$	2008
	$1082331841 / 1753952791$	2008

Author(s)	Fiber k	Year Discovered
Dujella	$5759699 / 11291091$	2005
	$151092883 / 281864499$	2005
	$106979869 / 131157975$	2006
	$76547009 / 172129849$	2006
	$772368397 / 787678274$	2006
	$66285529 / 1515865129$	2006
	$2524013211 / 3323768713$	2006
	$2125660499 / 3416463309$	2006
	$1119101519 / 3685417369$	2006
	$3169123561 / 3910987351$	2006
Eroshkin	$2978252 / 8060923$	2008
	$1297409 / 8215809$	2008
	$85945462 / 122383087$	2008
	$249238749 / 403292341$	2008
Dujella, Eroshkin	$152618 / 204943$	2008
	$255739 / 328279$	2008

Rank $r=6:$

Author(s)	Fiber k	Year Discovered
Ansaldi, Ford, George, Mugo, Phifer	$307100 / 384569$	2005
	$94939 / 471975$	2005

http://web.math.pmf.unizg.hr/~duje/tors/z2z4.html http://web.math.pmf.unizg.hr/~duje/tors/z2z4old67.html

$E(\mathbb{Q}) \simeq Z_{2} \times Z_{8} \times \mathbb{Z}^{3}$

Author(s)	Fiber t	Year Discovered
Connell, Dujella	$5 / 29$	2000
	$18 / 47$	2001
Dujella	$87 / 407$	2006
	$143 / 419$	2006
	$145 / 444$	2006
Dujella, Rathbun	$352 / 1017$	2008
Campbell, Goins	$230 / 923$	2006
Campbell, Goins (with Watkins)	$223 / 1012$	2006
	$15 / 76$	2003
Rathbun	$47 / 220$	2005
Flores - Jones - Rollick - Weigandt	$74 / 207$	2003
(with Rathbun)	$17 / 439$	2006
	$159 / 569$	2006
	$86 / 333$	2006
	$101 / 299$	2007
	$65 / 337$	2007
	$47 / 266$	2007
	$104 / 321$	2009
	$97 / 488$	2009
	$145 / 527$	2009
	$119 / 579$	2009
Fisher	$223 / 657$	2009
	$161 / 779$	2009
	$177 / 815$	2009
	$76 / 999$	2009
	$285 / 1109$	2009
		2009

http://web.math.pmf.unizg.hr/~duje/tors/z2z8.html

Example

In 2006, Dujella discovered the elliptic curve

$$
E: \begin{aligned}
& Y^{2}+X Y=X^{3}-15343063417941874422081256126489574987160 X \\
&+486503741336910955243717595559583892156442731284430865537600
\end{aligned}
$$

with conductor

$$
\begin{aligned}
N_{E} & =17853766311199754524060290 \\
& =2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \cdot 97 \cdot 313 \cdot 449 \cdot 47351
\end{aligned}
$$

has Mordell-Weil group $E(\mathbb{Q}) \simeq Z_{2} \times Z_{8} \times \mathbb{Z}^{3}$. Using the substitutions

$$
\begin{aligned}
& X=-\frac{6240(4083958238540477 x+37118233318627918)}{x-1} \\
& Y=\frac{1560}{(x-1)^{2}}\left(\begin{array}{l}
1960986248603425149997386795 y \\
+81679116477080954 x^{2} \\
+66068550160174882 x-74236466637255836
\end{array}\right)
\end{aligned}
$$

we see that it is birationally equivalent to the quartic curve with

$$
k=\frac{14435946721}{47594221921}=\frac{t^{4}-6 t^{2}+1}{\left(t^{2}+1\right)^{2}} \quad \text { where } \quad t=\frac{145}{444}
$$

Top \rightarrow Elliptic Curves \rightarrow Search Results

Elliptic Curves

Introduction
Features Tutorial
Map of LMFDB
Future Plans
L-functions
Degree: 11 2 3 4 Elliptic Curves Elliptic Curves/Q Fields Global Number Fields Local Number Fields Galois Groups Characters

