
AUTOMORPHIC FORMS ON REDUCTIVE GROUPS

ARMAND BOREL

1. Introduction

The goal of these notes is the basic theory of automorphic forms
and reductive groups, up to and including the analytic continuation of
Eisenstein series.

2. Notation

2.1. Let X be a set and f, g strictly positive real functions on X. We
write f ≺ g if there exists a constant c > 0 such that f(x) ≤ cg(x) for
all x ∈ X; similarly, f � g if g ≺ f , and f � g if f ≺ g and g ≺ f .

2.2. Let G be a group. The left (resp. right) translation by g ∈ G is
denoted lg (resp rg); these act on functions via

lg · f(x) = f(g−1x) , rg · f(x) = f(xg)(1)

2.3. Let G be a Lie group and g its Lie algebra. The latter may be
viewed as the tangent space T1(G) at the identity, or as the space of
left-invariant vector fields on G. If X1 ∈ T1(G), the associated vector
field is x 7→ x ·X1. The action of X on functions is given by

Xf =
d

dt
f(xetX)|t=0

The universal enveloping algebra U(g) is identified with the algebra of
left-invariant differential operators; the element X1X2 . . . Xn acts via

X1X2 . . . Xnf(x) =
dn

dt1 . . . dtn
f(xet1X1et2X2 . . . etnXn)|ti = 0.

Let Z(g) be the center of U(g). If G is connected, it is identified with
the left and right invariant differential operators. If G is connected and
reductive, it is a polynomial algebra of rank equal to the rank of G.
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2.4. Let G be unimodular. The convolution u ? v of two functions is
defined by

(2) u ? v(x) =

∫
G

u(xy)v(y−1)dy =

∫
G

u(y)v(y−1x)dy

whenever the integral converges. It is a smoothing operator: if u is
continuous and v ∈ C∞

c (G), then

(3) D(u ? v) = u ? Dv, D ∈ U(g)

and, in particular, u ? v ∈ C∞(G). It extends to distributions and is
associative. If g is identified to distributions with support {1}, then
Xf = f ? (−X); see section 2.2 of [6].

3. Notion of automorphic form

Let G be a subgroup of finite index in the group of real points of a
connected semisimple algebraic group G defined over R. Let K be a
maximal compact subgroup of G. Then X = G/K is the Riemannian
symmetric space of noncompact type of G. Let Γ ⊂ G be a discrete
subgroup.

3.1. A continuous function f ∈ C(G; C) is an automorphic form for
Γ if it satisfes the following conditions:

(A1) f(γx) = f(x).
(A2) f is K-finite on the right.
(A3) f is Z(g)-finite.
(A4) f is of moderate growth (or slowly increasing).

Explanation 1. f is K-finite on the right right means that the set of
right translates rkf , k ∈ K is contained in a finite dimensional space. f
is Z(g)-finite means that there exists an ideal J of finite co-dimension
in Z(g) which annihilates f . If f is not C∞, this is understood in the
sense of distributions, but in any case f will be analytic, cf. below. By
definition, G ⊂ SLN(R), and is closed. Let ‖g‖ be the Hilbert-Schmidt
norm of g ∈ SLN(R). Thus ‖g‖2 = tr (tg.g) =

∑
i,j g2

ij. Then f is of
moderate growth or slowly increasing if there exists m ∈ Z such that

|f(x)| ≺ ‖x‖m , (x ∈ G).

Let νm be the semi-norm on C(G, C) defined by νm(f) = sup f(x).‖x‖−m.
Then f is slowly increasing if and only if νm(f) < ∞ for some m. We
note some elementary properties of ‖ ‖:

(n1) ‖x.y‖ ≤ ‖x‖.‖y‖, and there is an m such that ‖x−1‖ ≺ ‖x‖m.
(n2) If C ⊂ G is compact, ‖x.y‖ � ‖y‖ for x ∈ C, y ∈ G.
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Remark 3.1. The notion of moderate growth (but not the exponent
m) is independent of the embedding. One can also define a canonical
Hilbert-Schmidt norm as follows: On g, let K(x, y) = tr (ad x ◦ ad y)
be the Killing form, and let θ be the Cartan involution of G with
respect to K. Then the form (x, y) = −K(θx, y) is positive definite on
g. Then the associated Hilbert-Schmidt norm on the adjoint group is
‖g‖2 = tr (Ad θg−1.Ad g) (Exercise).

3.2. Relation with classical automorphic forms on the upper
half plane. Here G = SL2(R), K = SO2, and X = {z ∈ C | =z > 0 },
the action of G being defined by(

a b
c d

)
.z =

az + b

cz + d
, (z ∈ X).

Let (cz + d)m = µ(g, z). It is an automorphy factor, i.e.

(4) µ(g.g′, z) = µ(g, g′.z)µ(g′, z).

K is the isotropy group of i ∈ X. Equation 4 gives for k, k′ ∈ K, and
z = i

(5) µ(kk′, i) = µ(k, i)µ(k′, i),

i.e. k 7→ µ(k, i) is a character χm of K.
Let Γ be a subgroup of finite index in SL2(Z). An automorphic form

f on X of weight m is a function satisfying

(A1’) f(γ.z) = µ(γ, z)f(z)
(A2’) f is holomorphic
(A3’) f is regular at the cusps.

Let f̃ be the function on G defined by

f̃(g) = µ(g, i)−1f(g.i).

Then (A1’) for f implies (A1) and (A2) for f̃ by a simple computation
using 5. Note in particular

(6) f̃(g.k) = f̃(g)χ−m(k).

The condition (A2’) implies that f̃ is an eigenfunction of the Casimir
operator C. As C generates Z(g), this yields (A3). Consider the cusp
at ∞. In the inverse image of the “Siegel set” |x| ≤ c and y > t,

where c and t are positive constants, it is easily seen that ‖g‖ � y
1
2 ,

hence moderate growth means ≺ ym for some m. On the other hand,
Γ contains a translation x 7→ x + p, for some non-zero integer p. Since
f is invariant under this translation in the x direction, f admits a
development in a Laurent series

∑
n an exp(2πinz

p
). For f to be bounded
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by ym in the Siegel set, it is necessary and sufficient that an = 0 for
n < 0. This is the regularity condition (A3’). (cf. [6], 5.14)

4. First properties of automorphic forms

In this section, G, K, X, and Γ are as in 1.1, and f is an automorphic
form for Γ.

4.1. f is analytic. For this it suffices, by a regularity theorem, to show
that it is annihilated by an analytic elliptic operator.

Let g = k ⊕ p be the Cartan decomposition of g, where p is the
orthogonal complement of k with respect to the Killing form. The
latter is negative (resp. positive) definite on k (resp. p). Let {xi} (resp.
{yj}) be an orthonormal basis of k (resp. p). Then a Casimir operator
can be written Cg = −

∑
x2

i +
∑

y2
j , and Ck =

∑
i x

2
i is a Casimir

operator for k. Let Ω = 2Ck + Cg. It is an analytic elliptic operator.
We claim that f is annihilated by some non-constant polynomial in Ω,
which will prove our assertion. The function f is annihilated by an
ideal J of finite codimension in Z(g) (by (A3) ) and, since f is K-finite
on the right, it is annihilated by an ideal l of finite codimension of
U(k). Therefore f is annihilated by an idea of finite codimension of the
subalgebra Z(g).U(k) of U(g). But then there exists a polynomial of
strictly positive degree P (Ω) in Ω belonging to that ideal.

4.2. A function α on G is said to be K-invariant if α(k.x) = α(x.k)
for all x ∈ G, k ∈ K. We have the following theorem:

Theorem. Given a neighborhood U of 1 in G, there exists a K-invariant
function α ∈ C∞

c (U) such that f = f ? α.

This follows from the fact that f is Z-finite and K-finite on one side,
by a theorem of Harish-Chandra. See ([12], theorem 1) or ([1], 3.1),
and for SL2(R) ([6], 2.13).

4.3. A smooth function u on G is said to be of uniform moderate growth
if there exists m ∈ Z such that νm(Df) < ∞ for all D ∈ U(g).

An elementary computation shows that if νm(u) < ∞, then

νm(u ? α) < ∞
for any α ∈ C∞

c (G). Since, D(f ? α) = f ? Dα, the previous theorem
implies that

Corollary. An automorphic form is of uniform moderate growth. More
generally, if f has moderate growth, then f ? α is of uniform moderate
growth.



AUTOMORPHIC FORMS ON REDUCTIVE GROUPS 5

4.4. We intercalate some facts needed in the sequel. Since G is a
closed subgroup of SLN(R), it is clear that ‖.‖ has a strictly positive
minimum, say t0 on G. Fix a Haar measure on G. For t ≥ t0, let

(7) Gt = {g ∈ G | ‖g‖ ≤ t}.
There there exists m ∈ N such that

(8) vol (Gt) ≺ tm , (t ≥ t0).

