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ABSTRACT. A minimal permutation representation of a finite group G is a faithful G-set with the smallest
possible size. We study the structure of such representations and show that for certain groups they may be
obtained by a greedy construction. In these situations (except when central involutions intervene) all minimal
permutation representations have the same set of orbit sizes. Using the same ideas we also show that if the
size d(G) of a minimal faithful G-set is at least c|G| for some c > 0 then d(G) = |G|/m + O(1) for an
integer m, with the implied constant depending on c.

1. INTRODUCTION

It is a classical theorem of Cayley’s that a group G is isomorphic to a subgroup of a symmetric group.
Accordingly we let the degree d(G) of the finite groupG be the least integer d such thatG can be embedded
in Sd, the symmetric group on d letters. More precisely, Cayley’s discussion in [4] implicitly relies on the
observation that the regular action of the group on itself gives an embedding of G into Sn, where n = |G|
is the order of G. It is then natural to ask to what extent the resulting bound d(G) ≤ n is sharp.

The problem of finding d(G) was first studied by Johnson [7]. Among other things, he classified those
groups for which d(G) = n. Except for a family of 2-groups, these groups are precisely the cyclic p-
groups. A structure theorem for groups with d(G) ≥ cn, c any fixed positive constant, was obtained by
[1] (see Remark 4.2 below), while related results were obtained by Berkovich in [2].

Although easy to define, the degree is difficult to compute. It is more-or-less obvious that d(G) can be
computed by examining all subsets of the subgroup lattice of G. The main conceptual finding of this note
is that in some cases a “greedy” algorithm is also available, that is an algorithm that proceeds by making
locally optimal choices rather than directly searching for the global minimum. This is hardly of practical
application (the subgroup lattice of a group may be exponentially larger than the group itself), but it has
surprising consequences for the structure of a minimal permutation representation. We note that whenever
a group G acts on a set X , the sizes of the orbits of the action determine a partition of |X|. Our main
application is:

Theorem 1.1. LetG be a finite nilpotent group of odd order. For each prime p, let ep be maximal such that
the center of G contains a subgroup isomorphic to the elementary abelian group Fep

p . Let X be a minimal
faithful permutation representation of G. Then,

(1) The number of orbits for the G-action on X is
∑

p ep;
(2) The multiset of sizes of the orbits is a group isomorphism invariant.
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This is a special case of a more general result, Theorem 3.18 below. We remark that a restriction of the
odd-order type is necessary, the simplest counterexample being the four-group C2 ×C2. Its regular repre-
sentation is a minimal permutation representation, but it also has minimal representations with two orbits
of size 2. Though not strictly necessary for the proofs of Theorems 1.1 and 3.18, we include Theorem
3.16. This theorem, which gives a method to find all perfect minimal faithful permutation representations
(c.f. Definition 3.12), forms the conceptual backbone of our work.

The main motivation of this work was to understand the distribution of ∆(G)
def
= d(G)/ |G| in the

interval [0, 1]. For example, it was easy to show that every number of the form 1
n

, n a positive integer, is a
limit point of ∆(G) as |G| tends to infinity. Clearly, zero is also a limit point. We show here (see Theorem
4.6 below) that these are the only limit points.

This paper is organized as follows. In Section 2 we recall basic definition. Section 3 contains our main
results. Section 4 contains our study of limit points of ∆(G) in the interval [0, 1], plus some numerical
results.

2. DEFINITIONS

We review our notation for standard constructions for group actions. For further details and basic
definition see e.g. sections 1.1-1.4 of [3], or sections 1.3-1.4 of [5]. For basic materials on socle see
section 4.3 of [5].

Let G be a finite group acting on a set X . We call this action a minimal faithful permutation represen-
tation if the action is faithful, and the size of the set X is the smallest possible among all sets on which G
acts in a faithful fashion. Under the action ofG, the setX decomposes as a disjoint union of orbits. Choos-
ing a point stabilizer subgroup in each orbit, it is clear that minimal faithful permutation representations
correspond to collections1H of subgroups of G where:

(1) The core ofH,
CoreG(H)

def
=
⋂
H∈H

CoreG(H) =
⋂
H∈H

⋂
g∈G

Hg

is trivial, and
(2)
∑

H∈H[G : H] is minimal among allH satisfying (1).
We call such setsH “minimal faithful collections”; they are the subject of this paper. The first condition

corresponds to faithfulness of the action, the second to the minimality of the degree. Clearly if H is a
minimal faithful collection, no two of its elements can be conjugate.