Dirichlet Characters

Further refine search

Conductor	Rank	Torsion order	Torsion structure	Analytic order of \amalg	Optimal only
\square	\square	\square	\square	No	

Maximum number of curves to display 100
Search again

Results (displaying all 4 matches)

Isogeny class	LMFDB label	Cremona label	$\left[\mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \mathbf{a}_{\mathbf{3}}, \mathbf{a}_{\mathbf{4}}, \mathbf{a}_{6}\right]$	Rank	Torsion order
$210 . \mathrm{e}$	$210 . \mathrm{e} 6$	210 e 2	$[1,0,0,-1070,7812]$	0	16
$46410 . \mathrm{ck}$	$46410 . \mathrm{ck} 6$	46410 cn 2	$[1,0,0,-8696090,9838496100]$	0	16
$82110 . \mathrm{bs}$	$82110 . \mathrm{bs} 5$	$82110 \mathrm{bt2}$	$[1,0,0,-49423080,130545230400]$	1	16
$110670 . \mathrm{cm}$	$110670 . \mathrm{cm} 5$	110670 cp 2	$[1,0,0,-2276760100,41806588162832]$	0	16

Previous

Noxt

Can we do better than

$$
E(\mathbb{Q}) \simeq Z_{2} \times Z_{4} \times \mathbb{Z}^{8}
$$

or

$$
E(\mathbb{Q}) \simeq Z_{2} \times Z_{8} \times \mathbb{Z}^{3} ?
$$

Elliptic Surfaces

We will focus on the cases where the quartic curve
$E_{k}: y^{2}=\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)$ has torsion subgroup $E_{k}(\mathbb{Q})_{\text {tors }} \simeq Z_{2} \times Z_{8}$.
We express our results in terms of elliptic surfaces.

Consider the affine curve

$$
C=\left\{t=(a: b) \in \mathbb{P}^{1} \mid a b\left(a^{4}-b^{4}\right)\left(a^{4}-6 a^{2} b^{2}+b^{4}\right) \neq 0\right\} .
$$

Fix the rational functions $A, B: C \rightarrow \mathbb{P}^{1}$ defined by

$$
\begin{aligned}
& A(t)=-27\left(k^{4}+14 k^{2}+1\right) \\
& B(t)=-54\left(k^{6}-33 k^{4}-33 k^{2}+1\right) \quad \text { where } \quad k=\frac{t^{4}-6 t^{2}+1}{\left(t^{2}+1\right)^{2}}
\end{aligned}
$$

and consider the surface
$\mathcal{E}=\left\{[(X: Y: Z), t] \in \mathbb{P}^{2} \times C \mid Y^{2} Z=X^{3}+A(t) X Z^{2}+B(t) Z^{3}\right\}$.

Theorem (G-, 2008)

- With respect to $\mathcal{E} \rightarrow C$ which sends $[(X: Y: Z), t] \mapsto t$, the variety \mathcal{E} is an elliptic surface. Each of the fibers E_{t} is semistable.
- We have two sections

$$
\begin{aligned}
& P: t \mapsto\left[\left(12 \frac{t^{8}-4 t^{6}-26 t^{4}-4 t^{2}+1}{\left(t^{2}+1\right)^{4}}: 0: 1\right), t\right] \\
& Q: t \mapsto\left[\left(12 \frac{t^{8}-4 t^{6}-12 t^{5}-2 t^{4}+20 t^{2}+12 t+1}{\left(t^{2}+1\right)^{4}}: 864 \frac{t^{7}-5 t^{5}-4 t^{4}+3 t^{3}+4 t^{2}+t}{\left(t^{2}+1\right)^{5}}: 1\right), t\right]
\end{aligned}
$$

- All elliptic curves E over a number field K with torsion subgroup $\langle P(t), Q(t)\rangle \simeq Z_{2} \times Z_{8}$ arise from such a fiber, i.e., are birationally equivalent to E_{t} for some $t \in C(K)$.
- The automorphisms $\sigma:(a: b) \mapsto(a-b: a+b)$ and $\tau:(a: b) \mapsto(-a: b)$ act on C, yet leave A and B invariant. Moreover, $D_{8}=\langle\sigma, \tau\rangle \hookrightarrow \operatorname{Aut}(C)$ is the dihedral group.

