Does There Exist an Elliptic Curve E/\mathbb{Q} with Mordell-Weil Group $Z_2 \times Z_8 \times \mathbb{Z}^4$?

Edray Herber Goins

Department of Mathematics, Purdue University

Atkin Memorial Lecture and Workshop: Elliptic Curves over $\mathbb{Q}(\sqrt{5})$

April 29, 2012

 $\begin{array}{c} \text{Motivation}\\ \text{Elliptic Curves}\\ \text{Ranks of }y^2 = (1-x^2)\,(1-k^2\,x^2) \end{array}$

Abstract

An elliptic curve E defined over the rational numbers \mathbb{Q} is an arithmetic-algebraic object: It is simultaneously a nonsingular projective curve with an affine equation $Y^2 = X^3 + AX + B$, which allows one to perform arithmetic on its points; and a finitely generated abelian group $E(\mathbb{Q}) \simeq E(\mathbb{Q})_{\text{tors}} \times \mathbb{Z}^r$, which allows one to apply results from abstract algebra. The abstract nature of its rank r can be made explicit by searching for rational points (X, Y).

The largest possible subgroup of an elliptic curve E is $E(\mathbb{Q})_{tors} \simeq Z_2 \times Z_8$, and, curiously, these curves seem to have the least known information about the rank r. To date, there are twenty-seven known examples of elliptic curves over \mathbb{Q} having Mordell-Weil group $E(\mathbb{Q}) \simeq Z_2 \times Z_8 \times \mathbb{Z}^3$, yet no larger rank has been found.

In this talk, we give some history on the problem of determining properties of r and analyze various approaches to finding curves of large rank.

 $\begin{array}{c} {\rm Motivation}\\ {\rm Elliptic\ Curves}\\ {\rm Ranks\ of\ }y^2\,=\,(1\,-\,x^2)\,(1\,-\,k^2\,x^2) \end{array}$

Outline of Talk

Motivation

- Challenge Problem
- Elliptic Integrals
- Addition Formulas

2 Elliptic Curves

- Mordell-Weil Group
- Are the ranks unbounded?
- $Z_2 \times Z_4$ and $Z_2 \times Z_8$

3 Ranks of $y^2 = (1 - x^2)(1 - k^2 x^2)$

- Examples
- Lower Bounds
- 2-Descent

 $\begin{array}{l} \mbox{Motivation}\\ \mbox{Elliptic Curves}\\ \mbox{Ranks of }y^2 = (1-x^2)\left(1-k^2x^2\right) \end{array}$

Challenge Problem Elliptic Integrals Addition Formulas Modern Language

Challenge Problem

$$E: y^2 = x^3 + (5 - \sqrt{5}) x^2 + \sqrt{5} x$$

- The curve has invariant $j(E) = 86048 38496\sqrt{5}$.
- The curve has conductor $\mathfrak{f}_E = \mathfrak{p}_2^6 \mathfrak{p}_5^2$ in terms of the prime ideals $\mathfrak{p}_2 = 2 \mathbb{Z}[\varphi]$ and $\mathfrak{p}_5 = \sqrt{5} \mathbb{Z}[\varphi]$, where $\varphi = \frac{1+\sqrt{5}}{2}$.
- This curve is 2-isogeneous to (a quadratic twist of) its Galois conjugate.

Theorem (G-, 1999)

The elliptic curve *E* is modular. More precisely, there is a modular form $f(q) \in S_2(\Gamma_0(160), \epsilon)$ and a Dirichlet character $\chi : \mathbb{Z}[\varphi] \to \mathbb{C}$ such that $\chi^2 = \epsilon \circ \mathbb{N}_{\mathbb{Q}(\sqrt{5})/\mathbb{Q}}$ and $a_{\mathfrak{p}}(f) = \chi(\mathfrak{p}) a_{\mathfrak{p}}(E)$ for almost all primes \mathfrak{p} .

Challenge

Compute the Mordell-Weil group $E(\mathbb{Q}(\sqrt{5}))$ before the end of this talk!

 $\begin{array}{c} {\rm Motivation}\\ {\rm Elliptic \ Curves}\\ {\rm Ranks \ of \ y^2 = (1-x^2)\,(1-k^2\,x^2)} \end{array}$

Challenge Problem Elliptic Integrals Addition Formulas Modern Language

My Favorite Elliptic Curve:

$y^2 = \left(1 - x^2\right) \left(1 - k^2 x^2\right)$

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Elliptic Curves}\\ \mbox{Ranks of }y^2 = (1-x^2)\left(1-k^2\,x^2\right) \end{array}$

Challenge Problem Elliptic Integrals Addition Formulas Modern Language

Theorem (Galileo Galilei, 1602; Christiaan Huygens, 1673)

Say we have a mass *m* attached to a rigid rod of length ℓ that is allowed to swing back and forth at one end. The period of the oscillation, given an initial angle θ_0 , is

$$\mathsf{Period} = 4\sqrt{\frac{\ell}{g}} \cdot \mathcal{K}\left(\sin\frac{\theta_0}{2}\right) = 2\pi\sqrt{\frac{\ell}{g}}\left[1 + \frac{1}{4}\sin^2\frac{\theta_0}{2} + \cdots\right]$$

in terms of the complete elliptic integral of the first kind:

$$K(k) = \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}} = \frac{\pi}{2} \sum_{n=0}^\infty \left[\frac{(2n-1)!!}{(2n)!!} \right]^2 k^{2n}.$$

Challenge Problem Elliptic Integrals Addition Formulas Modern Language

Theorem (Jakob Bernoulli, 1694)

The circumference of the **lemniscus** $(x^2 + y^2)^2 = a^2 (x^2 - y^2)$ is

Arc Length =
$$4 a \cdot K(\sqrt{-1}) = 2\pi a \sum_{n=0}^{\infty} (-1)^n \left[\frac{(2n-1)!!}{(2n)!!} \right]^2$$

 $\begin{array}{c} \text{Motivation}\\ \text{Elliptic Curves}\\ \text{Ranks of } y^2 = (1-x^2)\left(1-k^2\,x^2\right) \end{array}$

Challenge Problem Elliptic Integrals Addition Formulas Modern Language

Theorem (Giulio Fagnano, 1718)

Define
$$w = w(z)$$
 implicitly via $z = \int_0^w \frac{dt}{\sqrt{1-t^4}}$. Then

$$w(2z) = {2 w(z) w'(z) \over 1 + w(z)^4}$$
 where $w'(z) = \sqrt{1 - w(z)^4}$.