(cf Lemma 37 of [13]). The proof will be sketched later, once we have
reviewed some structure theory of reductive groups. Also,

(9) #(Γ ∩Gt) ≺ tm.

To see this, fix a compact neighborhood C of 1 such that

Γ ∩ C.C−1 = {1}.
In view of (n1), there exists a constant d > 0 such that

‖x‖ ≤ d‖γ‖ , (γ ∈ Γ, x ∈ C.γ).

So ⋃
γ∈Gt∩Γ

Cγ ⊂ Gdt, (disjoint union),

whence
vol C.#(Γ ∩Gt) ≺ vol Gdt ≺ tm,

which proves (9).
If C is a compact subset of G, then

(10) #(Γ ∩ xCy) ≺ ‖x‖m.‖y‖m, (x, y ∈ G).

The property (n1) of ‖.‖ with respect to product implies the existence
of a constant c > 0 such that xCy ⊂ Gc‖x‖.‖y‖, so that (9) implies (10).

4.5. We have the following lemma:

Lemma. Let α ∈ C∞
c (G). There exists n ∈ N such that |u ? α(x)| ≺

‖x‖n‖u‖1.

([13], Lemma 8 and corollary). We sketch the argument. We have
(11)

|u ? α(x)| ≤
∫

G

dy|u(y)||α(y−1x)| =
∫

Γ\G
|u(y)|

∑
γ

|α(y−1γ−1x)|dy

so that it suffices to show the existence of N such that

(12)
∑

γ

|α(y−1γx)| ≺ ||x||N

We may assume that α is the characteristic function of some compact
symmetric set C. Then the sum on the left of 12 is equal to
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#(Γ ∩ yCx−1). Fix δ in that set. Then, for any γ in it, we have
δ−1γ ∈ xC−1y−1yCx−1 = xC2x−1, so that the left hand side of 12 is
equal to #Γ ∩ xC2x−1, and our assertion follows from 10 and (n1).

Proposition 4.1. Assume that vol(Γ\G) < ∞. Let u be a function on
G which satisfies (A1), (A2), (A3) and belongs to Lp(Γ\G) for some
p ≥ 1. Then f has moderate growth, i.e. is an automorphic form.

Proof. Since Γ\G has finite volume, Lp(Γ\G) ⊂ L1(Γ\G), so we may
assume p = 1. By (A2) and (A3), there exists α ∈ C∞

c (G) so that
u = u ? α. The proposition now follows from 4.5. �

4.6. We now recall some formalism to describe more precisely the
notion of a K-finite function. Let dk be the Haar measure on K of
mass 1. As usual, let K̂ be the set of isomorphism classes of (finite

dimensional) continuous irreducible representations of K. For ν ∈ K̂,
let d(ν) be its degree, χν its character, and eν = d(ν)χνdk, viewed as
a measure on G with support on K. Let u ∈ C(G) be K-finite on the
right, and more precisely, belonging to an irreducible K-module, under
right translations, of type ν. Then we leave it as an exercise to deduce
from the Schur orthogonality relations that:

(13) u ? eµ =

{
u µ = ν

0 µ 6= ν

and therefore eν is an idempotent, a projector of C(G) on the isotypic
subspace of type ν, and we have eµ ? eν = 0 if µ 6= ν. Consequently,
u is K-finite on the right if and only if there exists an idempotent ξ
which is a finite sum of eν , such that u ? ξ = u. The element ξ will be
called a standard idempotent.

Assuming (A3) expressed in this way, we let A(Γ, J, ξ) be the space
of automorphic forms such that J.f = 0 and f ?ξ = f , where, as before,
J is an ideal of finite codimension of Z(g).

We shall see that if Γ is arithmetic, then A(Γ, J, ξ) is finite dimen-
sional. This theorem is due to Harish-Chandra.

5. Reductive groups (review)

We review here what is needed in this course. The catch-words
are split tori, roots and parabolic subgroups. We first start with an
example.
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5.1. GLn(R) and SLn(R). Let A be the subgroup of diagonal matrices
with strictly positive entries and a its Lie algebra. The exponential is
an isomorphism of a onto A, with inverse the logarithm. Let X(A) be
the smooth homomorphisms of A into R∗

+. IF λ ∈ X(A), we denote

by aλ the value of λ on a. Let λ̇ be the differential of λ at 1. It is a
linear form on a and we can also write aλ = exp(λ̇(log(a))), a notation

which is often used in representation theory. Note that λ 7→ λ̇ is an
isomorphism of X(A) onto a∗.

Let λi be the character which associates to a its ith coordinate.
The λi span a lattice in X(A) to be denoted X(A)Z. Its elements are
therefore the characters a 7→ am1

1 am2
2 . . . amn

n , for mi ∈ Z.
[Interpretation: Let T = (C∗)n, and let X?(T ) be the group of ratio-

nal morphisms of T into C∗. It is a free abelian group of rank n and
X(A)Z is the restriction of X?(T ) to A. In particular, an element of
X(A)Z extends canonically to T .]

5.1.1. Roots. For β ∈ X(A), let

(14) gβ = {x ∈ g : Ad (a).x = aβx}

β is called a root if it is nonzero and gβ 6= 0. If so, it is immediately
checked that there exist i, j ≤ n, i 6= j, such that gβ is one-dimensional,
spanned by the matrix eij with entry 1 at the (i, j) spot and zero
elsewhere, and that aβ = ai/aj, i.e. β = λi − λj.

We let Φ = Φ(A, G) = Φ(a, g) be the set of roots of G with respect
to A (their differentials are the roots of g with respect to a). They span
a lattice of rank n− 1 and form a root system of type An−1. We have

(15) g = a⊕⊕β∈Φgβ

Fix the ordering on X(A) defined by λ1 > λ2 > . . . and let ∆ =
{αi}1≤i≤n−1, where αi = λi − λi+1. The elements of ∆ are the simple
roots (for the given ordering). Any root is a linear combination of the
αi with integral coefficients of the same sign. The Weyl group W (Φ)
of the root system may be identified to

(16) W (Φ) = N (A)/Z(A)

Note that:

(17) Z(A) = M × A, M = (Z/2Z)n

(18) W (Φ) = Sn where Sn is the symmetric group on n letters
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5.1.2. Parabolic subgroups. The general definition of parabolic sub-
groups will be recalled in 5.2. For GLn or SLn they are the stability
groups of flags, and we take this as a definition. A flag is an increasing
sequence F

(19) {0} = V0 ⊂ V1 ⊂ · · · ⊂ Vs−1 ⊂ Vs = Rn of subspaces of Rn.

It is conjugate to a standard flag in which the Vi are coordinate sub-
spaces. Let ni = dim Vi/Vi−1. Then n = n1 + n2 + · · · + ns, and
dim Vi = n1 + · · · + ni. The stabilizer P of F is the group of matrices
which are “block triangular”

(20)


A1 ∗ ∗ ∗
0 A2 ∗ ∗
0 0 . . . ∗
0 0 0 As

 ,

Ai ∈ GLni
. P is a semi-direct product P = LP .NP where NP is the

“unipotent radical” and consists of upper triangular matrices with I
in the blocks and LP is reductive, and equal to GLn1(R)×GLn2(R)×
· · · ×GLns(R). Let AP be the intersection of A with the center of LP .
It consists of diagonal matrices which are scalar multiples ciIni

of the
identity in the ith block. We have

(21) LP = MP × AP

where MP consists of matrices (g1, . . . , gs) with gi ∈ GLni
(R) of deter-

minant ±1.
Given J ⊂ ∆, we let AJ = ∩α∈J ker α. Then we have

(22) AP = AJ where J = ∆− {αn1 , αn1+n2 , . . . , αn1+···+ns−1}.
We shall also write PJ for the present P . Thus P∅ is the group of upper
triangular matrices and P∆ = G. We shall also write NJ and MJ for
NP and MP . Note that LJ = Z(AJ). Thus we have PJ = MJAJNJ

where MJAJ = Z(AJ). The Lie algebra of MJ (resp. NJ) is spanned
by the gβ (β linear combination of elements of J) (resp. β > 0, not in
the span of J).

This was all for GLn(R). One gets the similar objects for SLn(R) by
taking subgroups of elements of determinant 1.