Proposition (A. O. L. Atkin and François Morain, 1993)

- The elliptic curve $C_{1}: v^{2}=u^{3}-8 u-32$ has Mordell-Weil group $C_{1}(\mathbb{Q}) \simeq Z_{2} \times \mathbb{Z}$ as generated by $(u: v: 1)=(12: 40: 1)$.
- One can construct infinitely many fibers E_{t} having positive rank via the map $C_{1} \rightarrow C$ defined by $(u: v: 1) \mapsto 2(u-9) /(3 u+v-2)$.

Theorem (Garikai Campbell and G-, 2003)

- The elliptic curve $C_{2}: v^{2}=u^{3}-u^{2}-9 u+9$ has Mordell-Weil group $C_{2}(\mathbb{Q}) \simeq Z_{2} \times Z_{2} \times \mathbb{Z}$ as generated by $(u: v: 1)=(5: 8: 1)$.
- One can construct infinitely many fibers E_{t} having positive rank via the map $C_{2} \rightarrow C$ defined by $(u: v: 1) \mapsto t=(u+v-3) /(2 u)$. Indeed, upon setting $w=3\left(u^{2}-2 u+4 v+9\right) /\left(u^{2}-18 u+9\right)$, we have a section

$$
\left.R: \quad(u: v: 1) \mapsto\left[\begin{array}{c}
\left(\frac{3\left(w^{2}-2 w-3\right)^{4}+12\left(w^{2}-w-3\right)\left(w^{2}+2 w-3\right)^{3}}{\left(w^{4}-2 w^{2}+9\right)^{2}}\right. \\
: \frac{54\left(w^{4}-9\right)\left(w^{2}-2 w-3\right)\left(w^{2}+2 w-3\right)^{3}}{\left(w^{4}-2 w^{2}+9\right)^{3}}: 1
\end{array}\right), \frac{u+v-3}{2 u}\right]
$$

Infinite Families

There are infinitely many choices of rational t such that

$$
E_{t}: y^{2}=\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right) \quad \text { where } \quad k=\frac{t^{4}-6 t^{2}+1}{\left(t^{2}+1\right)^{2}}
$$

has torsion subgroup $E_{t}(\mathbb{Q}) \simeq Z_{2} \times Z_{8}$ and rank $r \geq 1$. These choices of t correspond to rational points on elliptic curves.

Open Questions

- Are there other elliptic curves besides C_{1} and C_{2} which work?
- Is there a curve of genus 0 which gives E_{t} having rank $r \geq 1$?
- Are there infinitely many rational t which give E_{t} having rank $r \geq 2$?

Finding Curves of High Rank

Approach \#1

Fix a square-free integer D, and consider the quadratic twist

$$
E^{(D)}: \quad Y^{2}=X^{3}+D^{2} A X+D^{3} B
$$

This is very efficient (i.e., no redundant curves), but $E^{(D)}(\mathbb{Q})_{\text {tors }}$ changes with each D.

Approach \#2

Fix polynomials $A=A(t)$ and $B=B(t)$ such that $\Delta(t)=-16\left(4 A^{3}+27 B^{2}\right) \neq 0$, and consider the elliptic surface

$$
E_{t}: \quad Y^{2}=X^{3}+A(t) X+B(t)
$$

This is not very efficient (i.e., different t 's may give the same curves), polynomials can be chosen to fix $E_{t}(\mathbb{Q})_{\text {tors }}$ for all t.