Theorem (Leonhard Euler, 1751)

Fix a modulus k satisfying |k| < 1, and define w = w(z) implicitly via the **incomplete elliptic integral** $z = \int_0^w \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}$. Then

$$w(z \pm \xi) = \frac{w(z) w'(\xi) \pm w'(z) w(\xi)}{1 - k^2 w(z)^2 w(\xi)^2}$$

where $w'(z) = \sqrt{[1 - w(z)^2][1 - k^2 w(z)^2]}$.

Remark: w(z) = sn(z) is a **Jacobi elliptic function**.

 $\begin{array}{c} {\rm Motivation}\\ {\rm Elliptic\ Curves}\\ {\rm Ranks\ of\ }y^2 = (1-x^2)\,(1-k^2\,x^2) \end{array}$

Challenge Problem Elliptic Integrals Addition Formulas Modern Language

Theorem

• The Jacobi elliptic function sn : $\mathbb{C}/\Lambda \to \mathbb{C}$ is well-defined modulo the period lattice $\Lambda = \{m \omega_1 + n \omega_2 \mid m, n \in \mathbb{Z}\}$ in terms of the integrals

$$\omega_{1} = 2 \int_{-1/k}^{1/k} \frac{dt}{\sqrt{(1-t^{2})(1-k^{2}t^{2})}} = \frac{4}{k} \cdot \mathcal{K}\left(\frac{1}{k}\right)$$
$$\omega_{2} = 2 \int_{-1}^{1} \frac{dt}{\sqrt{(1-t^{2})(1-k^{2}t^{2})}} = 4 \cdot \mathcal{K}(k)$$

- The map $\mathbb{C}/\Lambda \to \mathbb{C}^2$ which sends $z \mapsto (\operatorname{sn}(z), \operatorname{sn}'(z))$ parametrizes all points (x, y) on the quartic curve $y^2 = (1 x^2) (1 k^2 x^2)$. Moreover, $0 \mapsto (0, 1)$.
- Say that $P = (\operatorname{sn}(z), \operatorname{sn}'(z))$ and $Q = (\operatorname{sn}(\xi), \operatorname{sn}'(\xi))$ are on the quartic curve. Then $P \oplus Q = (\operatorname{sn}(z + \xi), \operatorname{sn}'(z + \xi))$ has coordinate

$$x(P \oplus Q) = \frac{x(P) y(Q) \pm y(P) x(Q)}{1 - k^2 x(P)^2 x(Q)^2}$$

 $\begin{array}{c} {\rm Motivation}\\ {\rm Elliptic\ Curves}\\ {\rm Ranks\ of\ }y^2\,=\,(1\,-\,x^2)\,(1\,-\,k^2\,x^2) \end{array}$

Challenge Problem Elliptic Integrals Addition Formulas Modern Language

Proposition

 $y^2 = (1 - x^2) (1 - k^2 x^2)$ is a quadric intersection in \mathbb{P}^3 and has a Weierstrass model in \mathbb{P}^2 . It is nonsingular if and only if $k \neq -1, 0, 1$.

$$y^{2} = (1 - x^{2}) (1 - k^{2} x^{2}) \qquad (x, y) = \left(\frac{x_{1}}{x_{0}}, \frac{x_{2}}{x_{0}}\right)$$

$$\uparrow$$

$$x_{2}^{2} = (x_{3} - x_{0}) (k^{2} x_{3} - x_{0})$$

$$x_{1}^{2} = x_{3} x_{0}$$

$$(x_{1} : x_{2} : x_{3} : x_{0})$$

$$Y^{2} Z = X^{3} + A X Z^{2} + B Z^{3}$$
$$A = -27 (k^{4} + 14 k^{2} + 1)$$
$$B = -54 (k^{6} - 33 k^{4} - 33 k^{2} + 1)$$

$$\frac{X}{Z} = \frac{3(5k^2 - 1)x + 3(k^2 - 5)}{x - 1}$$
$$\frac{Y}{Z} = \frac{54(1 - k^2)y}{(x - 1)^2}$$

 $\begin{array}{l} \mbox{Mordell-Weil Group} \\ \mbox{Are the ranks unbounded?} \\ \mbox{Z_2 \times Z_4 and $\mbox{$Z_2$ \times Z_8} \\ \end{array}$

Elliptic Curves

More generally, we consider cubic curves

$$E: \quad Y^2 = X^3 + AX + B$$

where the rational numbers A and B satisfy $4 A^3 + 27 B^2 \neq 0$.

Given a field K such as either \mathbb{Q} , \mathbb{R} , \mathbb{C} , or even $\mathbb{Q}(\sqrt{5})$, denote

$$E(\mathcal{K}) = \left\{ (X:Y:Z) \in \mathbb{P}^2(\mathcal{K}) \mid Y^2 Z = X^3 + AX Z^2 + B Z^3 \right\}.$$

Remark: $\mathcal{O} = (0:1:0)$ comes from (x, y) = (1, 0) - not (x, y) = (0, 1)!

