
L-FUNCTIONS FOR THE p-ADIC GROUP GSp(4)

By RAMIN TAKLOO-BIGHASH

To Paria

Abstract. In this paper we compute the local L-factors for Novodvorsky integrals for all generic
representations of the group GSp(4) over a nonarchemidean local field.

1. Introduction. In this paper we will study the p-adic theory of Novod-
vorsky integrals for the similitude symplectic group GSp(4), and will present
the computation of the nonarchemidean L-factors given by these integrals for all
generic representations of the group. These integrals which were introduced by
M. Novodvorsky in the Corvallis conference [17] serve as one of the few avail-
able integral representations for the Spin L-function of GSp(4). Unfortunately,
Novodvorsky’s paper is somewhat sketchy, and skips the proofs. Some of the
details missing in Novodvorsky’s original paper have been reproduced in Daniel
Bump’s survey article [1]. The reader is advised to consult Bump’s paper for
local unramified computations, the proof of the Euler product decomposition of
the global integral and other interesting results. David Soudry has generalized the
integrals considered here to orthogonal groups of arbitrary odd degree. The local
theory of Soudry’s integrals appear in his Memoire paper [27]. Our motivation for
this work comes from the work of Masaaki Furusawa and Joseph Shalika on the
special values of L-functions of GSp(4) using the relative trace formula [8], where
they need precise information about the local behavior of Novodvorsky integrals.

We now describe our method. Following Godement [9], the main idea is
to determine the germ expansions of Whittaker functions when restricted to the
maximal torus in the Siegel parabolic subgroup. The functionals that appear as
coefficients in these germ expansions are easily seen to belong to the dual of a
certain twisted Jacquet module. We are most interested in the eigenspace decom-
position of this dual module under the action of the Siegel torus. This decomposi-
tion essentially determines the germ expansion and naturally the local L-factor. To
do explicit computations one uses the fact that germ expansions must be invari-
ant under intertwining operators by the multiplicity one theorem of Shalika [25],
up to certain constants, i.e. local coefficients. These local coefficients have been
extensively studied by Shahidi in [22], [23], [15]. Away from the poles of inter-
twining operators this simple argument determines the germ expansion. To extend
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the results to singular cases, one needs a careful description of the eigenspaces
mentioned above. Then one uses the analytic continuation of all the ingredients.
The problem is slightly harder in these cases because the dual module is not
semi-simple. For reducible representations one uses the classification theorems
of Sally-Tadic [20] and Shahidi [23]. The final results appear as Theorems 4.1
and 5.1. The above method can be used for Whittaker functions of other p-adic
groups, as well as other unique models such as Bessel models. For this though a
study of local coefficients associated to these models is indispensable [6].

There are other problems that are closely related to the subject matter of this
work. In this article we have computed the local gcd for each generic represen-
tation of the similitude symplectic group: one would naturally want to determine
explicitly a vector in the space of the given generic representation that gives this
gcd. This is particularly important in trace formula applications. Another problem
that is yet to be solved is the problem of performing the archemidean compu-
tations. It is also essential to compute the �-factor defined by Novodvorsky’s
integrals. We hope to address these issues in a future work.

Acknowledgments. The author would like to express his gratitude to his ad-
visor Professor Joseph A. Shalika, without whose generous help completing this
work would not have been possible. Thanks are also due to Masaaki Furusawa,
Amir Jafari, Arash Rastegar, Freydoon Shahidi, David Soudry, Marko Tadic, and
especially to the referee for helpful communications and suggestions; to Daniel
Martin for computer assistance; and to the Department of Mathematics at the
Johns Hopkins University, for use of their computing facilities. I would espe-
cially like to thank my wife, Paria Mirmonsef, for her love, support, and patience
during the time that this paper was being prepared. It is her to whom this work
is humbly dedicated.

Notation. Throughout this paper F will denote a nonarchemidean local
field of residue characteristic p and residue degree q, and O will denote its ring
of integers. Also  will be a fixed additive character of F, trivial on O, and
nontrivial on every larger ideal. We will use the notation of [3] when working
with arbitrary reductive groups. The group GSp(4) over an arbitrary field K is the
group of all matrices g 2 GL4(K) that satisfy the following equation for some
scalar �(g) 2 K:

tgJg = �(g)J,

where J =

0B@ 1
1

�1
�1

1CA. It is standard that G = GSp(4) is a reductive group.