Algorithm

\#1. Classify those elliptic curves E over \mathbb{Q} with torsion subgroup $E(\mathbb{Q})_{\text {tors }} \simeq Z_{2} \times Z_{8}$. Express these curves as an elliptic surface E_{t}.
\#2. Find a criterion on t such that any $t \in \mathbb{Q}$ may be associated to an element from a fundamental region $\alpha<t<\beta$.
\#3. Create a list of candidate elliptic curves E_{t} for this fundamental region.
\#4. Compute the 2-Selmer ranks to find upper bounds on the Mordell-Weil ranks.
\#5. Compute the Mordell-Weil ranks.

$E(\mathbb{Q}) \simeq Z_{2} \times Z_{8} \times \mathbb{Z}^{3}$

Author(s)	Fiber t	Year Discovered
Connell, Dujella	5/29	2000
Dujella	$\begin{gathered} \hline 18 / 47 \\ 87 / 407 \\ 143 / 419 \\ 145 / 444 \\ 352 / 1017 \\ \hline \end{gathered}$	$\begin{aligned} & 2001 \\ & 2006 \\ & 2006 \\ & 2006 \\ & 2008 \\ & \hline \end{aligned}$
Dujella, Rathbun	$\begin{gathered} \hline 230 / 923 \\ 223 / 1012 \\ \hline \end{gathered}$	$\begin{aligned} & 2006 \\ & 2006 \end{aligned}$
Campbell, Goins	15/76	2003
Campbell, Goins (with Watkins)	19/220	2005
Rathbun	$\begin{aligned} & \hline 47 / 219 \\ & 74 / 207 \\ & 17 / 439 \\ & 159 / 569 \\ & \hline \end{aligned}$	$\begin{aligned} & 2003 \\ & 2006 \\ & 2006 \\ & 2006 \end{aligned}$
Flores - Jones - Rollick - Weigandt (with Rathbun)	$\begin{gathered} \hline 86 / 333 \\ 101 / 299 \\ 65 / 337 \\ \hline \end{gathered}$	$\begin{aligned} & 2007 \\ & 2007 \\ & 2007 \end{aligned}$
Fisher	$47 / 266$ $104 / 321$ $97 / 488$ $145 / 527$ $119 / 579$ $223 / 657$ $161 / 779$ $177 / 815$ $76 / 999$ $285 / 1109$	$\begin{aligned} & 2009 \\ & 2009 \\ & 2009 \\ & 2009 \\ & 2009 \\ & 2009 \\ & 2009 \\ & 2009 \\ & 2009 \\ & 2009 \end{aligned}$

http://web.math.pmf.unizg.hr/~duje/tors/z2z8.html

Fundamental Region

Theorem (G-, 2006)

Fix a rational number $t \neq-1,0,1$ and consider

$$
E_{t}: \quad y^{2}=\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right) \quad \text { where } \quad k=\frac{t^{4}-6 t^{2}+1}{\left(t^{2}+1\right)^{2}} .
$$

- $D_{8}=\left\langle\sigma, \tau \mid \sigma^{4}=\tau^{2}=1, \tau \sigma \tau=\sigma^{-1}\right\rangle$ in terms of

$$
\sigma: t \mapsto \frac{t-1}{t+1} \quad \text { and } \quad \tau: t \mapsto-t .
$$

- We may assume that t satisfies $0<t<\sqrt{2}-1$.