 $\begin{array}{l} \mbox{Mordell-Weil Group} \\ \mbox{Are the ranks unbounded?} \\ \mbox{Z_2 \times Z_4 and $\mbox{$Z_2$ \times Z_8} \\ \end{array}$

Mordell-Weil Group

Conjecture (Henri Poincaré, 1901)

Let *E* be an elliptic curve over \mathbb{Q} . Then $E(\mathbb{Q})$ is a **finitely generated** abelian group.

Theorem (Louis Mordell, 1922; André Weil, 1928)

Let *E* be an elliptic curve over a number field *K*. There exists a group $E(K)_{\text{tors}}$ and a nonnegative integer *r* such that $E(K) \simeq E(K)_{\text{tors}} \times \mathbb{Z}^r$.

Theorem (Barry Mazur, 1977)

The torsion subgroup of an elliptic curve E over \mathbb{Q} is one of fifteen types:

$$E(\mathbb{Q})_{\mathrm{tors}}\simeq egin{cases} Z_N & ext{for } 1\leq N\leq 10 ext{ or } N=12; \ Z_2 imes Z_{2N} & ext{for } 1\leq N\leq 4. \end{cases}$$

Question: What can one say about the Mordell-Weil rank r = r(E)?

Mordell-Weil Group Are the ranks unbounded? $Z_2 \times Z_4$ and $Z_2 \times Z_8$

Rank Conjecture

Conjecture

Let T be one of the fifteen torsion groups in Mazur's Theorem. For any given nonnegative integer r_0 , there exists an elliptic curve E over \mathbb{Q} with torsion subgroup $E(\mathbb{Q})_{\text{tors}} \simeq T$ and Mordell-Weil rank $r(E) \ge r_0$.

Project

Given T and r_0 , find an elliptic curve E over with torsion subgroup $E(\mathbb{Q})_{tors} \simeq T$ and Mordell-Weil rank $r(E) \ge r_0$.

For each torsion group T, define the quantity

$$B(T) = \sup \left\{ r \in \mathbb{Z} \mid \text{there exists a curve } E \text{ with } E(\mathbb{Q}) \simeq T \times \mathbb{Z}^r \right\}$$

Question: Is B(T) unbounded?

Mordell-Weil Group Are the ranks unbounded? $Z_2 \times Z_4$ and $Z_2 \times Z_8$

Competing Points of View

Conjecture (Taira Honda, 1960)

If *E* is an elliptic curve defined over \mathbb{Q} , and *K* is a number field, then the ratio of the Mordell-Weil rank of E(K) to the degree $[K : \mathbb{Q}]$ should be uniformly bounded by a constant depending only on *E*.

Remark: If true, this would imply that there are infinite families of elliptic curves over the rational numbers which have a uniformly bounded rank.

Theorem (Igor Shafarevich and John Tate, 1967)

The ranks are not uniformly bounded for elliptic curves defined over function fields $\mathbb{F}_q(t)$.

 $\begin{array}{c} {\rm Motivation}\\ {\rm Elliptic\ Curves}\\ {\rm Ranks\ of\ y^2\,=\,(1\,-\,x^2)\,(1\,-\,k^2\,x^2)} \end{array}$

Mordell-Weil Group Are the ranks unbounded? $Z_2 \times Z_4$ and $Z_2 \times Z_8$

$E(\mathbb{Q})_{tors}$	Highest Known Rank r	Found By	Year Discovered
Trivial	28	Elkies	2006
Z ₂	19	Elkies	2009
Z ₃	13	Eroshkin	2007, 2008, 2009
Z4	12	Elkies	2006
<i>Z</i> ₅	8	Dujella, Lecacheux Eroshkin	2009 2009
<i>Z</i> 6	8	Eroshkin Dujella, Eroshkin Elkies Dujella	2008 2008 2008 2008 2008
Z ₇	5	Dujella, Kulesz Elkies Eroshkin Dujella, Eroshkin Dujella, Eroshkin	2001 2006 2009 2009 2009
Z ₈	6	Elkies	2006
Zg	4	Fisher	2009
Z ₁₀	4	Dujella Elkies	2005, 2008 2006
Z12	4	Fisher	2008
$Z_2 \times Z_2$	15	Elkies	2009
$Z_2 \times Z_4$	8	Elkies Eroshkin Dujella, Eroshkin	2005 2008 2008
$Z_2 \times Z_6$	6	Elkies	2006
$Z_2 \times Z_8$	3	Connell Dujella Campbell, Goins Rathbun Flores, Jones, Rollick, Weigandt, Rathbun Fisher	2000 2000, 2001, 2006, 2008 2003 2003, 2006 2007 2009

http://web.math.hr/~duje/tors/tors.html

Mordell-Weil Group Are the ranks unbounded? $Z_2 \times Z_4$ and $Z_2 \times Z_8$

Classification

Theorem

Fix a rational $k \neq -1, 0, 1$ for the curve $E_k : y^2 = (1 - x^2)(1 - k^2 x^2).$ • $E_k(\mathbb{Q})_{\text{tors}} \simeq \begin{cases} Z_2 \times Z_8 & \text{if } k = \frac{t^4 - 6t^2 + 1}{(t^2 + 1)^2} \text{ for some rational } t, \\ Z_2 \times Z_4 & \text{otherwise.} \end{cases}$

• Conversely, if *E* is an elliptic curve over *K* with torsion subgroup $E(\mathbb{Q})_{tors} \simeq Z_2 \times Z_4$ or $Z_2 \times Z_8$, then $E \simeq E_k$ for some $k \in K$.