The map (F�)3 �! G, given by

(a, b,�) 7! diag(a, b,�b�1,�a�1)
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gives a parameterization of the maximal torus T in G. Let �1, �2 and �3 be
quasi-characters of F�. We define the character �1 
 �2 
 �3 of T by

(�1 
 �2 
 �3)(diag(a, b,�b�1,�a�1)) = �1(a)�2(b)�3(�).

The Weyl group is a dihedral group of order eight. It has generators

w1 =

0BBB@
1

1
1

1

1CCCA , w2 =

0BBB@
1

1
�1

1

1CCCA .

It will also be useful to know the realization of the Weyl group as a group of
permutations on four letters. Explicitly, we have the following permutations:

fidentity, (1 2)(3 4), (2 3), (1 4), (1 2 4 3), (1 3 4 2), (1 3)(2 4), (1 4)(2 3)g.

wl will always denote the longest Weyl element. We have three standard parabolic
subgroups: the Borel subgroup B, the Siegel subgroup P, and the Klingen sub-
group Q with the following Levi decompositions:

B =

8>>><>>>:
0BBB@

a
b

b�1
�

a�1
�

1CCCA
0BBB@

1 x
1

1 �x
1

1CCCA
0BBB@

1 r s
1 t r

1
1

1CCCA
9>>>=>>>; ,

P =

8>>><>>>:
 

g
�
�g�1

!0BBB@
1 r s

1 t r
1

1

1CCCA j g 2 GL(2)

9>>>=>>>; .

Here �g is the transposed matrix with respect to the second diagonal, and finally

Q =

8>>><>>>:
0B@� g

�
�1 det g

1CA
0BBB@

1 x
1

1 �x
1

1CCCA
0BBB@

1 r s
1 r

1
1

1CCCA j g 2 GSp(2)

9>>>=>>>; .

For these parabolic subgroups, the modular functions are explicitly given by the
following:

�B(p) = ja4b2
�
�3j,

�P(p) = j( det g)3
�
�3j,

and
�Q(p) = j�4( det g)�2j,
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for typical elements as above. We will use the notation �1 � �2 o �3 for the
parabolically induced representation from the minimal parabolic subgroup, by the
character �1 
�2 
�3. If � is a smooth representation of GL(2), and � a quasi-
character of F�, then �o� (resp. �o�) is the parabolically induced representation
from the Levi subgroup of the Siegel (resp. Klingen) parabolic subgroup. We
define a character of the unipotent radical N(B) of the Borel subgroup by the
following:

�

0BBB@
0BBB@

1 x
1

1 �x
1

1CCCA
0BBB@

1 r s
1 t r

1
1

1CCCA
1CCCA =  (x + t).

We call an irreducible representation (Π, VΠ) generic, if there is a functional �Π
on VΠ such that

�Π(Π(n)v) = �(n)v,

for all v 2 VΠ and n 2 N(B). If such a functional exists, it is unique up to a con-
stant [25]. Shahidi has given canonical constructions of these functionals in [22]
for representations induced from generic representations. We define Whittaker
functions on G� VΠ by

W(Π, v, g) = �Π(Π(g)v).

When there is no danger of confusion, after fixing v and suppressing Π, we write
W(g) instead of W(Π, v, g). For a character Ψ of the unipotent radical of the
Borel subgroup, we denote by �N,Ψ the Jacquet module, twisted by Ψ, of the
representation �. We will also use Shahidi’s notations on intertwining operators
and local coefficients from [22]. These objects have been explicitly written out
whenever we have used them. We will also use Sally and Tadic’s notations for
Langlands parameters.

2. The integral of Novodvorsky.

2.1. The L-function. We recall that LGSp(4)� = GSp(4, C ), the connected
component of the L-group of GSp(4). Let LT be the maximal torus of GSp(4, C )
of elements of the form

t(�1,�2,�3,�4) =

0BBB@
�1

�2

�3

�4

1CCCA ,
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where �1�4 = �2�3. The fundamental dominant weights of the torus are �1 and
�2 where

�1t(�1,�2,�3,�4) = �1,

�2t(�1,�2,�3,�4) = �1�
�1
3 .