We shall make use of the socle, M(G), of a finite group G, the subgroup generated by the setM(G)
of all minimal normal subgroups of G. Specifically, the lattice T (G) = {T CG | T ⊂ M(G)} of normal
subgroups of G contained in the socle will play a major role.

Every element T ∈ T can be written as a direct product of minimal normal subgroups ([10] Thm II.4.8
p.131). In the language of order theory, the lattice T is atomic with the minimal normal subgroups being
the atoms. Since the lattice of normal subgroups of G is modular, both T and its dual are matroids.

1We shall use the term “colllection” for such sets of subgroups.
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In particular, the number of factors in direct product a representation of T ∈ T as above is an invariant
of the pair (G, T ). We denote it dimG T and call it the dimension of T .

When G is nilpotent every normal subgroup intersects the center ([11] Thm IV.2.9 p. 18). The dis-
cussion above is then elementary. Since every subgroup of the center is normal, M(G) = M(Z(G)).
Furthermore, the socle is a product of elementary abelian p-groups.

For a subgroup H of G we write RCG(H) for the relative core of H , the subgroup CoreG(H) ∩M(G).
It is then clear that

RCG(H) = 〈N ∈M(G) | N ⊂ H〉 .
For a collectionH of subgroups we similarly set

RCG(H)
def
=
⋂
H∈H

RCG(H) = CoreG(H) ∩M(G).

It is clear that CoreG(H) is trivial if and only if RCG(H) is trivial. This simple observation underlies our
later analysis.

We extend the notion of dimension above to all subgroups ofG by setting dimG(H) = dimG(RCG(H)).
In particular we write dimG for dimG(G) = dimG(M(G)). We will also use the codimension codimG(H) =
dimG− dimG(H).

3. DETERMINING d(G)

We discuss here the (algorithmic) problem of constructing a minimal permutation representation of G.
As input, we give ourselves the subgroup lattice of G and, in addition, the order of each subgroup and
whether it is normal in G or not. This analysis will shed light on the structure of the minimal permutation
representations.

3.1. A special class of groups.

Definition 3.1. Let G be an arbitrary finite group, and let T be as above. We call G socle friendly if for
all H < G, T ∈ T , we have RCG(H · T ) = RCG(H).T .

Lemma 3.2. If G is a nilpotent group, then G is socle friendly.

Proof. Since the lattice T is relatively complemented, we may write T = (T ∩ RCG(H)) · S for some
T ∈ S disjoint to RCG(H). We then have HT = HS and RCG(H)T = RCG(H)S so we may assume
H∩T = {1}. Clearly RCG(H)T ⊂ RCG(H ·T ). Conversely, letN < HT be a minimal normal subgroup
of G. If N < T there is nothing to prove, so we may assume T ∩ N = {1}. Since H and T are disjoint,
every n ∈ N can be uniquely written in the form n = hntn for some hn ∈ H and tn ∈ T . Note that the
map n 7→ hn is a group homomorphism (it is the restriction to N of the quotient map HT/T ' H), and
since N and T are disjoint it is an isomorphism onto its image N ′.

Since N and T are central subgroups (here we use the nilpotence of G), it follows that N ′ is a central
subgroup as well, and since N was a cyclic group of prime order so is N ′. It follows that N ′ is a minimal
normal subgroup of G, contained in H . We conclude that N ⊂ N ′T ⊂ RCG(H)T . �
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Remark 3.3. Not every finite group is socle friendly. Here is the construction of an infinite family of
examples ([9]). LetH be any finite group with two non-isomorphic one dimensional representations V1, V2

over a finite field F. We let V = V1⊕V2 andG = HoV . Then M(G) = V and T = {0, V1, V2, V }. LetW
be any one dimensional F-subspace not containing either of V1, V2. Then W is core-free and consequently
RCG(W ).V1 = V1 and RCG(W ).V2 = V2. But W.V1 = W.V2 = V and as a result RCG(W.V1) =
RCG(W.V2) = V . This shows that G is not socle friendly.