- The modular curve $X_0(24)$: $Y^2 = X^3 + 5X^2 + 4X$ has Mordell-Weil group $X_0(24)(\mathbb{Q}) \simeq Z_2 \times Z_4$, and so corresponds to k = 1/3.
- The modular curve $X_1(15) : Y^2 + X Y + Y = X^3 + X^2 10 X 10$ has $X_1(15)(\mathbb{Q}) \simeq Z_2 \times Z_4$, and so corresponds to k = 1/9. Moreover, $X_1(15)(\mathbb{Q}(\sqrt{5})) \simeq Z_2 \times Z_8$, and so $t = (3 - \sqrt{5})/2$.

$$\begin{split} X(2,8) &= \frac{\mathcal{H}^*}{\Gamma(2) \cap \Gamma_1(8)} \xrightarrow{2} X_1(8) = \frac{\mathcal{H}^*}{\Gamma_1(8)} \xrightarrow{2} X_0(8) = \frac{\mathcal{H}^*}{\Gamma_0(8)} \\ &\downarrow^4 & \downarrow^4 & \downarrow^2 \\ X(2,4) &= \frac{\mathcal{H}^*}{\Gamma(2) \cap \Gamma_1(4)} \xrightarrow{2} X_1(4) = \frac{\mathcal{H}^*}{\Gamma_1(4)} \xrightarrow{1} X_0(4) = \frac{\mathcal{H}^*}{\Gamma_0(4)} \\ &\downarrow^2 & \downarrow^2 & \downarrow^2 \\ X(2) &= \frac{\mathcal{H}^*}{\Gamma(2)} \xrightarrow{2} X_1(2) = \frac{\mathcal{H}^*}{\Gamma_1(2)} \xrightarrow{1} X_0(2) = \frac{\mathcal{H}^*}{\Gamma_0(2)} \\ &\downarrow^6 & \downarrow^3 & \downarrow^3 \\ X(1) &= \frac{\mathcal{H}^*}{SL_2(\mathbb{Z})} \xrightarrow{-1} X_1(1) = \frac{\mathcal{H}^*}{SL_2(\mathbb{Z})} \xrightarrow{-1} X_0(1) = \frac{\mathcal{H}^*}{SL_2(\mathbb{Z})} \end{split}$$

Motivation
Elliptic Curves
Ranks of $y^2 = (1 - x^2)(1 - k^2 x^2)$ Mordell-Weil Group
Are the ranks unbounde
 $Z_2 \times Z_4$ and $Z_2 \times Z_8$

$$\begin{split} k(q) &= 4 \left[\frac{\eta(q)}{\eta(q^2)} \right]^4 \left[\frac{\eta(q^4)}{\eta(q^2)} \right]^8 & \longrightarrow \mu_4(q) = \left[\frac{\eta(q^2)}{\eta(q)} \right]^8 \left[\frac{\eta(q^2)}{\eta(q^4)} \right]^{16} & \longrightarrow \mu_4(q) = \left[\frac{\eta(q)}{\eta(q^4)} \right]^8 \\ &= \frac{t(q)^4 - 6 t(q)^2 + 1}{(t(q)^2 + 1)^2} & = \frac{16}{k(q)^2} & = \mu_4(q) - 16 \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \lambda(q) &= \frac{1}{16} \left[\frac{\eta(q)^3}{\eta(q^{1/2}) \eta(q^{2})^2} \right]^8 & \longrightarrow q_2(q) = \left[\frac{\eta(q)}{\eta(q^2)} \right]^{24} & \mu_2(q) = \left[\frac{\eta(q)}{\eta(q^2)} \right]^{24} \\ &= \frac{4 k(q)}{(k(q) + 1)^2} & = \frac{256 \lambda(q) (\lambda(q) - 1)}{\downarrow} & = \frac{\mu_2(q)}{\mu_4(q)} & = \frac{\nu_4(q)^2}{\nu_4(q) + 16} \\ \downarrow & \downarrow & \downarrow \\ j(q) &= 256 \frac{(\lambda(q)^2 - \lambda(q) + 1)^3}{\lambda(q)^2 (\lambda(q) - 1)^2} & \longrightarrow j(q) = \frac{(\mu_2(q) + 256)^3}{\mu_2(q)^2} & \longrightarrow j(q) = \frac{\left[\frac{1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) q^n \right]^3}{q \prod_{n=1}^{\infty} (1 - q^n)^{24}} \end{split}$$

http://phobos.ramapo.edu/~kmcmurdy/research/Models/index.html

 $\begin{array}{l} \mbox{Mordell-Weil Group} \\ \mbox{Are the ranks unbounded?} \\ \mbox{Z_2 \times Z_4 and Z_2 \times Z_8} \end{array}$

Example

On the quartic curve $y^2 = (1 - x^2)(1 - k^2 x^2)$, the rational point (x, y) has order 2 if and only if [2] (x, y) = (1, 0). There are only four:

$$\left(rac{1}{k},\,0
ight),\qquad(1,0),\qquad(-1,0),\qquad {
m and}\qquad \left(-rac{1}{k},\,0
ight).$$

 $E(\mathbb{Q}) \times Z_2 \times Z_8 \times \mathbb{Z}^4$?

 $\begin{array}{c} {\rm Motivation}\\ {\rm Elliptic \ Curves}\\ {\rm Ranks \ of} \ y^2 = (1-x^2)\,(1-k^2\,x^2) \end{array}$

 $\begin{array}{l} \mbox{Mordell-Weil Group} \\ \mbox{Are the ranks unbounded?} \\ \mbox{Z_2 \times Z_4 and Z_2 \times Z_8 } \end{array}$

Example

On the quartic curve $y^2 = (1 - x^2)(1 - k^2 x^2)$, the rational point (x, y) has order 4 if and only if [2] (x, y) = (*, 0). There are only four:

(0,1), (0,-1), and (two points at infinity).