5.2. In this subsection, we review some general facts about linear
algebraic groups and in the next one we specialize to the main case of
interest in this course. See [1](a) for a more extended survey and [5],
[15] for a systematic exposition. F is a field (commutative as usual)
and F̃ an algebraically closed extension of infinite transcendence degree
over its prime subfield.
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5.2.1. The group G ⊂ GLn(F̃ ) is algebraic if there exists a set of
polynomials Pi (i ∈ I) in n2 variables with coefficients in F̃ , such that

(23) G = {g = (gij) ∈ GLn(F̃ ), Pi(g11, g12, . . . , gnn) = 0, (i ∈ I)}.

It is defined over F if the ideal of polynomials in F̃ [X11, X12, . . . , Xnn]
vanishing on G is generated by elements with coefficiens in F . Its
coordinate ring, or ring of regular functions (resp. defined over F ) is

the ring generated over F̃ (resp. F ) by the gij and (det g)−1. We also
say that G is an F -group if it defined over F . For any extension F ′ of
F in F̃ , we let G(F ′) be the subgroup of elements in GLn(F ′).

If G′ is another F -group, a morphism q : G → G′ is a group ho-
momorphism such that q◦ : f 7→ q ◦ f maps F̃ [G′] into F̃ [G]. It is
defined over F if q◦ maps F [G′] into F [G]. We let X?(G) be the group
of morphisms of G into F̃×. If λ ∈ X?(G) is defined over F , it maps
G(F ) into F×.

5.2.2. Recall that any g ∈ GLn(F̃ ) admits a unique (multiplicative)
Jordan decomposition

(24) g = gsgu,

with gs semi-simple, gu unipotent (all eigenvalues equal to 1), such
that gsgu = gugs. if g ∈ G, then so are gs, gu. This decomposition is
compatible with morphisms of algebraic groups.

5.2.3. The algebraic group T is a torus (or an algebraic torus) if it is
connected (as an affine variety) and consists of semi-simple elements.
It is then commutative, isomorphic to a product of groups F̃× and di-
agonalizable. The group X?(T) is free abelian, of rank equal to the
dimT = n. Any elements of X?(T) is of the form t 7→ tm1

1 tm2
2 . . . tmn

n

(mi ∈ Z). Assume it is defined over F . Let X?(T)(F ) be the sub-
group of characters defined over F . The group T is said to split (resp.
anisotropic) over F , if X?(T)(F ) = X?(T) (resp. X?(T)(F ) = {1}). In
general, the group T can be written as an almost direct product

T = Tsp.Tan (Tsp ∩Tan finite ),

where Tsp (resp. Tan) is split (resp. anisotropic) over F .
If F = R, Tan is a torus in the usual topological sense (product of

circles).
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5.2.4. We use the language of Zariski-topology on G. In particular,
a subgroup H of G is closed if and only if it is algebraic. If so, G/H
admits a canonical structure of algebraic variety with a universal prop-
erty: any morphism of G into an algebraic variety which is constant
on the left cosets xH can be factored through G/H.

5.2.5. Let G be connected. A closed subgroup P is parabolic if G/P is
a projective variety. The radical RG (resp. unipotent radical RuG) is
the greatest connected normal solvable (resp. unipotent, i.e. consisting
of unipotent matrices) subgroup of G. The quotient G/RG (resp.
G/RuG) is semisimple (resp. reductive, i.e. almost direct product
of a semisimple group and a torus). If F has characteristic zero, the
maximal reductive F -subgroups of G are conjugate underRuG(F ) and
G is the semi-direct product of RuG by any one of them.

5.3. From now on, F is a subfield of R (mostly Q or R) and F̃ = C.
Our algebraic groups are then also complex Lie groups. If G is defined
over R, then G(R) is a real Lie group. We assume familiarity with
Lie theory and use both points of view, transcendental (based on the
topology inherited from that of R or C) and algebraic (based on the
Zariski topology). The emphasis being here on real Lie groups, we shall
deviate on one point from the notation in 5.2.1 by denoting the real
points of the R-group G by the corresponding ordinary capital letter,
thus writing G rather than G(R).

5.3.1. Let G be a connected reductive F -group. Let S = Z(G)◦ be
the identity component of its center. It is a torus defined over F . We
denote by AG the identity component (ordinary topology) of Ssp(R).

Let λ ∈ X?(G)(F ). It maps G into R×. We let |λ| be the composition
of λ with the absolute value. It maps G into R×

+. Let ◦G be the
intersection of the kernels of the |λ|, λ ∈ X?(G)(F ). Then we have a
direct product decomposition

(25) G = ◦G× AG.

This follows from the fact that the restriction to Ssp maps X?(G)(F )

onto a subgroup of finite index of X?(Ssp). Note that AG depends
on F , which is why we index with G rather than G. The group ◦G
contains the derived group of G, San and every compact subgroup of
G.
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5.3.2. The maximal F -split tori of G are conjugate under G(F ). Fix
one, say S and let F A, or simply A if F is understood, be the identity
component of S(R). It can be diagonalized over F . In the case of
GLn(R), it may be identified with the group so denoted in 5.1. Let
X(A) and X?(A) be identified as there. For β ∈ X?(A), we define
gβ as in 5.1 and call it a root or F -root if it is non-zero and gβ 6= 0.
The roots form a root system F Φ(A, G) (in the sense of Bourbaki)
in the subspace of X(A) they generate, which can be identified with
X(A/AG). It is not empty if and only if A 6= AG. Unlike in 5.1, the gβ

need not be one-dimensional and A is not in general of finite index in
its normalizer. By (25), we can write

(26) Z(A) = M × A, where M = ◦Z(A).

The Weyl group W = W (A; G) of G with respect to A is again
N (A)/Z(A). The equality (15) is replaced by

(27) g = m⊕ a⊕⊕β∈ F Φgβ.

5.3.3. The maximal tori of G are its Cartan subgroups. G is said
to be split over F if it has a maximal torus (they always exist) split
over F . The group G is anisotropic over F if it does not contain
any F -split torus of strictly positive dimension and isotropic otherwise.
For instance, the group M in (26), or rather its complexification, is
anisotropic over F . Note that G and DG have the same F -root system,
which is empty if and only if DG is anisotropic over F .

5.3.4. The parabolic F -subgroup of G are, by definition, the groups
of real points of the parabolic F -subgroups of G. There exist proper
ones if and only if DG is isotropic. Fix an ordering on F Φ, let F Φ+ be
the set of positive F -roots and F ∆ the set of simple F -roots. Given
J ⊂ F ∆, let as in 5.1.2

(28) AJ = ∩α∈J ker α.

Then the parabolic subgroup PJ or F PJ is generated by Z(AJ) and
the subgroup N with Lie algebra ⊕β>0gβ. It admits the semidirect
decomposition

(29) PJ = LJ .NJ ,

where LJ = Z(AJ). Let ΦJ be the set of roots which are linear combi-
nations of elements in J . The group NJ is the unipotent radical of PJ .
It has Lie algebra

(30) nJ = ⊕β>0,β /∈ΦJ
gβ.
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The Lie algebra lJ of LJ is sum of the gβ (β ∈ ΦJ) and of m⊕ a. This
describes the identity component L◦

J of LJ , but LJ is not necessarily
connected. It is generated by L◦

J and Z(A). By applying (26) we get

(31) LJ = MJ × AJ , where MJ = ◦LJ .

If P is defined over F , we denote LP , AP , MP the corresponding data.
We have therefore the decompositions

(32) P = NP .AP .MP (semidirect)

(33) G = NP .AP .MP .K

If we write g = n.a.m.k (n ∈ NP , a ∈ AP , m ∈ MP , k ∈ K), then n and
a are uniquely determined and will be denoted n(g), a(g), whereas m
and k are determined up to an element of MP ∩K.

5.3.5. Langlands decomposition. In (32), (33), NP is uniquely deter-
mined, but MP and AP are determined only up to conjugacy. The
group K being fixed once and for all, it is customary to normalize
the choice of LP, AP, MP be requesting them to be invariant under
the Cartan involution θ = θK having K as its fixed point set. This
determines them uniquely. Note that by doing so, one usually drops
the requirement that they be defined over F . However, the projection
P → P/NP = LP is defined over F and induces an isomorphism of
any Levi subgroup of P onto LP , so that the notions defined over F
in LP can be transported to any subgroup. The decomposition (32),
(33) so normalized are called Langlands decompositions. Note that if
P ⊂ P ′, then AP ′ ⊂ AP , MP ⊂ MP ′ (besides NP ′ ⊂ NP which is true
regardless of normalization).