3.2. Minimal faithful collections and codimension one subgroups. Let G be a finite socle friendly
group. We are interested in constructing a minimal faithful collection of subgroups of G, and a natural
way to do so is step-by-step, incrementally adding subgroups to our collection until it is faithful. Rather
than keeping track of CoreG(H), we note that RCG(H) carries sufficient information to decide whether
CoreG(H) is trivial. Moreover, while the cores CoreG(H) decrease through the lattice of all normal
subgroups of G, the relative cores RCG(H) decrease through the lattice T (G) which is much easier to
work with.

We now turn to the “minimality” property of a collection, which appears to push in the opposite direction
to “faithfulness”. The first favors selecting large subgroups, and having few of them. The second seems
to suggest choosing small subgroups, or else many large ones will be needed. The multiplicative property
of orders of subgroups actually implies that choosing many large subgroups is the right way The analysis
is very similar to that of Johnson [7]. In both cases it is shown that the elements of a minimal faithful
collection may be (and in some cases, must be) drawn from a particular class of subgroups, using the same
trick. The reader should compare the following Lemma with [7, Lemma 1]

Lemma 3.4. (“replacement lemma”) Let H < G be of codimension at least 2. Then there exist subgroups
H1 and H2 of G containing H such that RCG(H1) ∩ RCG(H2) = RCG(H) and 1

|H1| + 1
|H2| ≤

1
|H| .

Moreover, this inequality is strict unless G contains at least two central involutions.

Proof. Since T is a matroid and RCG(H) has codimension at least 2, there exists two minimal normal
subgroups N1, N2 ∈ M(G) (“atoms of the lattice T (G)”) such that the lattice join RCG(H)N1N2 has
dimension greater by 2 than that of RCG(H). In other words, that lattice join is a direct produt. The
inclusions RCG(H) < RCG(H)Ni are then proper, and we have RCG(H) = RCG(H)N1 ∩ RCG(H)N2.

We thus set Hi = H · Ni, i = 1, 2 (these are semi-direct products as the Ni are minimal normal
subgroups). By Lemma 3.2, RCG(Hi) = RCG(H)Ni, and it follows that RCG(H1) ∩ RCG(H2) =
RCG(H). Since H is a proper subgroup of both H1, H2 its index in both subgroups is at least 2, and we
have

1

|H1|
+

1

|H2|
≤
(

1

2
+

1

2

)
1

|H|
=

1

|H|
.

Equality can only happen if both N1 and N2 are of order 2, in which case the non-trivial elements of Ni

are both central involutions. �

Definition 3.5. Let A = A(G) denote the set of subgroups of G of codimension 1.

The reader should compare the next theorem with [7, Cor. 1].
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Theorem 3.6. There exist minimal faithful collections contained in A, and these are the ones of maximal
size. If G has at most one central involution then every minimal faithful collection is contained in A.

Proof. Let H be a faithful collection, and let H ∈ H. If H is of codimension 0 (i.e. RCG(H) = M(G))
we have

{1} = RCG(H) = RC (H \ {H}) ∩ RCG(H) = RC (H \ {H}) .
In particular, H \ {H} is also faithful. If H has codimension at least 2, let H1, H2 be the subgroups
constructed in Lemma 3.4, and let H′ = (H \ {H}) ∪ {H1, H2}. By construction we have RCG(H′) =
RCG(H) = {1} so that H′ is faithful. In addition, Lemma 3.4 yields ∆(H′) ≤ ∆(H), with a strict
inequality ifG has at most one central involution. In general we note thatH′ has more elements thanH. In
particular, a minimal faithful collection of maximal size must consist of codimension-one subgroups. �

Definition 3.7. Call a collectionH ⊂ A independent if its relative core is strictly contained in that of any
proper sub-collection, in other words if RCG(H) | H ∈ H is an independent set of atoms in the lattice
dual to T .

A minimal faithful collection H ⊂ A is certainly independent – otherwise it would have a faithful
proper sub-collection.