Remark: Given a bound N, choose coprime integers a and b satisfying

$$
0<(1+\sqrt{2}) a<b<N \quad \text { and set } \quad t=\frac{a}{b} .
$$

Isogeny Graph

Isogeny Graph

Curve	Weierstrass Model $Y^{2}=X^{3}+A X+B$	Torsion
E_{t}	$\begin{aligned} & A=-27\left(k^{4}+14 k^{2}+1\right) \\ & B=-54\left(k^{6}-33 k^{4}-33 k^{2}+1\right) \end{aligned}$	$z_{2} \times z_{8}$
E_{t}^{\prime}	$\begin{aligned} & A=-27\left(k^{4}-k^{2}+1\right) \\ & B=-27\left(2 k^{6}-3 k^{4}-3 k^{2}+2\right) \end{aligned}$	$z_{2} \times z_{4}$
C_{t}^{\prime}	$\begin{aligned} & A=-27\left(k^{4}-60 k^{3}+134 k^{2}-60 k+1\right) \\ & B=-54\left(k^{6}+126 k^{5}-1041 k^{4}+1764 k^{3}-1041 k^{2}+126 k+1\right) \end{aligned}$	z_{8}
D_{t}^{\prime}	$\begin{aligned} & A=-27\left(k^{4}+60 k^{3}+134 k^{2}+60 k+1\right) \\ & B=-54\left(k^{6}-126 k^{5}-1041 k^{4}-1764 k^{3}-1041 k^{2}-126 k+1\right) \end{aligned}$	Z_{8}
$E_{t}^{\prime \prime}$	$\begin{aligned} & A=-27\left(k^{4}-16 k^{2}+16\right) \\ & B=-54\left(k^{6}+30 k^{4}-96 k^{2}+64\right) \end{aligned}$	$z_{2} \times z_{2}$
$C_{t}^{\prime \prime}$	$\begin{aligned} & A=-27\left(16 k^{4}-16 k^{2}+1\right) \\ & B=-54\left(64 k^{6}-96 k^{4}+30 k^{2}+1\right) \end{aligned}$	Z_{4}
$c_{t}^{\prime \prime \prime}$	$\begin{aligned} y^{2}=x^{3} & -2\left(1+24 t+20 t^{2}+24 t^{3}-26 t^{4}-24 t^{5}+20 t^{6}-24 t^{7}+t^{8}\right) x^{2} \\ & +\left(1-2 t-t^{2}\right)^{8} x \end{aligned}$	z_{2}
$D_{t}^{\prime \prime \prime}$	$\begin{aligned} y^{2}=x^{3} & -2\left(1-24 t+20 t^{2}-24 t^{3}-26 t^{4}+24 t^{5}+20 t^{6}+24 t^{7}+t^{8}\right) x^{2} \\ & +\left(1+2 t-t^{2}\right)^{8} x \end{aligned}$	z_{8}

Define the curves and homogeneous spaces

$$
\begin{array}{ll}
E_{t}: y^{2}=\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right) & \mathcal{C}_{d}: d w^{2}=\left(1-d z^{2}\right)\left(1-d k^{2} z^{2}\right) \\
E_{t}^{\prime}: y^{2}=\left(1-x^{2}\right)\left(1-\kappa^{\prime 2} x^{2}\right) & \mathcal{C}_{d}^{\prime}: d w^{2}=\left(1+d z^{2}\right)\left(1+d \kappa^{2} z^{2}\right) \\
E_{t}^{\prime \prime}: y^{2}=\left(1+x^{2}\right)\left(1+k^{\prime 2} x^{2}\right) & \mathcal{C}_{d}^{\prime \prime}: d w^{2}=\left(1+d z^{2}\right)\left(1+d k^{\prime 2} z^{2}\right)
\end{array}
$$

where

$$
\kappa=\frac{1-k}{1+k}, \quad \kappa^{\prime}=\frac{1-k^{\prime}}{1+k^{\prime}}, \quad \text { and } \quad k^{2}+k^{\prime 2}=1 .
$$

Descent via 4-Isogeny

Theorem (G-, 2006)

- There are 2-isogenies $\phi: E_{t} \rightarrow E_{t}^{\prime}$ and $\phi^{\prime}: E_{t}^{\prime} \rightarrow E_{t}^{\prime \prime}$.
- If $E \simeq E_{t}$ and $E^{\prime} \simeq E_{t}^{\prime}$, then $\left|\frac{E(\mathbb{Q})}{2 E(\mathbb{Q})}\right|=\left|\frac{E^{\prime}(\mathbb{Q})}{\phi(E(\mathbb{Q}))}\right|\left|\frac{E(\mathbb{Q})}{\hat{\phi}\left(E^{\prime}(\mathbb{Q})\right)}\right|$.
- Write $k=p / q$ for relatively prime integers p and q. The image of δ_{ϕ} (of $\delta_{\hat{\phi}}$, respectively) is the set of those square-free divisors d of $p q$ (of $p^{2}-q^{2}$, respectively) such that $\mathcal{C}_{d}\left(\mathcal{C}_{d}^{\prime}\right.$, respectively) has a \mathbb{Q}-rational point.
- $\left(\delta_{\hat{\phi}} \circ \psi\right)(z, w) \equiv\left(\delta_{\phi} \circ \psi^{\prime}\right)(z, w) \equiv d \bmod \left(\mathbb{Q}^{\times}\right)^{2}$ for the maps

