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Elliptic curves over Q(
√

5) with good reduction away
from 2

Theorem. There are 49 values of the j-invariant and 416
isomorphism classes of elliptic curves over F = Q(

√
5) with

good reduction away from 2.

All such curves have integral j-invariant

There are no elliptic curves over F with everywhere good
reduction.
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Some finiteness theorems

algebraic number fields with bounded degree and given set
of ramified primes
rank of the group of rational points on a given abelian
variety over a number field
abelian varieties over a number field of bounded dimension
and given set of bad reduction
points on a curve of genus ≥ 2 over a number field
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Rational point of order 2

Let K be a field such that every quadratic extension of K
ramified only over 2 has class number prime to 3. Then a cubic
extension of K ramified only over 2 is tamely ramified.

There is no cubic extension of F ramified only at 2.
Proof. If not, the 2-division field L is a cubic extension of F
ramified only at 2. The different of the extension of L/Q is
computable, and ramification is tame. The absolute
discriminant of L will then contravene the Hermite bound.

Let E be an elliptic curve over F with good reduction away from
2. Then E has a point of order 2 defined over F .
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Hautpmodul for order 2

The Hauptmodul τ for X0(2) parametrises elliptic curves with a
subgroup of order 2.
We have

j =
(τ + 16)3

τ

j − 1728 =
(τ + 64)(τ − 8)2

τ

with the isogenous curve corresponding to τ ′ = 4096/τ .
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Hautpmodul for order 2

We have
∆ = 212j2(j − 1728)9w6

and since F has class number 1 there is a global minimal
equation with ∆ a power of 2 times a unit.

Good reduction away from 2 means that τ cannot be divisible
by any prime other than (2). Further, in τ + 64 the primes other
than (2) occur to even powers.
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Hautpmodul for order 2

Either τ or τ ′ = 4096/τ satisfies one of the equations

t = 64u/v , u + v = 2x2

or
t = 64v/2au, 2au + v = x2

where u, v are units, x ∈ F and a ≥ 0.
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Specific solutions

The equation

2x2 = u + v , u, v units of F ,

has the solutions

a) x = 0 u = 1 v = −1
b) 1 1 1
c) 1 ε2 ε′

d) 3 ε6 ε′6
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Specific solutions

The equations

x2 = 2au + v , u, v units, a ≥ 0,

have the solutions

e) a = 0 x = 0 u = 1 v = −1
f) 0 1 ε ε′

g) 0 1 ε2 −ε
h) 0 2 ε3 ε′3

i) 1 1 1 −1
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Specific solutions

j) 1 1 −ε ε3

k) 1 ε 1 −ε′

l) 1
√

5 ε2 ε′3

m) 1 8 + 15ε ε13 ε′

n) 2
√

5 1 1
o) 2 ε3 ε3 1
p) 3 3 1 1
q) 3 5 + 2

√
5 ε5 1

r) 3 3 + 2
√

5 ε4 1
s) 4 17 + 8

√
5 ε9 1
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An example equation

The simultaneous Diophantine equations

X 2 − 2Y 2 = −1,
X 2 − 10Z 2 = −9

have the solutions

(X ,Y ,Z ) = (±1,±1,±1) or (±41,±29,±13)
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Another example

The simultaneous Diophantine equations

(X + 2)2 − 10Y 2 = −1,
(X − 2)2 − 2Z 2 = −1;

have the solutions

(X ,Y ,Z ) = (1,±1,±1) or (−5,±1,±5);
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Reminder on binary recurrence relations

A binary recurrence relation

Xn+1 = aXn + bXn−1

(where we require b = ±1) has auxiliary polynomial

f (z) = z2 − az − b

and general solution

Xn = c1α
n
1 + c2α

n
2

where α1, α2 are the roots of f .
If f has repeated root α, then Xn = (c1n + c0)αn .



himrlogo

Results Diophantine equations Diophantine solutions Diophantine problems Verification The end

Some more finiteness theorems

approximations p/q to algebraic α with
∣∣∣α− p

q

∣∣∣ < 1
q2+ε

integer solutions to f (x , y) = m where f of degree ≥ 3
integer solutions to F (x , y) = 0 where F is of degree ≥ 3
integral points on an elliptic curve over a number field
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Linear forms in logarithms

Suppose n ≥ 2 and that α1, ..., αn are non-zero algebraic
numbers of degree at most d , and height H(αi) at most A,
where d ≥ 4, A ≥ 4. Let b1, ...,bn be rational integers. The
linear form in logarithms

Λ = b1 logα1 + ...+ bn logαn

Assuming that the form Λ is non-zero, we aim to bound Λ away
from zero.
The current results are of the form

|Λ| > exp(−C(log A)κ log B)

where κ = κ(n) and C = C(n,d).
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An inequality of Baker