Proposition 3.8. The set of independent collections of A forms a matroid, i.e. the following statements
are true:

(1) A subcollection of an independent collection is independent.
(2) H ⊂ A is independent if and only if codimGHM = |H|.
(3) IfH,H′ are independent collections with |H′| > |H| then there existsH ′ ∈ H′ such thatH∪{H ′}

is independent.

Proof. This will follow via the replacement Lemma from general fact that T is a matroid.
(1) Let H ⊂ A be independent, and suppose H′′ us a proper subcollection of H′ ⊂ H such that
H′′M = H′M . Letting H̄ = H \H′, we have(

H̄ ∪ H′′
)
M

= H̄M ∩H′′M = H̄M ∩H′M = HM ,

contradicting the independence ofH.
(2) Let S, T ∈ T (G) with codimG T = 1. Then ST either equals T or M , and we have dimG S ∩

T = dimG S or dimG S − 1, respectively, by the inclusion-exclusion formula for dimension. By
induction on the size of any collection H = {H i}ki=1 ⊂ A we see that codimGHM ≤ |H|, with
equality if and only if the sequence of intersections ∩mi=1 RCG(H i) is strictly decreasing with m,
1 ≤ m ≤ k.

(3) We have dimGH′M < dimGHM , and henceH′M does not containHM . It follows that we can find
H ′ ∈ H′ such that H ′M does not contain HM . Then dimG(HM ∩H ′M) = dimGHM − 1 (equality
is not possible by the choice of H ′). By part (2) we see that thatH ∪ {H ′} is independent.

�
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Corollary 3.9. LetH ⊂ A be independent. Then the following are equivalent:
(1) |H| = dimG;
(2) H is faithful;
(3) H is a maximal independent subset ofA. Here, maximal means maximal with respect to inclusion.

Proof. The equivalence of (1) and (2) is contained in part (2) of Proposition 3.8. An independent collection
withHM = {1} is certainly maximal. An independent collection withHM 6= {1} is not maximal since in
that case there exists some T ∈ T of codimension 1 which does not contain HM , and we can add it to H
to form a larger independent collection. �

Corollary 3.10. A subset H ⊂ A is a minimal faithful collection if and only if it is independent and
maximizes

w(H) =
∑
H∈H

(
2− 1

|H|

)
among the independent subsets.

Proof. We have already noted that a minimal faithful collection contained in A is independent and maxi-
mal (with respect to inclusion), and that a maximal (with respect to inclusion) independent set is a faith-
ful collection. It is clear that a subset maximizing this weight function is maximal independent, since
2− 1

|H| > 0 for all subgroups H . Finally, we note that a maximal independent set H satisfies

w(H) = 2 dimG−∆(H).

�

Corollary 3.11. There exist minimal faithful collections of size dimG. If G has more than one central
involution, there may also exist minimal faithful collections of smaller size.

Proof. We have seen that there exist minimal faithful collections contained inA, that these are independent
sets, and that every independent set has dimG elements. �

Inspired by this Corollary we make the following definition:

Definition 3.12. A minimal faithful collection of size dimG is called perfect. Correspondingly, a minimal
faithful permutation representation with dimG orbits under the G-action is called perfect.

Example 3.13. Let G be a p-group for a prime p, and let Z = Z(G) be its center. It is well-known
(and follows from the class formula) that every normal subgroup of G intersects the center non-trivially.
Since every subgroup of the center is normal, it follows thatM(G) =M(Z), and in particular dimG =
dimZ(G). This observation recovers [7, Thm. 3]:

Theorem 3.14. Let G be a p-group with center Z. Then there exists a minimal faithful collection for G of
size dimZ. If p is odd this holds for all minimal faithful collections.
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3.3. Construction. In the remainder of this section we assume that G is a socle friendly finite group.
We have reduced the problem of finding a minimal faithful collection to maximizing an additive weight
function on a matroid. This is a problem which is solvable by a greedy algorithm, and this allows us to
give a way to search for and construct perfect minimal faithful permutation representations. Before we
present our method we record a useful Lemma:

Lemma 3.15. Let H ⊂ A be independent, and suppose H ′ < G has the largest size possible such that
H ′M does not contain HM . Then H ′ ∈ A, H ∪ {H ′} is independent, and H ′ maximizes the function
w(H) = 2− 1

|H| among all H ∈ A such thatH ∪ {H} is independent.