The dimensions of the representation spaces associated with these dominant
weights are 4 and 5 respectively. If � is an automorphic cuspidal representa-
tion of GSp(4), the Langlands L-function L(s,�, V(�1)) is usually referred to as
th Spin L-function. A typical Euler factor of this L-function will have degree 4.

2.2. Global integral. Unlike the rest of the paper this subsection is con-
cerned with global theory. In this subsection we will follow the exposition of
Bump [1]. Let k be an arbitrary global field, and let (�, V�) be an irreducible
cuspidal automorphic representation of GSp(4) over k. Suppose that � is generic,
i.e., there exists � 2 V� such that the Whittaker function of �

W�(g) =
Z

(A =k)4
�

0BBB@
0BBB@

1 x2

1
1 �x2

1

1CCCA
0BBB@

1 x3 x4

1 x1 x3

1
1

1CCCA g

1CCCA
�  

�1(x1 + x2) dx1 dx2 dx3 dx4

is not identically zero, where  is a nontrivial character of A =k.
Let � be a character of A �=k�. Then the Hecke type integral considered by

Novodvorsky is

ZN(s,�,�) =
Z
A�=k�

Z
(A =k)3

�

0BBB@
0BBB@

1 x2 x4

1
z 1 �x2

1

1CCCA
0BBB@

y
y

1
1

1CCCA
1CCCA

�  (� x2)�(y)jyjs�
1
2 dz dx2 dx4 d�y.

Since � is left invariant under the matrix

0BBB@
1

1
�1

�1

1CCCA ,

this integral has a functional equation s ! 1� s.
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A usual unfolding process as sketched in [1] then shows that

ZN(s,�,�) =
Z
A�

Z
A

W�

0BBB@
y

y
x 1

1

1CCCA�(y)jyjs�
3
2 dx d�y.

If � is chosen correctly, the Whittaker function may be assumed to decompose
locally as W�(g) =

Q
v Wv(gv), a product of local Whittaker functions. Then

ZN(s,�,�) =
Y
v

Zv ,N(s, Wv ,�v)

=
Y
v

Z
k�v

Z
kv

Wv

0BBB@
y

y
x 1

1

1CCCA�v(y)jyj
s� 3

2
v dxv d�yv .

As we will see later each of the local factors Zv ,N for nonarchemidean v is a
rational function in Nv�s. Also if we fix v, for different choices of � the rational
functions Zv form a principal fractional ideal in C (Nv�s). We are most interested
in this local generator. The importance of these factors comes from the fact that
if all the local data at v are unramified, the generator is exactly the local v-factor
of the Spin L-function of �.

2.3. Local integral. Suppose � is a generic representation of GSp(4) over
a local field F, and � a quasi-character of F�. For W 2 W (�, ) define the
following function:

ZN(s, W,�) =
Z

F�

Z
F

W

0BBB@
y

y
x 1

1

1CCCA�(y)jyjs�
3
2 dx d�y.

Then we have the following theorem:

THEOREM 2.1. ZN is a rational function of q�s, and satisfies the following func-
tional equation:

ZN(s, W,�) = (s)ZN(1� s,�(w)W,��1
!
�1
� ),

for w =

0B@ 1
1

�1
�1

1CA, and for a fixed function  which depends only on the class

of � and �.
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Proof. Rationality follows from Theorem 3.6. For the functional equation we
proceed as follows. For g of the following form

0BBB@
a

a
1

1

1CCCA
0BBB@

1
1
t 1

1

1CCCA
0BBB@

1 x
1

1 �x
1

1CCCA
0BBB@

1 r s
1 r

1
1

1CCCA ,

it is easy to check that

ZN(s,�(g)W,�) = ��1(a)jaj
1
2�s

 (x)ZN(s, W,�).

The other side of the functional equation satisfies the same invariance equation.
Let L be the set of all matrices of the above form. L is a subgroup. If we
change coordinates by (2 3), this subgroup is sent to the Novodvorsky subgroup
[8]. Thus by Furusawa’s notation [7] both sides of the functional equation are

(S, Λ, )-Bessel functionals, where S =
�

1
1

�
. But the space of these functionals

is at most one dimensional ([18], also [7] ).

Remark 2.2. This is the “right” functional equation, as the following propo-
sition shows.