5.3.6. Two parabolic F -subgroups are associate if a conjugate of one
has a common Levi subgroup with the other and are opposite if their
intersection reduces to a Levi subgroup. The transform θ(P ) is a par-
abolic subgroup P ′ opposite to P , the only one such that P ∩ P ′ is
θ-stable. It is not necessarily defined over F (unless K is defined over
F ), but it is conjugate to an F -subgroup. Indeed P ∩ P ′ is conjugate
under NP to a Levi F -subgroup and this conjugation brings P ′ to an
F -subgroup P ′′. (If P = PJ is standard, then the Lie algebra of the
unipotent radical of P ′′ = P−

J is spanned by the spaces gβ (β < 0 is
not a linear combination of elements in J).)
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5.3.7. Caution. The data constructed above depend on the choice of
F . It would have been more correct to add a left subscript F to AP ,
MP , etc. If F ⊂ F ′, then

(34) F AP ⊂ F ′AP, F MP ⊃ F ′MP, F LP = F ′LP.

(but NP is independent of F , of course). If G splits over F , these
subgroups are independent of F .

5.3.8. We finish up with some notation. We state it over Q, but
analogous notions can be defined over R or any field. A pair (P, AP )
is called a p-pair, Φ(P, AP ) denotes the set of weights of AP on nP.
They are the integral linear combinations, with positive coefficients, of
the set of simple roots Q∆(P, AP ). (If P = PJ is standard, Q∆(P, AP )
consists of restrictions of Q∆ − J). The Q-rank rkQ(G) of G is the
dimension of its maximal Q-split tori. The parabolic rank prkQ(P)
over Q of P is the common dimension of the maximal Q-split tori of
its Levi Q-subgroups. In particular, prkQG = dim AG.

The parabolic rank and the sets QΦ(P, AP ), Q∆(P, AP ) were intro-
duced first over R in representation theory (by Harish-Chandra).

5.4. Orthogonal groups. We provide here a second example giving
a concrete interpretation of the objects described in general in 5.3, for
GLn in 5.1, assuming some familiarity with the theory of quadratic
forms. Let VQ be an n-dimensional vector space over Q and F a non-
degenerate quadratic form on VQ. It is said to be isotropic if there exists
v ∈ VQ\{0} such that F (v) = 0, anisotropic otherwise. A subspace of
VQ is isotropic if the restriction of F to it is zero. The (common)
dimension of the maximal isotropic subspaces of VQ is the index of F .

We let V = VQ ⊗ C and view F as defined on V . Let O(F ) be
the subgroup of GL(V ) leaving F invariant and SO(F ) its subgroup of
elements of determinant one. Let G = SO(F ). It is defined over Q.
We assume the index p of F to be > 0. There exists a basis {ei} of VQ
such that

(35) F (x) =

p∑
i=1

xi.xn−p+i + F0,

where F0 is a non-degenerate anisotropic quadratic form on the sub-
space spanned by ep+1, . . . , en−p. Then {e1, . . . , ep} on one hand, and
{en−p+1, . . . , en} on the other, span maximal isotropic subspaces. A
maximal Q-split torus is the group of diagonal matrices

(36) diag (s1, . . . , sp, 1, . . . , 1, sn−p+1, . . . , sn),
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where si.sn−p+i = 1. The corresponding subgroup A is the group of
elements of the form (36) with si real, strictly positive. Then

(37) Z(A) = A× SO(F0)× (Z/2Z)p

The Lie algebra g of G is

(38) g = {C ∈ Mn(R) |C.F + F. tC = 0}.
Let again λi ∈ X?(A) be the character with assigns to a ∈ A its ith

coordinate: aλi = ai (1 ≤ i ≤ p). To find the roots, one has to let
a ∈ A act on g by adjoint representation C 7→ a.C.a−1. To determine
them, it is convenient to write C as a 3 × 3 block C = (Cij) (1 ≤
i, j ≤ 3) corresponding to the subsets {e1, . . . , ep}, {ep+1, . . . , en−p},
and {en−p+1, . . . , en}. We leave it as an exercise to find the conditions
on the Cij given by (38) and to see the roots are

λi − λj (i 6= j) with multiplicity one

±(λi + λj) (i 6= j) with multiplicity one

and, if n 6= 2p,

(39) ±λi with multiplicity n− 2p.

If n 6= 2p, then a system of simple roots is given by α1 = λ1 − λ2,
α2 = λ2 − λ3, . . . , αp−1 = λp−1 − λp, and αp = λp. Thus F Φ is of type
Bp if n 6= 2p, and Dp if n = 2p. The group is split over F if (and only
if) n− 2p = 0, 1.

Again, let n 6= 2p. A standard isotropic flag is an increasing sequence
of isotropic subspaces

(40) 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vs = V

where Vi is of dimension d(i), spanned by e1, . . . , ed(i) (1 ≤ d(1) <
d(2) < · · · < d(s) = p). Let ni = d(i) − d(i − 1) (i = 1, . . . , s). The
standard parabolic subgroups are the stabilizers of standard isotropic
flags. The stabilizer of the flag (40) is the group PJ , where J =
{αd(1), αd(2), . . . , αd(s−1)}. It is represented by matrices which are block
upper triangular, with the diagonal blocks consisting of matrices of the
form

g1, . . . , gs, g0,
tg−1

s , . . . , tg−1
1 ,

where gi ∈ GLni
(R) (1 ≤ i ≤ s) and g0 ∈ SO(F0). The entries of

an elements g ∈ PJ are zero below the diagonal blocks; those above
the blocks are subject only to conditions derived from the fact that
g ∈ G = SO(F ).

If n = 2p, there is a slight modification in the description of maximal
proper parabolic subgroups (cf. e.g. [7], 7.2.4).
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6. Arithmetic subgroups. Reduction theory

From now on F = Q, R (and F̃ = C as before).

6.1. Let G be a Q-group and G ⊂ GLn a Q-embedding. A subgroup
Γ ⊂ G(Q) is arithmetic if it is commensurable with G ∩ GLn(Z) (i.e.
Γ ∩ (G ∩ GLn(Z)) is of finite index in both groups). This notion is
independent of the embedding.

The group ◦G can also be defined as ∩χ∈X(G) ker χ2, hence can be
viewed as a Q-group (or rather the group of real points in one).

Let G be reductive. Then Γ ⊂ ◦G and Γ\ ◦G has finite invariant
measure. It is compact if and only if Γ consists of semi-simple elements,
or if and only if DG is anisotropic over Q. In the non-compact case,
the purpose of reduction theory is to construct fundamental sets in G
with respect to Γ. It relies on the notion of Siegel set.

6.2. Siegel sets. We let PQ be the set of parabolic Q-subgroups of G.
It is operated upon by conjugation by G(Q), in particular by Γ. It is
known that Γ\PQ is finite. Let P ∈ PQ. To remind us that we are
dealing with the Langlands decomposition of P relative to Q we shall
write in bold face the subscript P . Fix t > 0. We let

(41) AP,t = {a ∈ AP , aα ≥ t (α ∈ Q∆)}

(it is equivalent to require aα ≥ t for all α ∈ QΦ+).
The Langlands decomposition of P can also be written as

P = NP.MP.AP. A Siegel set SP,t,ω, where ω ⊂ NP .MP is relatively
compact, is that set

ω.AP,t.K.

A simple computation ([5], 12.5) shows that if AG = {1}, then SP,t,ω

has finite volume with respect to Haar measure.
Remark. The Siegel sets are defined here as subsets of G. Tradition-
ally, they were introduced as subsets of X, namely, the orbits of the
origin by our Siegel set, and that mostly with respect to a minimal
parabolic subgroup, in the split case. For instance, if G = GLn(R),
K = On, X is the space of positive quadratic forms and P is the upper
triangular matrices, then a Siegel set in X is the set of quadratic forms
of the form na. t(na), where a is diagonal with entries ai satisfying
ai ≥ tai+1 (1 ≤ i ≤ n) and n is upper triangular, with coefficients nij

(i < j) bounded in absolute value by some constant. For SLn(R), one
requires moreover

∏
ai = 1. If n = 2 and X is the upper half plane

X = {z = x+iy ∈ C, y > 0}, then a Siegel set is given by the conditions
|x| ≤ c and y > t.
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6.3. We keep the previous notation.

Theorem. Let P be a minimal parabolic Q-subgroup and S = SP,t,ω

a Siegel set with respect to P and C a finite subset of G(Q). Then the
set

(42) {γ ∈ Γ, γ(C.S) ∩ C.S 6= ∅}
is finite (Siegel property). There exists such a set C and S such that
G = Γ.C.S.

A set C.S satisfying the last condition will be called a fundamental set.
It is easily seen that if c ∈ G(Q), then cS is contained in a Siegel set
for cP.

The theorem can also be expressed by stating that if P1, . . . ,Ps

are representatives of the Γ-conjugacy classes of minimal parabolic Q-
subgroups, then there exists Siegel set SPi,ti,ωi

, the union of which
covers Γ\G. G cannot be covered by less than s such subsets. Each is
said to represent a cusp. The one-cusp case occurs for some classical
arithmetic subgroups such as SLn(Z) or Sp2n(Z). More generally for
arithmetic subgroups of Q-split groups associated to admissible lattices
in the sense of Chevalley. In the adelic case, where the role of Γ is played
by G(Q), there is only one cusp.