Proof. We can find T ∈ T of codimension 1 containing H ′M but not containing HM . Setting H = H ′T
we have HM = H ′MT = T , which does not contain HM . By the maximality of H ′ we have H = H ′

implying H ′M = T , so that H ′ is of codimension 1 and H ∪ {H ′} is independent. Finally H ′ was chosen
to maximize w(H) in an even larger family than needed. �

We now describe a method to find all perfect minimal faithful permutation representations. We assume
we are given the following data:

(1) The subgroup lattice of G;
(2) the sizes of every element of the subgroup lattice;
(3) and that normal subgroups are marked as such.

Then for each i ≥ 0 we recursively construct a sequence of triples (Hi, Ti,∆i) with eachHi a collection
of subgroups of G, Ti a subgroup of G, and ∆i a non-negative real number. In order to do this we proceed
as follows. Let H0 = ∅, T0 = M(G), ∆0 = 0. Now suppose (Hi, Ti,∆i) is given, and Ti 6= {1}. First we
find a subgroup Hi+1 of G of maximal size not containing Ti. Then we set Hi+1 = Hi ∪ {Hi+1}, Ti+1 =
Ti ∩ CoreG(Hi+1), ∆i+1 = ∆i + 1

|Hi+1| . If Ti = {1}, we simply set (Hi+1, Ti+1,∆i+1) = (Hi, Ti,∆i).
The sequence (Hi, Ti,∆i) is certainly not unique and depends on the choices of the subgroups Hi. Then
we have the following theorem:

Theorem 3.16. Let G be a socle friendly finite group, and let dimG = δ. Then
(1) For any choice of the subgroupsHi, Tδ−1 6= {1} whereas Tδ = {1}. Furthermore,Hδ is a minimal

faithful collection of size δ, and ∆δ = ∆(G).
(2) Conversely, up to G-isomorphism any minimal faithful collection of size δ can be obtained this

way.

Proof. First we prove the first part. From Lemma 3.15 it is clear for each i the collectionHi is independent,
and Ti = (Hi)M . Also it is easy to see that for each i, dimTi+1 = dimTi − 1 as long as Ti 6= {1}. These
observations immediately give the first assertion of the theorem. We show by induction that for k ≤ δ,∑

H∈Hk

1
|H| is minimal among independent collections of size k. This is certainly the case for k = 0. Thus

let Hk−1 be given, and choose the subgroup Hk. Suppose there is an independent collection H′ ⊂ A of
size k such that

∑
H′∈H′

1
|H′| <

1
|Hk|

+
∑

H∈Hk−1

1
|H| . We may then write H′ = H′′ ∪ {H ′k} where H ′k

is a member of minimal size. By the inductive hypothesis,
∑

H∈Hk−1

1
|H| ≤

∑
H′∈H′′

1
|H′| , and hence we
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must have |Hk| < |H ′k|. By the choice of H ′k, we actually have |Hk| < |H ′| for all H ′ ∈ H′. We now
use the matroid property of the independent subcollections of A shown in Proposition 3.8(3): since H′ is
of size k, while Hk−1 is of size k − 1, there exists some H ′ ∈ H′ such that Hk−1 ∪ {H ′} is independent.
In particular this implies that (Hk−1 ∪ {H ′})M is strictly contained in HM , and as |H ′| > |Hk| we have a
contradiction to the existence ofH′.

Now we prove the second part. LetH = {Hi}δi=1 be a minimal faithful collection, ordered such that

|H1| ≥ |H2| ≥ · · · ≥ |Hδ| .

Then we claim that each k,Hk has maximal size among all subgroupsH ′ ofG such that
(
{Hi}k−1

i=1 ∪ {H}
)
M

is a proper subgroup of
(
{Hi}k−1

i=1

)
M

. By induction, it suffices to check that if a subgroup H ′ < G is in-

dependent of {Hi}k−1
i=1 then there exists l ≥ k such that H ∪ {H ′} \ {Hl} is independent. For this we set

Sj = ∩ji=1 RCG(Hi). It is then easy to see that we may take l to be the first j such that RCG(H ′)∩Sj = Sj .
The assertion of the theorem is now immediate. �

3.4. The main theorem. In this section we state and prove our main theorem. We start with a definition:

Definition 3.17. Let G be a finite group. Given a permutation representation X we denote by m(X) the
multi-set consisting of the sizes of the orbits of X under the G-action.