Examples Lower Bounds 2-Descent

$E(\mathbb{Q})\simeq Z_2\times Z_4\times \mathbb{Z}^r$

	Author(s)	Fiber k	Year Discovered	
	Elkies	556536737101/589636934451	2005	
Rank r = 8:	Eroshkin	14124977/18685325 9305732817/11123766133	2008 2008	
	Dujella, Eroshkin	14426371/71784369 1082331841/1753952791	2008 2008	
	Author(s)	Fiber k	Year Discovered	
Rank $r = 7$:	Dujella	5759699/11291091 151092883/281864499 106079689/131157975 76547009/172129849 772366397/787678274 66285529/1515865129 252401231/3323768713 2125660499/3416463309 1119101519/3685417369 3169123561/3910987351	2005 2005 2006 2006 2006 2006 2006 2006	
	Eroshkin	2978252/8060923 1297409/8215809 85945462/122383087 249238749/403292341	2008 2008 2008 2008	
	Dujella, Eroshkin	152618/204943 255739/328279	2008 2008	

	Author(s)	Fiber k	Year Discovered
Rank $r = 6$:	Ansaldi, Ford, George, Mugo, Phifer	307100/384569 94939/471975	2005 2005

 $\label{eq:http://web.math.pmf.unizg.hr/~duje/tors/z2z4.html \\ \mbox{http://web.math.pmf.unizg.hr/~duje/tors/z2z4old67.html} \\ \mbox{2012 Atkin Memorial Lecture and Workshop} \qquad \mbox{$\mathcal{E}(\mathbb{Q}) \times \mathbb{Z}_2 \times \mathbb{Z}_8 \times \mathbb{Z}^4$?}$

 $\begin{array}{c} & \text{Motivation} \\ & \text{Elliptic Curves} \\ & \text{Ranks of } y^2 = (1-x^2) \left(1-k^2 x^2\right) \end{array}$

Examples Lower Bounds 2-Descent

$E(\mathbb{Q})\simeq Z_2 \times Z_8 \times \mathbb{Z}^3$

Author(s)	Fiber t	Year Discovered
Connell, Dujella	5/29	2000
	18/47	2001
	87/407	2006
Dujella	143/419	2006
	145/444	2006
	352/1017	2008
Duialla Bathhun	230/923	2006
Dujena, Natribun	223/1012	2006
Campbell, Goins	15/76	2003
Campbell, Goins (with Watkins)	19/220	2005
	47/219	2003
Dathburg	74/207	2006
Katibun	17/439	2006
	159/569	2006
Eleres Jones Pollick Waigandt	86/333	2007
(with Pathbun)	101/299	2007
(with Kathbull)	65/337	2007
	47/266	2009
	104/321	2009
	97/488	2009
	145/527	2009
Fisher	119/579	2009
T ISHEI	223/657	2009
	161/779	2009
	177/815	2009
	76/999	2009
	285/1109	2009

http://web.math.pmf.unizg.hr/~duje/tors/z2z8.html

2012 Atkin Memorial Lecture and Workshop $E(\mathbb{Q}) \times Z_2 \times Z_8 \times \mathbb{Z}^4$?

 $\begin{array}{c} \text{Motivation}\\ \text{Elliptic Curves}\\ \text{Ranks of } y^2 = (1-x^2)\left(1-\frac{k^2x^2}{2}\right) \end{array}$

Examples Lower Bounds 2-Descent

Example

In 2006, Dujella discovered the elliptic curve

 $E: \begin{array}{c} Y^2 + X \ Y = X^3 - 15343063417941874422081256126489574987160 \ X \\ + \ 486503741336910955243717595559583892156442731284430865537600 \end{array}$

with conductor

 $N_E = 17853766311199754524060290$

 $= 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \cdot 97 \cdot 313 \cdot 449 \cdot 47351$

has Mordell-Weil group $E(\mathbb{Q}) \simeq Z_2 \times Z_8 \times \mathbb{Z}^3$. Using the substitutions

 $X = -\frac{6240(4083958238540477 \times + 37118233318627918)}{x - 1},$ $Y = \frac{1560}{(x - 1)^2} \begin{pmatrix} 1960986248603425149997386795 \ y \\ + 81679116477080954 \ x^2 \\ + 66068550160174882 \times - 74236466637255836 \end{pmatrix}$

we see that it is birationally equivalent to the quartic curve with

$$k = rac{14435946721}{47594221921} = rac{t^4 - 6\ t^2 + 1}{(t^2 + 1)^2}$$
 where $t = rac{145}{444}$

Examples Lower Bounds 2-Descent

LMEDE	Top → Elliptic Cur Elliptic C	ves→ Search Res	sults				Feedback · Login
Introduction Features Tutorial Map of LMFDB Future Plans	Further refine	e search Rank	Torsion orde	Torsion structure	Analytic order	r of Ш	Optimal only No ÷
L-functions Degree: 1 2 3 4	Search again	er of curves to dis					
Elliptic Curves	Results (disp	laying all 4 m	atches)				
Elliptic Curves/Q	Isogeny class	LMFDB label	Cremona label	[a ₁ , a ₂ , a ₃ , a ₄ , a ₆]		Rank	Torsion order
Fields	210.e	210.e6	210e2	[1, 0, 0, -1070, 7812]		0	16
Global Number Fields	46410.ck	46410.ck6	46410cn2	[1, 0, 0, -8696090, 983849610	1 00	0	16
Local Number Fields	82110.bs	82110.bs5	82110bt2	[1, 0, 0, -49423080, 13054523	80400]	1	16
Galois Groups	110670.cm	110670.cm5	110670cp2	[1, 0, 0, -2276760100, 418065	88162832]	0	16
Characters	Previous Next						
Dirichlet Characters							

http://www.lmfdb.org/

Examples Lower Bounds 2-Descent

Can we do better than

 $E(\mathbb{Q}) \simeq Z_2 \times Z_4 \times \mathbb{Z}^8$

or

$E(\mathbb{Q}) \simeq Z_2 \times Z_8 \times \mathbb{Z}^3$?