$$
\begin{array}{cl}
\psi: \mathcal{C}_{d}^{\prime} \rightarrow E_{t} & (z, w) \mapsto\left(\frac{1-d \kappa z^{2}}{1+d \kappa z^{2}}, \frac{4 d \kappa z w}{(1+\kappa)\left(1+d \kappa z^{2}\right)^{2}}\right) \\
\psi^{\prime}: \mathcal{C}_{d}^{\prime \prime} \rightarrow E_{t}^{\prime} & (z, w) \mapsto\left(\frac{1-d k^{\prime} z^{2}}{1+d k^{\prime} z^{2}}, \frac{4 d k^{\prime} z w}{\left(1+k^{\prime}\right)\left(1+d k^{\prime} z^{2}\right)^{2}}\right)
\end{array}
$$

Example

Proposition (Samuel Ivy, Brett Jefferson, Michele Josey, Cheryl Outing, Clifford Taylor, and Staci White, 2008)

When $t=9 / 296$ we have

$$
\langle-1,6477590,2,7\rangle \subseteq \delta_{\hat{\phi}} \subseteq\langle-1,6477590,2,7,37\rangle
$$

Hence E_{t} has Mordell-Weil group $E_{t}(\mathbb{Q}) \simeq Z_{2} \times Z_{8} \times \mathbb{Z}^{3}$ if and only if at least one of the following homogeneous spaces corresponding to $d=37$ contains a rational point (z, w) :

$$
\begin{aligned}
\mathcal{C}_{37}^{\prime}: w^{2} & =2172344348297474273125 z^{4} \\
& +58712815268370607681 z^{2}+21779862847488 \\
\mathcal{C}_{37}^{\prime \prime}: w^{2} & =2188470374735494973797 z^{4} \\
& +60017913360731350081 z^{2}+23515280943436800 .
\end{aligned}
$$

Challenge Problem Revisited

$$
E: y^{2}=x^{3}+(5-\sqrt{5}) x^{2}+\sqrt{5} x
$$

- The curve has invariant $j(E)=86048-38496 \sqrt{5}$.
- The curve has conductor $\mathfrak{f}_{E}=\mathfrak{p}_{2}^{6} \mathfrak{p}_{5}^{2}$ in terms of the prime ideals $\mathfrak{p}_{2}=2 \mathbb{Z}[\varphi]$ and $\mathfrak{p}_{5}=\sqrt{5} \mathbb{Z}[\varphi]$, where $\varphi=\frac{1+\sqrt{5}}{2}$.
- This curve is 2 -isogeneous to (a quadratic twist of) its Galois conjugate.

Theorem (G-, 1999)

The elliptic curve E is modular. More precisely, there is a modular form $f(q) \in S_{2}\left(\Gamma_{0}(160), \epsilon\right)$ and a Dirichlet character $\chi: \mathbb{Z}[\varphi] \rightarrow \mathbb{C}$ such that $\chi^{2}=\epsilon \circ \mathbb{N}_{\mathbb{Q}(\sqrt{5}) / \mathbb{Q}}$ and $a_{\mathfrak{p}}(f)=\chi(\mathfrak{p}) a_{\mathfrak{p}}(E)$ for almost all primes \mathfrak{p}.

Question

Did you compute the Mordell-Weil group $E(\mathbb{Q}(\sqrt{5}))$?

Questions?