Theorem 3.18. Let G be a socle friendly finite group. Let X be a minimal faithful permutation represen-
tation of G. Then,

(1) The number of orbits of X under the action of G is at most dimG;
(2) G has perfect minimal faithful permutation representations; and if the center of G has at most one

involution then every faithful permutation representation is perfect;
(3) If X1, X2 are two perfect minimal faithful representations of G, then m(X1) = m(X2).

Proof. The first two parts of the theorem follow from Corollary 3.11. The third part easily follows from
Theorem 3.16 and its proof. �

4. APPLICATIONS

4.1. Accumulation points of ∆(G). Let n, p ∈ N with p > n a prime. Then ∆(Cn×Cp) = 1
n

+ ∆(Cn)
p

=
1
n

+ O(1
p
). In particular, limp→∞∆(Cn × Cp) = 1

n
. This means that for each positive integer n, the point

1
n

is an accumulation point of the set {∆(G);G finite group} in the interval [0, 1]. In fact, in Theorem
4.6 below we show that these points are the only non-zero accumulation points. We begin with some
preliminary lemmas.

Lemma 4.1. Let H < G be a subgroup. Then d(H) ≤ d(G) and ∆(G) ≤ ∆(H).

Proof. The first claim is obvious. For the second, let H′ be a faithful collection of subgroups of H and
note that ∆(H) is independent of the ambient group. Then KG(Hi) ⊂ KH(Hi) (larger intersection). In
particular, KG(H) = {1}. ChoosingH minimal for H we deduce that ∆(G) ≤ ∆(H) = ∆(H). �
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Remark 4.2. A cyclic p-group has relative degree 1. In particular, if P < G is a cyclic p-group then

∆(G) ≥ d(P )

|G|
=

1

[G : P ]
.

Conversely, Babai-Goodman-Pyber [1] give an explicit function f : [0, 1] → R such that if ∆(G) ≥ ∆
then G has a cyclic p-subgroup of index at most f(∆). In other words, as |G| grows with ∆(G) ≥ ∆, the
degree of G is controlled (up to bounded multiplicative error) by the size of the largest cyclic p-subgroup
of G. Specifically, they show that when G does not possess a large cyclic group of prime-power order it
has a pair of reasonably large subgroups with trivial intersection.

Note that the above bound on ∆(G) is derived from a faithful collection of size 2. In Lemma 4.3
we show that when ∆(G) ≥ ∆ there exists k depending only on ∆ such that a minimal permutation
representation of G has at most k orbits. The case of groups of prime exponent and nilpotence class two,
studied in [1, Thm. 3.6] as well as [8] shows that we need k > 2 in general.

Lemma 4.3. Let k = dimG. Then ∆(G) ≤ k
2k−1 .

Proof. Write the socle M = M(G) as the direct product of k minimal normal subgroups {Si}ki=1. For
1 ≤ i ≤ k let Hi =

∏
j 6=i Sj . It is clear that {Hi} is a faithful collection of size k and each of its elements

has size at least 2k−1. �

Lemma 4.4. Let P be a cyclic p-subgroup of G. Then RCG(P ) < M(P ). If |G| is large enough compared
to [G : P ] then equality holds.

Proof. Let N < P be non-trivial and normal in G. Then M(P ) is a characteristic subgroup of N . It
follows that RCG(P ) is either trivial or equal to M(P ). In any case, we have dimG P ≤ 1.

Finally, the core of P has index at most ([G : P ])! (it is the kernel of a homomorphism into S[G:P ]). If
|G| > ([G : P ])! then CoreG(P ) is a non-trivial normal subgroup of G contained in P , hence containing
its unique subgroup of order p. In that case M(P ) is normal in G and thus RCG(P ) = M(P ). �

In fact, if G has a large cyclic p-subgroup then a permutation representation with two orbits is almost
optimal:

Corollary 4.5. Let P be a cyclic p-subgroup ofG, and let l(G) be the order of the smallest point stabilizer
in an orbit in a minimal permutation representation of G. Then

1

l(G)
≤ ∆(G) ≤ 1

l(G)
+

1

|P |
.