Ranks of $y^2 = (1 - x^2)(1 - \frac{k^2 x^2}{k^2 x^2})$

Examples Lower Bounds 2-Descent

Elliptic Surfaces

We will focus on the cases where the quartic curve $E_k : y^2 = (1 - x^2)(1 - k^2 x^2)$ has torsion subgroup $E_k(\mathbb{Q})_{\text{tors}} \simeq Z_2 \times Z_8$. We express our results in terms of elliptic surfaces.

Consider the affine curve

$$C = \left\{ t = (a:b) \in \mathbb{P}^1 \ \middle| \ a \, b \left(a^4 - b^4\right) \left(a^4 - 6 \, a^2 \, b^2 + b^4\right) \neq 0
ight\}.$$

Fix the rational functions $A, B: C \to \mathbb{P}^1$ defined by

$$\begin{aligned} A(t) &= -27 \left(k^4 + 14 \, k^2 + 1 \right) \\ B(t) &= -54 \left(k^6 - 33 \, k^4 - 33 \, k^2 + 1 \right) \end{aligned} \quad \text{where} \qquad k = \frac{t^4 - 6 \, t^2 + 1}{\left(t^2 + 1 \right)^2} \end{aligned}$$

and consider the surface

$$\mathcal{E} = \left\{ \left[(X:Y:Z), t \right] \in \mathbb{P}^2 \times C \mid Y^2 Z = X^3 + A(t) X Z^2 + B(t) Z^3 \right\}.$$

Ranks of $y^2 = (1 - x^2)(1 - k^2 x^2)$

Examples Lower Bounds 2-Descent

Theorem (G–, 2008)

- With respect to *E* → *C* which sends [(X : Y : Z), t] → t, the variety *E* is an elliptic surface. Each of the fibers *E_t* is semistable.
- We have two sections

$$\begin{split} P : & t \mapsto \left[\left(12 \, \frac{t^8 - 4 \, t^6 - 26 \, t^4 - 4 \, t^2 + 1}{(t^2 + 1)^4} : 0 : 1 \right) \,, t \right] \\ Q : & t \mapsto \left[\left(12 \, \frac{t^8 - 4 \, t^6 - 12 \, t^5 - 2 \, t^4 + 20 \, t^2 + 12 \, t + 1}{(t^2 + 1)^4} : 864 \, \frac{t^7 - 5 \, t^5 - 4 \, t^4 + 3 \, t^3 + 4 \, t^2 + t}{(t^2 + 1)^5} : 1 \right) \,, t \right] \end{split}$$

- All elliptic curves E over a number field K with torsion subgroup $\langle P(t), Q(t) \rangle \simeq Z_2 \times Z_8$ arise from such a fiber, i.e., are birationally equivalent to E_t for some $t \in C(K)$.
- The automorphisms $\sigma : (a : b) \mapsto (a b : a + b)$ and $\tau : (a : b) \mapsto (-a : b)$ act on *C*, yet leave *A* and *B* invariant. Moreover, $D_8 = \langle \sigma, \tau \rangle \hookrightarrow Aut(C)$ is the dihedral group.

Examples Lower Bounds 2-Descent

Proposition (A. O. L. Atkin and François Morain, 1993)

- The elliptic curve $C_1: v^2 = u^3 8 u 32$ has Mordell-Weil group $C_1(\mathbb{Q}) \simeq Z_2 \times \mathbb{Z}$ as generated by (u:v:1) = (12:40:1).
- One can construct infinitely many fibers E_t having positive rank via the map $C_1 \rightarrow C$ defined by $(u:v:1) \mapsto 2(u-9)/(3u+v-2)$.

Theorem (Garikai Campbell and G–, 2003)

- The elliptic curve $C_2 : v^2 = u^3 u^2 9 u + 9$ has Mordell-Weil group $C_2(\mathbb{Q}) \simeq Z_2 \times Z_2 \times \mathbb{Z}$ as generated by (u : v : 1) = (5 : 8 : 1).
- One can construct infinitely many fibers E_t having positive rank via the map $C_2 \rightarrow C$ defined by $(u : v : 1) \mapsto t = (u + v 3)/(2 u)$. Indeed, upon setting $w = 3(u^2 - 2u + 4v + 9)/(u^2 - 18u + 9)$, we have a section

$$R: (u:v:1) \mapsto \left[\begin{pmatrix} \frac{3(w^2 - 2w - 3)^4 + 12(w^2 - w - 3)(w^2 + 2w - 3)^3}{(w^4 - 2w^2 + 9)^2} \\ \vdots \frac{54(w^4 - 9)(w^2 - 2w - 3)(w^2 + 2w - 3)^3}{(w^4 - 2w^2 + 9)^3} \vdots 1 \end{pmatrix}, \frac{u + v - 3}{2u} \right]$$

Examples Lower Bounds 2-Descent

Infinite Families

There are infinitely many choices of rational t such that

$$E_t: y^2 = (1-x^2)(1-k^2x^2)$$
 where $k = rac{t^4-6t^2+1}{(t^2+1)^2}$

has torsion subgroup $E_t(\mathbb{Q}) \simeq Z_2 \times Z_8$ and rank $r \ge 1$. These choices of t correspond to rational points on elliptic curves.

Open Questions

- Are there other elliptic curves besides C_1 and C_2 which work?
- Is there a curve of genus 0 which gives E_t having rank $r \ge 1$?
- Are there infinitely many rational t which give E_t having rank $r \ge 2$?

Examples Lower Bounds 2-Descent

Finding Curves of High Rank

Approach #1

Fix a square-free integer D, and consider the **quadratic twist**

$$E^{(D)}$$
: $Y^2 = X^3 + D^2 A X + D^3 B$.

This is very efficient (i.e., no redundant curves), but $E^{(D)}(\mathbb{Q})_{\text{tors}}$ changes with each D.