6.4. Moderate growth condition. Fix now a maximal (not nec-
essarily split) torus T ⊃ A. There is a corresponding root system
Φ(T C, gC); the restriction of any α ∈ Φ(T C, gC) to any AP is either zero
or an element of Φ(G, AP ). We choose a positive system in Φ(T C, gC)
so that for each α ∈ Φ(T C, gC)+, the restriction of α to AP is either
zero or an element of Φ(P, AP ).

Identity G with a subgroup of some GLN via a Q-embedding ρ. The
representation ρ is the a finite sum of irreducible ones, with highest
weights λ1, . . . , λk, say; these are characters of T C that are real-valued
and positive on AP .

Let S be a Siegel set with respect to the parabolic subgroup P . We
claim that

(43) ‖g‖2 �
∑

i

aP (g)2λi (g ∈ S).

We can assume AP to be in diagonal form. The entries are then weights
of ρ. Given such a weight µ, there exists i such that µ = λi−

∑
mα.α,

where α ∈ Q∆(P, AP ) and mi ∈ N. Whence ‖g‖2 ≺
∑

i aP (g)2λi . The
other direction is obvious.

Let f be a function on S. As a consequence, we see that f is of
moderate growth on S (in the sense of section 3), if and only if there
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exists λ ∈ X(AP) such that

(44) |f(g)| ≺ a(g)λ (g ∈ S).

We define f to be fast decreasing on S if and only if 44 is true for any

λ ∈ X(AP). Equivalently, |f(g)| ≺ ‖g‖−N for all N .
Consider the following three conditions on a continuous function f

on Γ\G:

(i) f has moderate growth.
(ii) f has moderate growth in the sense of (44) on each Siegel set

of G.
(iii) f has moderate growth in the sense of (44) on a fundamental

set Ω (as defined in theorem 6.3).

Claim. These conditions are equivalent.

Clearly, (i) implies (ii), by the above. Also (ii) giving (iii) is obvious.
Assume now (iii). Then f has moderate growth on a fundamental set
Ω. However, f(γg) = f(g) for all γ ∈ Γ, g ∈ G, whereas ‖γg‖ depends
of course also on γ. But we have

(45) ‖g‖ � inf
γ∈Γ

‖γ.c.g‖ (γ ∈ Γ, c ∈ C, g ∈ S),

a result of Harish-Chandra which clearly shows that (iii) implies (i).
Harish-Chandra’s proof of (45) is given in ([2], II, §1, Prop. 5).

6.5. In §3, we assumed, to avoid preliminaries, that G was semi-
simple. However, the definition is of course valid if G is reductive.
In the present case, we shall have to know more precisely the depen-
dence on AG. To express this, we need the following definition, in which
A is a closed connected subgroup of AG.

A function f on A is an exponential polynomial if there exist elements
λi ∈ X(A) and polynomials Pi on a (1 ≤ i ≤ s) such that

(46) f(a) =
∑

i

aλi .Pi(log a) (a ∈ A).

Then one has the following result:

6.6. Proposition. Let f be a smooth Z(g)-finite function on Γ\G.
Then there exist exponential polynomials Qi on A and polynomials
Pi ∈ Z(g) such that

f(x.a) =
∑

i

Qi(a)Pif(x) (a ∈ AG, x ∈ ◦G).

More generally, this is valid with respect to a decomposition G = G′×A,
with A ⊂ AG and ◦G ⊂ G′, and the proof reduces to the case where A
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is one-dimensional, in which case it is an exercise in ODE. A proof is
given in ([2], II, §3, lemma 3) or ([13], p. 20).

6.7. For later reference, we end this section with an elementary fact
about the function a(x)λ. Namely, if C is compact in G, then

(47) a(x.c)λ � a(x)λ (x ∈ G, c ∈ C)

for any λ ∈ X(A).
Write x = n.m.a.k as usual. Then a(x.c) = a(x).a(k.c). But k varies

in a compact set, hence a(k.c) � 1 as c varies in C and k ∈ K. This
proves (47).

7. Constant terms. Fundamental estimate

7.1. Let P ∈ PQ and P = NP.AP.MP be the Langlands decomposi-
tion of P . We let

(48) ΓP = Γ ∩P, ΓNP
= Γ ∩NP, ΓMP

= Γ/ΓNP
,

and denote by πP the canonical projection P → P/NP = L̄P .
The group L̄P is defined over Q and has a decomposition L̄P =

M̄P .ĀP . Then ΓM is an arithmetic subgroup of L̄P , hence is contained
in M̄P . Note that in general, MP is not defined over Q, so that it would
not make good sense to define ΓM as Γ ∩MP . Even if MP is defined
over Q, the group Γ ∩MP might map under πP only to a subgroup of
finite index of ΓM . We have however, obviously

(49) π−1
P (ΓM) = ΓP .NP .

The projection πP induces an isomorphism of MP onto M̄P which allows
one to give MP a Q-structure.

7.2. Constant term. It is well-known that ΓNP
\NP is compact. Let

dn be the Haar measure on NP which gives volume 1 to ΓNP
\NP. Let

f be a continuous function on Γ\G. Its constant term fP , or if Γ needs
to be mentioned fP,Γ, is defined by

(50) fP (g) =

∫
ΓNP

\NP

f(ng) dn.

The function f is cuspidal if its constant terms with respect to all
proper parabolic Q-subgroups are zero.
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7.3. Elementary properties of the constant term. Those stated
without explanation are left as exercises.

(a) Let γ ∈ Γ and P ′ = γP . Then fP ′(g) = fP (γg) for g ∈ G.
(b) If Γ′ is a subgroup of finite index of Γ, then fP,Γ′ = fP,Γ.
(c) As a function on G, fP is left-invariant under ΓP.NP.
(d) Let u ∈ Cc(G). Then (f ? u)P = fP ? u.

7.4. The function fP is left-invariant under NP, its restriction to P
will be viewed as a function on NP\P = LP. It is left-invariant under
ΓLP

.
We have to see that if f is an automorphic form for Γ, then fP (so

viewed) is an automorphic form for ΓM .

(a) KP = K∩MP is a maximal compact subgroup of MP (and of LP

and P as well). We choose KP as maximal compact subgroup
of LP . It is then clear that if f is K-finite on the right, then fP

is KP -finite on the right, of a type determined by that of f .
(b) We may take for H.S. on LP the restriction of the H.S. norm

on G for a given embedding. Then, clearly, if f is of moderate
growth (resp. fast decrease) on G, then so is fP on L̄P .

(c) There remains to see that if f is Z(g)-finite, then fP is Z(lP )-
finite. This relies essentially on a theorem of Harish-Chandra.
There is a natural homomorphism ν : Z(g) → Z(lP ) such that
z ∈ ν(z) + U(g).nP . Now let J be an idea of Z(g) annihilating
f . Let z ∈ J , and write z = ν(z)+w(z), where w(z) ∈ U(g).nP .
Then

(zf)P = z.fP = ν(z)fP + w(z)fP .

But since fP is left-NP -invariant, we have w(z).fP = 0, whence

(zf)P = ν(z).fP

which shows that if the ideal J annihilates f , then ν(J) anni-
hilates fP . By a theorem of Harish-Chandra, Z(lP ) is a finitely
generated module over Z(g), hence if J has finite codimension
in Z(g), then ν(J) has finite codimension in Z(lP ) and condi-
tion (A3) is fulfilled by fP .

7.5. Transitivity of the constant term. Let Q be a proper para-
bolic Q-subgroup contained in P, and let ?Q = Q∩LP . Then its image
?Q̄ in LP is a parabolic Q-subgroup, so that (fP) ?Q makes sense. We
have

(51) fQ = (fP) ?Q.

We leave this as an exercise. In particular, fP = 0 implies fQ = 0.
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As a consequence of this and 7.3(a), f is cuspidal if and only if
fP = 0 when P runs through a set of representatives modulo Γ of
proper maximal parabolic subgroups.

7.6. Fix P ∈ PQ. We shall write P = N.A.M as its Langlands de-
composition. Let f ∈ C∞(ΓN\G). We are interested in the asymptotic
behavior of f − fP on a Siegel set S = SP,t,ω with respect to P .