Proof. Let H be a minimal faithful collection for G, chosen so that it contains an element H1 of smallest
possible order (denoted above by l(G)). Clearly ∆(G) = ∆(H) ≥ 1

l(G)
. For the other assertion, we may

as well assume M(P ) ∈ M(G), otherwise KG(P ) = {1} and the claim is clear. Then H, being faithful,
must contain an element H2 disjoint from M(P ), hence {P,H2} is a faithful collection. �

Theorem 4.6. LetGn be a sequence of groups with orders increasing to infinity such that limn→∞∆(Gn) >
0. Then this limit is of the form 1/l for some l ∈ N.
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Proof. For n large enough we have ∆(Gn) > ∆ > 0. The main result of [1], already quoted above, is that
Gn has a cyclic pn-subgroup Pn of index at most f(∆) for some f : [0, 1]→ N. It follows that∣∣∣∣∆(Gn)− 1

l(Gn)

∣∣∣∣ ≤ f(∆)

|Gn|
.

Here l(Gn) is as in the statement of Corollary 4.5. As |Gn| → ∞, we see that 1
l(Gn)

tends to a positive
limit. The sequence of integers l(Gn) must then be eventually constant. �

Note that we have shown more, that if ∆(G) ≥ ∆ > 0 then any minimal permutation representa-
tion consists of one large orbit of size essentially |G|∆(G), and several other orbits of size and number
bounded in terms of ∆. Indeed, the number of orbits is bounded by Lemma 4.3. We have an obvious
bound l(G) ≤ (∆(G)− f(∆)/ |G|)−1. Next, as soon as |G| is large enough so that 1

l(G)+1
+ f(∆)
|G| <

1
l(G)

,
the subgroups H1, H2 of Lemma 4.4 must have the same size. We conclude that if ∆(G) > ∆ and |G| is
large enough (depending on ∆), G has a cyclic p-subgroup P of index at most f(∆) such that M(P ) is
normal in G and a subgroup H of order l(G) belonging to a minimal faithful collection and disjoint from
M(P ). Then every other member of that minimal faithful collection may be replaced with P keeping the
collection faithful. Hence all other orbits in the representation must have size at most f(∆).

4.2. Some numerical results. The thesis [6] contains an implementation of procedure preceding Theo-
rem 3.16 in the algebraic programming language MAGMA [12]. Using the limited computing power of a
personal computer, p-groups of order pn with n ≤ 6 with small p were examined. Any such group can be
found in the MAGMA database. Let us summarize the findings.

There is only one group G of order p, and for this group ∆(G) = 1. There are two groups of order p2,
namely Zp × Zp and Zp2 . Here ∆(Zp × Zp) = 2

p
and ∆(Zp2) = 1. Consequently

∑
|G|=p2 ∆(G) = 1 + 2

p
.

There are five groups of order p3: one cyclic with ∆ = 1; one elementary abelian with ∆ = 3
p2

; one
abelian with a generator of order p2, having ∆ = 1

p
+ 1

p2
; and two non-abelian groups both having ∆ = 1

p
.

Observe that
∑
|G|=p3 ∆(G) = 1+ 3

p
+ 4

p2
. For groups of order p4 and p5 we state the following conjecture:

Conjecture 4.1. For p > 3 ∑
|G|=p4

∆(G) = 1 +
5

p
+

11

p2
+

9

p3
,

∑
|G|=p5

∆(G) = 1 +
7

p
+

34 + 2 gcd(p− 1, 3) + gcd(p− 1, 4)

p2
+

54

p3
+

24

p4
.

For any prime p ≥ 3, there are exactly fifteen groups of order p4, and these can be enumerated and
described. So the proof of the first part of the conjecture should be straightforward. We have computation-
ally verified the conjecture for groups of order p4 for every prime p in the range 3 < p < 50 and several
larger values of p (≈ 1000). We considered the groups of order p5 for p ≤ 19. Note that the number of
groups of order p5 is 61 + 2p + 2 gcd(p − 1, 3) + gcd(p − 1, 4). For groups of order p6, we did not have
enough data points to be able to guess a formula.
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