Approach #2

Fix polynomials A = A(t) and B = B(t) such that $\Delta(t) = -16 (4 A^3 + 27 B^2) \neq 0$, and consider the **elliptic surface**

$$E_t: Y^2 = X^3 + A(t)X + B(t).$$

This is not very efficient (i.e., different *t*'s may give the same curves), polynomials can be chosen to fix $E_t(\mathbb{Q})_{tors}$ for all *t*.

 $\begin{array}{c} & \text{Motivation} \\ & \text{Elliptic Curves} \\ \text{Ranks of } y^2 = (1-x^2) \left(1-k^2 x^2\right) \end{array}$

Examples Lower Bounds 2-Descent

Algorithm

- #1. Classify those elliptic curves E over \mathbb{Q} with torsion subgroup $E(\mathbb{Q})_{tors} \simeq Z_2 \times Z_8$. Express these curves as an elliptic surface E_t .
- #2. Find a criterion on t such that any $t \in \mathbb{Q}$ may be associated to an element from a fundamental region $\alpha < t < \beta$.
- #3. Create a list of candidate elliptic curves E_t for this fundamental region.
- #4. Compute the 2-Selmer ranks to find upper bounds on the Mordell-Weil ranks.
- #5. Compute the Mordell-Weil ranks.

 $\begin{array}{c} & \text{Motivation} \\ & \text{Elliptic Curves} \\ & \text{Ranks of } y^2 = (1-x^2) \left(1-k^2 x^2\right) \end{array}$

Examples Lower Bounds 2-Descent

$\overline{E}(\mathbb{Q}) \simeq \overline{Z_2 \times Z_8 \times \mathbb{Z}^3}$

Author(s)	Fiber t	Year Discovered
Connell, Dujella	5/29	2000
	18/47	2001
	87/407	2006
Dujella	143/419	2006
	145/444	2006
	352/1017	2008
Duiella, Bathhun	230/923	2006
Dujena, Nachburi	223/1012	2006
Campbell, Goins	15/76	2003
Campbell, Goins (with Watkins)	19/220	2005
	47/219	2003
Dathburg	74/207	2006
Kathbun	17/439	2006
	159/569	2006
Eleres Jones Pollick Waigandt	86/333	2007
(with Pathbun)	101/299	2007
(with Kathbull)	65/337	2007
	47/266	2009
	104/321	2009
	97/488	2009
	145/527	2009
Fisher	119/579	2009
T ISHCI	223/657	2009
	161/779	2009
	177/815	2009
	76/999	2009
	285/1109	2009

http://web.math.pmf.unizg.hr/~duje/tors/z2z8.html

2012 Atkin Memorial Lecture and Workshop $E(\mathbb{Q}) \times Z_2 \times Z_8 \times \mathbb{Z}^4$?

 $\begin{array}{c} \text{Motivation}\\ \text{Elliptic Curves}\\ \text{Ranks of } y^2 = (1-x^2)\left(1-k^2x^2\right)\end{array}$

Examples Lower Bounds 2-Descent

Fundamental Region

Theorem (G-, 2006)

Fix a rational number $t \neq -1, 0, 1$ and consider

$$E_t:$$
 $y^2 = (1-x^2)(1-k^2x^2)$ where $k = rac{t^4-6t^2+1}{(t^2+1)^2}.$

•
$$D_8 = \langle \sigma, \tau \mid \sigma^4 = \tau^2 = 1, \tau \sigma \tau = \sigma^{-1} \rangle$$
 in terms of

$$\sigma: t \mapsto \frac{t-1}{t+1} \quad \text{and} \quad \tau: t \mapsto -t.$$

• We may assume that t satisfies $0 < t < \sqrt{2} - 1$.

Remark: Given a bound N, choose coprime integers a and b satisfying

$$0 < \left(1 + \sqrt{2}\right) a < b < N$$
 and set $t = \frac{a}{b}$.

 $\begin{array}{c} \mbox{Motivation}\\ \mbox{Elliptic Curves}\\ \mbox{Ranks of } y^2 = (1-x^2) \, (1-k^2 \, x^2) \end{array}$

Examples Lower Bounds 2-Descent

Isogeny Graph

Examples Lower Bounds 2-Descent

Isogeny Graph

Curve	Weierstrass Model $Y^2 = X^3 + AX + B$	Torsion
Et	$A = -27 \left(k^4 + 14 k^2 + 1 \right)$	$Z_2 \times Z_8$
	$B = -54 \left(k^2 - 33 k - 33 k + 1 \right)$	
E_t'	$A = -27\left(k^4 - k^2 + 1\right)$	$Z_2 \times Z_4$
	$B = -27 \left(2 k^{6} - 3 k^{4} - 3 k^{2} + 2 \right)$	2 ··· 4
c!	$A = -27 \left(k^4 - 60 k^3 + 134 k^2 - 60 k + 1 \right)$	7
c_t	$B = -54 \left(k^{6} + 126 k^{5} - 1041 k^{4} + 1764 k^{3} - 1041 k^{2} + 126 k + 1\right)$	28
D'_t	$A = -27 \left(k^{4} + 60 k^{3} + 134 k^{2} + 60 k + 1\right)$	70
	$B = -54\left(k^{6} - 126 k^{5} - 1041 k^{4} - 1764 k^{3} - 1041 k^{2} - 126 k + 1\right)$	28
-//	$A = -27 \left(k^4 - 16 k^2 + 16 \right)$	7 7
^L t	$B = -54 \left(k^6 + 30 \ k^4 - 96 \ k^2 + 64 \right)$	2 ₂ × 2 ₂
<i>c</i> !!	$A = -27 \left(16 k^4 - 16 k^2 + 1 \right)$	7
C _t .	$B = -54 \left(64 k^6 - 96 k^4 + 30 k^2 + 1 \right)$	24
<i>Ct'''</i>	$y^{2} = x^{3} - 2\left(1 + 24t + 20t^{2} + 24t^{3} - 26t^{4} - 24t^{5} + 20t^{6} - 24t^{7} + t^{8}\right)x^{2}$	~
	$+(1-2t-t^2)^8x$	Z2
$D_t^{\prime\prime\prime}$	$y^{2} = x^{3} - 2\left(1 - 24t + 20t^{2} - 24t^{3} - 26t^{4} + 24t^{5} + 20t^{6} + 24t^{7} + t^{8}\right)x^{2}$	7
	$+\left(1+2t-t^2\right)^8x$	2 ₈