We can find a decreasing sequence of Q-subgroups of N , normal in
N.A,

N = N1 ⊃ N2 ⊃ · · · ⊃ Nq ⊃ Nq+1 = {1}
with dimensions decreasing by one. Thus, q = dim N . Let Γj =
Γ ∩ Nj. It is compact in Nj and Γj/Γj+1 is infinite cyclic. Let βj be
the weight of A on nj/nj+1. (Thus βj runs through the elements of
Φ(P, A), each occurring dim gβ times.) Fix Xj ∈ nj such that exp Xj

generates Γj/Γj+1. Let fj be the “partial constant term”

(52) fj(x) =

∫
Γj\Nj

f(nx) dn

where dn gives volume 1 to Γj\Nj. Thus f1 = fP and fq = f , and

(53) f − fP =
∑

j

(fj+1 − fj)

Choose a basis {Yi} of g.

7.7. Proposition. (the basic estimate) Let f ∈ C1(ΓN\G) be of mod-
erate growth, bounded by λ ∈ X(A) on Siegel sets w.r.t to P . Let
S be one and S′ be the union of the translates etXjS for 0 ≤ t ≤ 1.
There exists a constant c > 0, independent of f , such that

(54) |(fj − fj+1)(x)| ≤ ca(x)λ−βj

∑
i

sup
y∈S′

|Yifj+1(y)|a(y)−λ

In particular, if f ∈ C∞(ΓN\G) is of uniform bounded growth, bounded
by λ, then

(55) |(fj − fj+1)(x)| ≺ a(x)λ−βj (x ∈ S).

Proof. It is quite similar to that of 7.4 in [6]. Since Γj\Nj is fibered by
Γj+1\Nj+1 over the quotient of Nj\Nj+1 by the cyclic group generated
by the element exp Xj (which leaves f invariant), we can write

(56) fj(x) =

∫ 1

0

dt fj+1(e
tXj .x)

(57) fj(x)− fj+1(x) =

∫ 1

0

dt(fj+1(e
tXjx)− fj+1(x))
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hence

(58) fj(x)− fj+1(x) =

∫ 1

0

dt

∫ t

0

ds
d

ds
fj+1(e

sXj .x)

However, the derivative is along esXj viewed as a right-invariant vec-
tor field, whereas we consider usually derivatives with respect to left-
invariant fields (see §3). Set ys = esXjx; it lies in S′.

(59)
d

ds
fj+1(e

sXjx) =
d

dr
fj+1(e

rXjys)|r=0 =
d

dr
fj+1(ys.y

−1
s erXjys)|r=0

Since the exponential commutes with G, we have:

y−1
s .erXj .ys = er y−1

s Xj ( y−1
s Xj = Ad(y−1

s ).Xj)

we get

(60)
d

dr
fj+1(yse

r y−1
s Xj)|r=0 = y−1

s Xjfj+1(ys) ys = esXjx

Write x = n.a(x).m.k using the Langlands decomposition. Note that
ys = esXjx has a Langlands decomposition differing from that of x only
by the N -factor. In particular, a(ys) = a(x).

For any u ∈ N , we have

a(x)−1uXj = a(x)−βjXj + X ′ X ′ ∈ nj+1

Since fj+1 is invariant under Nj+1, we have X ′fj+1 = 0, hence

a(x)−1n−1

Xjfj+1 = a(x)−βjXjfj+1,
y−1

s Xjfj+1 = a(x)−βj . (mk)−1

Xjfj+1.

There exist smooth functions cji on G such that for any g ∈ G, we have

gXj =
∑

i

cji(g).Yj.

Now

(61) y−1
s Xjfj+1 = a(x)−βj

∑
i

cji((mk)−1)Yifj+1

mk varies in a relatively compact set as x ∈ S. There exists therefore
c > 0 such that |cji((mk)−1| ≤ c, and we get:

| y
−1
s Xjfj+1(y)| ≤ c

∑
i

a(x)−βj

∑
i

|Yifj+1(y)|

Using 60, 61, we get from 58, multiplying both sides by a(x)−λ:
(62)

|fj(x)− fj+1(x)|a(x)−λ = ca(x)−βj

∫ 1

0

dt

∫ t

0

ds
∑

i

|Yifj+1(y)|a(y)−λ
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and (i) follows. Under the assumption of (ii), the last sum on the right-
hand side is a constant, whence (ii). [It would be enough to assume
that all first derivatives of f be bounded by λ.] �

7.8. Corollary. Let f be as in the second part of Proposition 7.7. Let
N ∈ N. Then

(63) |(fj − fj+1)(x)| ≺ a(x)λ−Nβj (x ∈ S)

(64) |(f − fP )(x)| ≺
∑

j

a(x)λ−Nβj (x ∈ S).

Clearly, (fj − fj+1)j+1 = 0 and (fj)j = fj. We can apply (55) to
fj − fj+1 which yields |(fj − fj+1)(x)| ≺ a(x)λ−2βj . Now Assertion (i)
follows by iteration, and then (ii) is obvious, in view of (53).

Assume now that P = Pα is proper maximal (α ∈ Q∆). Then
βj = mj.α with mj ∈ N, mj > 0. So we get

(65) |(f − fP )(x)| ≺ a(x)−Nα (x ∈ SP α)

for any N ∈ N.
Let now P not be maximal. Assume that fQ = 0 for any proper

maximal parabolic Q containing P (there are only finitely many, as
follows from 3.3d.) Then it is easily seen that f is fast decreasing on
any Siegel set with respect to P .

7.9. Theorem. Any cusp form is fast decreasing if AG = {1}.

7.10. Let YP = ΓP .NP\G and F (YP ) be a G-invariant space of func-
tions on YP , which are at least measurable, locally L1. By definition,
its cuspidal part ◦F (YP ) is the space of function all of whose constant
terms with respect to the proper parabolic Q-subgroups containing P
are zero. Let πQf = fQ. This is an idempotent. The πQ (Q ⊃ P)
commute with one another, and ◦

P F (YP ) is the kernel of

(66) prcusp =
∏

G⊃Q⊃P

(1− πQ).

If F (YP ) = C∞
umg(YP ) then, as we saw, the elements of ◦

P F (YP ) are
uniformly fast decreasing on any Siegel set with respect to P . If P is
minimal, and there is only one cusp, these are cuspidal functions on
Γ\G, but not so otherwise. §11 will give a projection of C∞

umg(Γ\G)
onto ◦Cumg(Γ\G) in the general case.
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8. Finite dimensionality of A(Γ, J, ξ)

The proof that A(Γ, J, ξ) is finite dimensional is essentially the same
as that given in [13] for semisimple groups and in [6] for SL2(R). We
shall be brief and refer to both for details.

8.1. Definition. A locally L1-function of Γ\G is cuspidal if its con-
stant term with respect to any proper parabolic subgroup is zero.

If V is the space of locally L1 functions, then ◦V denote the subspace
of cuspidal elements in V .

We recall two known lemmas.

8.2. Lemma. Assume prk QG = 0 and let p ∈ [1,∞]. Then ◦Lp(Γ\G)
is closed in Lp(Γ\G).

cf. 8.2 in [6] or, for p = 2, the proof of lemma 18 in [13].

8.3. Lemma. Let Z be a locally compact space with a positive mea-
sure µ such that µ(Z) is finite. Let V be a closed subspace of L2(Z, µ)
that consists of essentially bounded functions. Then V is finite dimen-
sional.

This lemma is due to R. Godement. For Hörmander’s proof of it,
see [13] p. 17-18 or [6], 8.3.

8.4. Theorem (Harish-Chandra). Let J be an idea of finite codi-
mension in Z(g) and ξ a standard idempotent for K (4.6). Then the
space A(Γ, J, ξ) of automorphic forms on Γ\G of type (J, ξ) is finite
dimensional.

cf. [13], Theorem 1 and, for SL2(R), [6], §8. The proof is by induction
on rk Q(G). Assume that prk (G) > 0. We use 6.6 to reduce the proof
to Γ\ ◦G. The functions Pif have K-types defined by ξ. Moreover,
they are annihilated by J ′ = J ∩ Z( ◦g). Therefore, the Pif belong
to the space of automorphic forms on Γ\ ◦G of type (J ′, ξ), which is
finite dimensional by induction. 6.6 then shows that A(Γ, J, ξ) is finite
dimensional.

From now on, prkQ(G) = 0. If rkQ(G) = 0, then Γ\G is compact
(6.1), all automorphic forms are L2 and bounded. The theorem follows
in this case from Godement’s lemma.