Suppose n ≥ 2 and that α1, ..., αn are non-zero algebraic
numbers of degree at most d , and height H(αi) at most A,
where d ≥ 4, A ≥ 4. If there are rational integers b1, ...,bn such
that

0 < b1 logα1 + ...+ bn logαn < exp(−λB)

where 0 < λ ≤ 1 and max{|b1|, ..., |bn|} ≤ B, then

B <
(

4n2
log A · λ−1

)(2n+1)2

.
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An inequality of Baker–Wüstholz

Let Λ = b1 logα1 + ...+ bn logαn. We have

log |Λ| > −(16nd)2(n+2)(log A)n log B

If there are rational integers b1, ...,bn such that

0 < b1 logα1 + ...+ bn logαn < exp(−λB)

where 0 < λ ≤ 1 and max{|b1|, ..., |bn|} ≤ B, then, if
B > 364800, we have

B <
(

(16nd)2(n+2)(log A)nλ−1
)1.25

.
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Verification

We consider the question of verifying that a list of solutions to a
Diophantine equation is complete.
This might arise after a naive search for (small) solutions, or as
a result of some other systematic search.
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Verifying solutions

Suppose that Xm and Yn are binary recurrent and we wish to
prove that (m,n) = (0,0) is the only solution to Xm = Yn + g.
From Baker’s method, we obtain a bound B such that any
solution must satisfy |m|, |n| < B. We can deduce that
m = n = 0 is the only solution if we can find integer moduli
M,N, with M,N > B, such that Xn = Ym + g implies M|m,N|n.
We need to find a set of primes p with associated exponents e
such that implies pe|m, and a similar set for n. To obtain M we
perform step P for a suitable set of primes p.
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Step P

Input. Moduli M,N for which M|m,N|n; prime p.
Output. Moduli M,Np, or M,N for which M|m,N|n.
Procedure. Suppose that pe−1 already divides N. Form a set S
of possible values for m mod pe: initially S will consist of the p
multiples of pe−1. Form a set Q of primes q such that the
sequence (Xn) mod q has a cycle length exactly divisible by pe.
Perform Step Q for each q in Q until S is reduced to the single
element 0, in which case return moduli Mp,N, or else fail, in
which case return M,N.
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Step Q

Input. Prime q such that (Xn) mod q has cycle length exactly
divisible by pe; set S of values modpe such that n mod pe is in
S.
Output. Modified set S′ ⊂ S such that n mod pe is in S′.
Procedure. Let the cycle lengths of (X ), (Y ) mod q be `X , `Y
respectively, and let hX = hcf {N, `X}, hY = hcf {M, `Y}. Let V
be the set of values Ym + g mod q for m between 1 and `Y with
m divisible by hY . Let S′ initially be the set {0}. For n from 1 to
`X with n divisible by hX and n mod pe in S, add n mod pe to S′

if Xn mod q is in V . Return S′.
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Algorithm A

Input. Two unital recurrent sequences (Xn), (Ym), an integer g
such that X0 = Y0 + g.
Output. Integers M, N such that Xn = Ym + g implies M divides
m, N divides n.
Procedure. Take a list L of primes to use as candidates for the
modulus q of step Q and compute the cycle lengths `X , `Y of
X , Y modulo (q) for every prime in L. Take a list H of primes to
use as the possible factors p of M and N. Set M and N initally
to 1. Repeat steps R and R’ until no more primes can be added
to M and N. Output M, N.
R) For each prime p in H, and for each power e of p, perform
step P for pe using the primes of L to form the set Q, taking the
next prime from H when step P fails.
R’) Proceed as step R with X , Y interchanged.
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Failure

It may happen that there is more than one solution to the
equation. In this case, step Q will never reduce the set S of
possible values to {0}, and step P will always fail. However,
examination of the possible values in S will give information
about the congruence classes of the further solutions (m,n)
modulo p for the p in H and it should then be possible to use
the Chinese Remainder Theorem and the Baker bounds to find
the further solutions exactly. These can then be added to the
known list and the process repeated with appropriate
subsequences of the X and Y .
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Failure

It will not be possible to carry out Step Q in order to add a
prime p from H to the modulus N unless there is a prime q in L
with the corresponding cycle length `X divisible by p. For given
p, it is not clear that there exists any such q. The existence of
such q for sufficiently large p is guaranteed by a theorem of
Stewart, although it should be noted that the lower bound for p
in our applications would be of the order 10266. However
Stewart also shows that there are only finitely many sequences
for which this lower bound cannot be taken to be 13.
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Conclusions

We have presented a practical method for proving the
completeness of a list of integral points on particular models of
an elliptic curve.

The method has been applied to giving a complete list of elliptic
curves over Q(

√
5) with good reduction away from 2.
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Questions?

Questions?
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