Examples Lower Bounds 2-Descent

Define the curves and homogeneous spaces

$$E_{t}: y^{2} = (1 - x^{2})(1 - k^{2}x^{2}) \qquad C_{d}: dw^{2} = (1 - dz^{2})(1 - dk^{2}z^{2})$$
$$E_{t}': y^{2} = (1 - x^{2})(1 - {\kappa'}^{2}x^{2}) \qquad C_{d}': dw^{2} = (1 + dz^{2})(1 + d\kappa^{2}z^{2})$$
$$E_{t}'': y^{2} = (1 + x^{2})(1 + {\kappa'}^{2}x^{2}) \qquad C_{d}'': dw^{2} = (1 + dz^{2})(1 + d{\kappa'}^{2}z^{2})$$

where

$$\kappa=\frac{1-k}{1+k},\qquad \kappa'=\frac{1-k'}{1+k'},\qquad \text{and}\qquad k^2+{k'}^2=1.$$

Examples Lower Bounds 2-Descent

Descent via 4-Isogeny

Theorem (G-, 2006)

• There are 2-isogenies $\phi: E_t \to E'_t$ and $\phi': E'_t \to E''_t$.

• If
$$E \simeq E_t$$
 and $E' \simeq E'_t$, then $\left| \frac{E(\mathbb{Q})}{2 E(\mathbb{Q})} \right| = \left| \frac{E'(\mathbb{Q})}{\phi(E(\mathbb{Q}))} \right| \left| \frac{E(\mathbb{Q})}{\hat{\phi}(E'(\mathbb{Q}))} \right|$

- Write k = p/q for relatively prime integers p and q. The image of δ_{ϕ} (of δ_{ϕ} , respectively) is the set of those square-free divisors d of p q (of $p^2 q^2$, respectively) such that C_d (C'_d , respectively) has a \mathbb{Q} -rational point.
- $(\delta_{\hat{\phi}} \circ \psi)(z,w) \equiv (\delta_{\phi} \circ \psi')(z,w) \equiv d \mod (\mathbb{Q}^{ imes})^2$ for the maps

$$\begin{split} \psi : \mathcal{C}'_d \to E_t \qquad (z, w) \mapsto \left(\frac{1 - d\kappa z^2}{1 + d\kappa z^2}, \frac{4 d\kappa z w}{(1 + \kappa)(1 + d\kappa z^2)^2}\right) \\ \psi' : \mathcal{C}''_d \to E'_t \qquad (z, w) \mapsto \left(\frac{1 - d k' z^2}{1 + d k' z^2}, \frac{4 d k' z w}{(1 + k')(1 + d k' z^2)^2}\right) \end{split}$$

Examples Lower Bounds 2-Descent

Example

Proposition (Samuel Ivy, Brett Jefferson, Michele Josey, Cheryl Outing, Clifford Taylor, and Staci White, 2008)

When t = 9/296 we have

 $\langle -1, 6477590, 2, 7 \rangle \subseteq \delta_{\hat{\phi}} \subseteq \langle -1, 6477590, 2, 7, 37 \rangle.$

Hence E_t has Mordell-Weil group $E_t(\mathbb{Q}) \simeq Z_2 \times Z_8 \times \mathbb{Z}^3$ if and only if at least one of the following homogeneous spaces corresponding to d = 37 contains a rational point (z, w):

 $\begin{aligned} \mathcal{C}_{37}': \ w^2 &= 2172344348297474273125 \, z^4 \\ &\quad + 58712815268370607681 \, z^2 + 21779862847488; \\ \mathcal{C}_{37}'': \ w^2 &= 2188470374735494973797 \, z^4 \\ &\quad + 60017913360731350081 \, z^2 + 23515280943436800. \end{aligned}$

Examples Lower Bounds 2-Descent

Challenge Problem Revisited

$$E: y^2 = x^3 + (5 - \sqrt{5}) x^2 + \sqrt{5} x$$

- The curve has invariant $j(E) = 86048 38496\sqrt{5}$.
- The curve has conductor $\mathfrak{f}_E = \mathfrak{p}_5^2 \mathfrak{p}_5^2$ in terms of the prime ideals $\mathfrak{p}_2 = 2 \mathbb{Z}[\varphi]$ and $\mathfrak{p}_5 = \sqrt{5} \mathbb{Z}[\varphi]$, where $\varphi = \frac{1+\sqrt{5}}{2}$.
- This curve is 2-isogeneous to (a quadratic twist of) its Galois conjugate.

Theorem (G-, 1999)

The elliptic curve *E* is modular. More precisely, there is a modular form $f(q) \in S_2(\Gamma_0(160), \epsilon)$ and a Dirichlet character $\chi : \mathbb{Z}[\varphi] \to \mathbb{C}$ such that $\chi^2 = \epsilon \circ \mathbb{N}_{\mathbb{Q}(\sqrt{5})/\mathbb{Q}}$ and $a_{\mathfrak{p}}(f) = \chi(\mathfrak{p}) a_{\mathfrak{p}}(E)$ for almost all primes \mathfrak{p} .

Question

Did you compute the Mordell-Weil group $E(\mathbb{Q}(\sqrt{5}))$?

Examples Lower Bounds 2-Descent

Questions?

2012 Atkin Memorial Lecture and Workshop $E(\mathbb{Q}) \times \mathbb{Z}_2 \times \mathbb{Z}_8 \times \mathbb{Z}^4$?