Let now rk Q(G) > 0. Let Q be a set of representatives of Γ-
conjugacy classes of proper maximal parabolic Q-subgroups. It is finite
([3], 15.6). Let µ be the collection of the maps f 7→ fP (P ∈ Q). We
have seen in 7.4(c), for any P in fact, that fP belongs to a space of
automorphic forms on LP of a fixed type, determined by J and ξ. By
induction and our original argument, they form a finite dimensional
space, hence image of µ is finite dimensional. This reduces us to prove
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that kerµ is finite dimensional. In view of 7.4, ker µ = ◦A(Γ, J, ξ).
By 7.9, it consists of bounded functions. To deduce from 8.3 that it
is finite dimensional, it suffices to show that it is a closed subspace of
L2(Γ\G). The argument is the same as the one given in [13], lemma
18, and in [6], proof of 8.3 for SL2(R).
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9. Convolution operators on cuspidal functions

The proofs of the main results here rely mostly on 2.5 and on the
basic estimates and its consequences. To formulate them, it will be
useful to introduce some function spaces.

9.1. We let Cmg(Γ\G) (respectively C∞
umg(Γ\G)) be the space of func-

tions of moderate growth (respectively smooth functions of uniform
moderate growth). They are endowed with the seminorms νn(f) =
sup |f(x)|||x||−n (respectively νD,n(f) = sup |Df(x)|||x−n||, for D ∈
U(g).

For n ∈ Z, let Cmg(n, Γ\G) (respectively C∞
umg(Γ\G, n)) be the sub-

space of Cmg(Γ\G) (respectively C∞
umg(Γ\G)) on which the νn (respec-

tively all νD,n, D ∈ U(g)) are finite.
Then 2.5 says that:
(*) Let α ∈ C∞

c (G). Then there exists n ∈ N such that the map
f 7→ f ? α induces a continuous map of L1(Γ\G) into C∞

umg(Γ\G, n).

9.2. Let Cfd(Γ\G) (respectively C∞
ufd(Γ\G)) be the space of continu-

ous functions on G which are fast decreasing (respectively, of smooth
functions such that Df is fast decreasing for every D ∈ U(g).) It is
endowed with the seminorms νn (respectively νD,n). Then Section 7
proves:

(*) For any n ∈ Z, the inclusion ◦C∞
ufd(Γ\G) →◦ C∞

umg(Γ\G, n) is an
isomorphism.

In fact, everything in Section 6 is expressed in terms of the growth
condition 4.4 (2) on Siegel sets, so one has to trasnalte this in terms of
HS norms, using the equivalence discussed in 4.4

9.3. Assume now prkQ(G) = 0. Then Γ\G has finite volume, and
therefore L2(Γ\G) ⊂ L1(Γ\G), and the inclusion is continuous. Using
9.1 (*), 9.2 (*), remembering [??] that ◦Lp(Γ\G) is a closed subspace
of Lp(Γ\G), for p ≥ 1, and that (f ? α)P = fP ? α (5.4), we see that
the composition:

(67) ◦L2(Γ\G) →◦ L1(Γ\G) →◦ C∞
umg(Γ\G, n) →◦ C∞

ufd(Γ\G)

where the last arrow is the inverse of the isomorphism (*) of 9.2, is
continuous, i.e. given n ∈ Z there exists a constant c(D, n) so that

νD,n(f ? α) ≤ c(D, n)||f ||2, f ∈◦ L2(Γ\G)

Theorem. (Gelfand-Piateteski-Shapiro) Let α ∈ C∞
c (G). Then ?α is

a Hilbert-Schmidt operator on L2(Γ\G). In particular, it is compact.
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Proof. If D is the identity and n = 0, νD,n(f ?α) = supx∈G |(f ?α)(x)|.
Therefore, 67 above implies the existence of a constant c > 0 such that

(68) |(f ? α)(x)| ≤ c||f ||2, f ∈◦ L2(Γ\G)

This implies the theorem by a standard argument (see, for example,
[13], proof of Theorem 2, page 14, or [6], 9.5). In fact, as pointed out in
[6], 9.5, this result, in combination with a theorem of Dixmier-Malliavin
([10]), shows that the operator ?α is of trace class.

The compactness of ?α on ◦Lp(Γ\G) for α ∈ C1
c (G) has been proved

by R. Langlands, [14]. See [6],9.3 for SL2(R).

Corollary. AS a G-module, ◦L2(Γ\G) is a Hilbert direct sum of count-
ably many irreducible G-invariant closed subspaces with finite multiplic-
ities.

Finite multiplicities means that at most finitely many summands are
isomorphic to a given unitary irreducible G-module. The proof can be
found in many places, e.g. [6], 16.1

10. Automorphic forms and the regular representation
on Γ\G

In this section, I assume some familiarity with generalities on infinite
dimensional representations, all to be found in [4] and many other
places. We review a few notions and facts mainly to fix notation. We let
G, K, Γ be as before, though some of the definitions and results recalled
here are valid in much greater generality. We assume prkGQ = 0.

8.1. Let (π, V ) be a continuous representation of G in some locally
complete topological vector space V . It extends to the convolution
algebra of compactly supported functions by the rule:

(69) π(αv =

∫
G

α(x)π(x)vdx v ∈ V

The subspace spanned by the π(α)v, where v runs through V and α
through C∞

c (G) is dense, as is easily seen by using a Dirac sequence ([4],
3.4). Call it V ∞. It consists of C∞ vectors (i.e. such that g 7→ π(g)v is
a smooth map), and it used to be called the Garding space. However,
a special terminology has become superfluous because a theorem of
Dixmier-Malliavain ([10]) implies that these are all differentiable vec-
tors, but we shall not need this fact. V ∞ is a G module upon which g
operates naturally ([4], 3.8) hence V ∞ is also a U(g) module.
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8.2. The operation defined by 69 above extends to compactly sup-
ported measures. In particular, V can be viewed as a K-module, and
as such is completely reducible and for λ ∈ K̂, the transformation
defined by

(70) π(eλ)v =

∫
K

χλ(k)kvdk

(see 2.6 for the notation) is a projector of V onto the isotypic sub-
space Vλ? spanned by the irreducible K-modules isomorphic to the
module λ∗ contragredient to λ. Let VK be the algebraic direct sum
of the Vλ. It consists of the K-finite vectors and is dense in V . Any
α ∈ C∞

c (G) which is K-invariant leaves the Vλ stable; using a Dirac
sequence of such functions, one sees that V ∞

K = V ∞ ∩VK is dense in V
and that V ∞ ∩ Vλ is dense in Vλ.

The actions of U(g) and K on V ∞
K satisfy the conditions

(71) π(k)π(X)v = π(Ad(k)X)π(k)v k ∈ K, X ∈ U(g), v ∈ V

which implies that

(1) U(g) leaves V ∞
K stable.

(2) W is a K-stable finite dimensional subspace of V then the rep-
resentation of K on W is differentiable, and has π|k as its dif-
ferential.

Conditions 1 and 2 define the notion of a (g, K)-module. It is admis-
sible, or a Harish-Chandra module, if each Vλ is finite dimensional, in
which case VK ⊂ V ∞.

V ∞
K can be viewed as a module over a so called Hecke algebra H =

H(G, K), which is the convolution algebra of distributions on G with
support in K, and is isomorphic to U(g) ⊗U(k) AK , where AK is the
algebra of finite measures on K, but this interpretation plays no role
in this course. (However, it will in the adelic framework.)

8.4. An element v ∈ V ∞ is Z(g) finite if Z(g).v is finite dimensional,
hence if v is annihilated by an ideal of finite codimension of Z(g).

8.5. Assume now (π, V ) to be unitary and irreducible. By a theorem of
Harish-Chandra ([4],5.25) it is admissible, hence VK = V ∞

K , and Z(g)
operates by homotheties. Therefore, every element of V ∞

K is Z(g)-finite.

8.6. Discrete spectrum and L2-automorphic forms. Assume now that
V ⊂ L2(Γ\G) is irreducible. Then V ∞

K consists of elements which are
K-finite, Z-finite. By 2.6, they are automorphic forms.

Let L2(Γ\G)dis be the smallest closed subspace of L2(Γ\G) contain-
ing all irreducible G-invariant subspaces. It is stable under G and is
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a Hilbert direct sum of irreducible subspaces. It follows from 6.3 that
it has finite multiplicities, in the sense of 6.5 Indeed, let W be an irre-
ducible summand of L2(Γ\G)dis and let λ ∈ K be such that Wλ 6= 0.
Then Wλ consists of automorphic forms of a prescribed type (J, λ), for
some ideal J of Z(g). Since A(Γ, J, λ) is finite dimensional, L2(Γ\G)dis

can have only finite many summands isomorphic to W as G-modules.
Let f ∈ L2(Γ\G) be Z(g)-finite and K-finite. Then, the smallest in-

variant closed subspace of L2(Γ\G) containing f is a finite sum of closed
irreducible subspaces ([4], 5.26) therefore f belongs to L2(Γ\G)dis. As a
consequence, the L2-automorphic forms are the elements of L2(Γ\G)dis

which are Z(g)- and K-finite, i.e. (L2(Γ\G)dis)
∞
K .

Remark 1. We have referred to statements in [?] in which G is assumed
to be connected. However, our G has at most finitely many connected
components. It is standard and elementary that the restriction to a
normal subgroup of finite index of an irreducible representation is a
finite sum of irreducible representations, so the extension to our case
is immediate.

8.6. If Γ\G is compact, then ◦L2(Γ\G) = L2(Γ\G)dis = L2(Γ\G). In
general ◦L2(Γ\G) ⊂ L2(Γ\G)dis, by 6.5. Its complement there is called
the residual spectrum L2(Γ\G)res. The complement of L2(Γ\G)dis in
L2(Γ\G) is the continuous spectrum L2(Γ\G)ct. It is analyzed by
means of the analytic continuation of Eisenstein series. The elements of
L2(Γ\G)res occur as residues or iterated residues at poles of analytically
continued Eisenstein series.

As a generalization of the statements made in the proof of 7.4, it is
also true that the restriction of ?α (α ∈ C∞

c (G)) to L2(Γ\G)dis is of
trace class. This was proved by W. Müller first for a K-finite α, and
then in general, independently, by W. Müller and L. Ji.

11. A decomposition of the space of automorphic forms.

The main purpose of this section is to define a projector of the space
A(Γ\G) of automorphic forms on Γ\G onto the space ◦A(Γ\G) of cusp
forms.

11.1. The parabolic subgroups P, Q ∈ PQ are said to be associate if a
G(Q)-conjugate of one has a common Levi Q-subgroup with the other.
Let Ass(G) be the set of Q-conjugacy classes of associated parabolic
Q-subgroups. It is finite, since Γ\PQ is finite.
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Before giving the following definition, let us remark that if f ∈
Cmg(Γ\G) and g ∈ Cfd(Γ\G), then f.g is fast decreasing and a for-
tiori in L1(Γ\G), so that the scalar product

(f, g) =

∫
Γ\G

f(x)g(x)dx

is well-defined. f and g are said to be orthogonal if (f, g) = 0.

11.2. Let f ∈ C∞
umg and P ∈ PQ. The function f is said to be negli-

gible along P , in sign f ∼P 0, if fP is orthogonal to the cusp forms on
ΓMP

\MP = 0. More generally, given P ∈ PQ, if f is negligible along
all parabolic Q-subgroups properly contained in P, then fP is a cusp
form. If, in addition, it is negligible along P , then fP is zero. This
applies in particular to G. This notion and these results are due to
Langlands ([14], lemma 37, Cor, p.58, [13] Theorem 6).

11.3. Let us write VΓ for C∞
umg(Γ\G). Given P ∈ Ass(G), let VΓ,P be

the set of elements in VΓ which are negligible along Q for all Q /∈ P.
The remarks just made show that the sum of the VΓ,P is direct. It is
more difficult to prove:

Theorem. (Langlands)

VΓ = ⊕P∈Ass(G)VΓ,P

Let A(Γ\G)P = A(Γ\G) ∩ VΓ,P . Among the elements of Ass(G)
there is the class consisting of G itself. It is clear from the definitions
that

(72) VΓ,{G} =◦ VΓ,G A(Γ\G)G =◦ A(Γ\G)

These decompositions show the existence of a canonical projector of
VΓ (resp. A(Γ\G) onto ◦VΓ (resp. ◦A(Γ\G)), with kernel the sum
of the terms corresponding to associated classes of proper parabolic
Q-subgroups.

Remark 2. The theorem was proved by Langlands in a letter to me
(1982). A proof, in the more general case of S-arithmetic subgroups,
is given in [9], §4.

12. Some estimates of growth functions

These estimates pertain to the functions aP (x)λ which measure growth
rate on Seigel sets. They will be used to prove the convergence of cer-
tain Eisenstein series (11.) The technique to establish them is also
basic in reduction theory, but will not be used elsewhere in this course.
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12.1. Let P0 = N0A0M0 be the group of real points of a minimal
parabolic Q-subgroup P0 and ∆ = ∆(A0, G) the associated set of simple
Q-roots. We fix a Weyl group invariant scalar product on X(A) (or
a∗). Let {βα} be the dual basis of {α} so that

(73) (βα, γ) = δαγ

The open positive Weyl chamber C in X(A) is the set of linear
combinations of the βα with strictly positive coefficients. Its closure
is the cone of dominant weights λ, characterized by the conditions
(α, λ) ≥ 0 for α ∈ ∆.

Let κ ∈ ∆. It is known that there exists an irreducible representation
of G, defined over Q, having a highest weight line defined over Q, with
highest weight a rational positive multiple ωα of βα. The highest weight
line is then stable under the maximal parabolic Q-subgroup Pα. Any
positive integral linear combination ω =

∑
mαωα of the ωα is then the

highest weight of an irreducible rational representation (σω, Vω) with a
similar property : the highest weight line is stable under the parabolic
subgroup PJ , where J is the set of α for which mα 6= 0. We fix a
scalar product on V which is invariant under K, and let || ◦ || be the
corresponding Eucldean norm, and write σ for σω. Let eω be a basis
vector of the highest weight line.

Let x ∈ G. It has the decomposition x = nxmxa(x)k. The ele-
ments nxmx leave the highest weight line invariant and k is isomet-
ric.Therefore

(74) ||σ(x−1)eω|| = a(x)−ω

12.2. Proposition. We keep the previous ntoation and fix a Siegel set
S with respect to P0. Then

(75) a(y.x)ω ≺ a(y)ωa(x)ω (y ∈ G, x ∈ S)

(76) a(γ) ≺ 1 (γ ∈ Γ)

Proof. The element e1 is rational, so some multiple may be assumed to
belong to a lattice in Vω(Q) that is stable under Γ. Therefore the set
of γeω is discrete in Vω, and does not contain zero, so that there exists
c > 0 so that ||γe|| ≥ c for all γ ∈ Γ. In view of 10.1(2), this proves 78.

Fix an orthonormal basis ei of Vω(Q) consisting of eigenvectors of
A0. We have

σ(y)−1eω =
∑

i

ci(y)ei
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and hence, by (1) and (2),

(77) a(y)−2ω =
∑

i

ci(y)2

On the other hand,

(78) ||σ(x)−1v|| � ||σ(a(x)−1)v||, v ∈ V, x ∈ S

We have
σ(a(x)−1y−1)eω =

∑
i

ci(y)a(x)−βiei

where βi is the weight of ei. It is of the form

βi = ω −
∑
α∈∆

mα(βi)α mα(βi) ∈ N, mα(βi) ≥ 0

therefore

(79) a(x)−βi � a(x)−ω

from 78 and ?? we get

||σ(x−1y−1)eω|| �
∑

i

ci(y)2a(x)−2βi � a(x)−2ω(
∑

i

ci(y)2)

Together with 75, this yields the first assertion. �

Remark: Let D be a compact set containing the identity. Then

(80) a(y.x)ω ≺ a(y)ωa(x)ω (y ∈ G, x ∈ DS)

Indeed, we have first a(dx)ω ≺ a(d)ωa(x)ω, by the proposition, but
since D contains 1, a(x)ω ≺ a(dx)ω for d ∈ D, x ∈ S, and therefore

(81) a(dx)ω � a(x)ω

In particular, we can let x run through a fundamental set ω = D.S
for Γ, with D ∈ G(Q) finite and containing 1.

This was for P0. The extension of (i) to a general P is easy. Assume
that P0 ⊂ P so P = PJ for some J ⊂ ∆. The restrictions of the βα,
for α /∈ J , to X(AP ) form a basis dual to ∆(P, AP ). The rational
representations σω, where ω is an integral linear combintation of the α
(for α /∈ J) are highest weights of rational irreducible representtations
whose highest weight lines are stable under P . Let SP be a Siegel set
with respect to P . The previous argument yields

12.3. Corollary. We have

a(yx)ω ≺ a(y)ωa(x)ω (y ∈ G, x ∈ SP )

where ω is a positive linear combination of the ωα for α /∈ J .
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12.4. IT will be useful to express some of the previous results in terms
of the elements of A0 or AP . As usual, A+ is the positive Weyl chamber
in A, the set of elements on which the α ∈ ∆(P, AP ) are ≥ 1. The
dual cone +A is the set of elements on which the βα are ≥ 1. We let
−A = {a ∈ A, a−1 ∈+ A}. Then 12.2 gives

12.5. Proposition. There exists a0 ∈ AP such that

(82) a(γ) ∈ a0
−AP (γ ∈ Γ)

(83) a(γx) ∈ a0 a(x)−AP (γ ∈ Γ, x ∈ SP )
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