PROPOSITION 2.3. �̃ is equivalent to � 
 !
�1
� .

Proof. Let Θ� be the locally integrable function which gives the character of
�. It is easily seen that Θ�̃(x) = Θ�(x�1), 8x 2 G. Also Θ�
!�1 = Θ

�
0

!�1 where

�
0

(x) = �(JxJ�1), where J is the defining matrix of the group. Then one checks
that Θ

�
0

!�1 is equal to Θ�(tx�1). Thus we just need to show that Θ�(x) = Θ�(tx)

a.e. on G. We need the following lemma:

LEMMA 2.4. Let X be the set of regular semi-simple elements in G. Then every
invariant under conjugation distribution on X is invariant under transposition.

Proof. One easily verifies that the action of G on X by conjugation and the
homeomorphism of X given by transposition satisfy the conditions of the theorem
of p. 91 of [16].

This lemma finishes the proof of the proposition.

3. Asymptotic expansions and L(s,�,�).

3.1. We first prove that the integrals of Novodvorsky admit a “greatest
common divisor.”
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LEMMA 3.1. The support of the map x 7! W

0B@y
y
x 1

1

1CA lies in a compact set

Ω that does not depend on y.

Proof. The same as in [12].

Now we define a new zeta function by the following:

Z(s, W,�) =
Z

F�
W

0BBB@
y

y
1

1

1CCCA�(y)jyjs�
3
2 d�y.

PROPOSITION 3.2. The vector space generated by the ZN(s, W,�) for various W
is the same as the space generated by the Z(s, W,�).

Proof. First we prove the equality of the spaces generated by the zeta integrals.
Fix W, and let K be the compact open subset of G that fixes W. Let U = Ω\K.
Then for a finite number of elements x1, x2, : : : , xn, Ω � [ixiU. Then

ZN(s, W,�) =
Z

F�

nX
i=1

Z
xiU

W

26664
0BBB@

y
y

1
1

1CCCA h

37775�(y)jyjs�
3
2 dh d�y

=
nX

i=1

vol(xiU)
Z

F�
�(xi)W

0BBB@
y

y
1

1

1CCCA jyjs� 3
2 d�y

=
nX

i=1

vol(xiU)Z(s,�(xi)W,�).

This proves one of the inclusions. For the other side, suppose � is a Schwartz
function whose Fourier transform �̂ is supported in a small neighborhood of 0,
and �(0) 6= 0. Then

�(0)W

0BBB@
0BBB@

y
y

1
1

1CCCA
1CCCA

=
Z

F
�̂(x)W

0BBB@
0BBB@

y
y

1
1

1CCCA
0BBB@

1
1
x 1

1

1CCCA
1CCCA dx
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=
Z Z

�(s) (� xs)W

0BBB@
0BBB@

y
y

1
1

1CCCA
0BBB@

1
1
x 1

1

1CCCA
1CCCA ds dx

=
Z Z

�(s)W

0BBB@
0BBB@

y
y

1
1

1CCCA
0BBB@

1
1
x 1

1

1CCCA
0BBB@

1 s
1 s

1
1

1CCCA
1CCCA ds dx

=
Z Z

�(s)

0BBB@�
0BBB@

1 s
1 s

1
1

1CCCAW

1CCCA
0BBB@

y
y
x 1

1

1CCCA dx ds

=
X

i

Z
Wi

0BBB@
y

y
x 1

1

1CCCA dx.

This finishes the proof.

Now we will show that the functions Z(s, W,�) admit a gcd. The method is
basically that of [11]. We first need a lemma.

LEMMA 3.3. The function fW : y 7! W

0B@y
y

1
1

1CA has bounded support in F.

Proof. Choose t 2 F with jtj small enough, so that W

0B@g

0B@1
1 t

1
1

1CA
1CA =

W(g). Then

W

0BBB@
y

y
1

1

1CCCA = W

0BBB@
0BBB@

y
y

1
1

1CCCA
0BBB@

1
1 t

1
1

1CCCA
1CCCA

=  (ty)W

0BBB@
y

y
1

1

1CCCA
So in order for the function to be nonzero, we need  (yt) 6= 0.

Let K (�, ) be the space of all functions fW .
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LEMMA 3.4. S(F�) � K (�, ). When � is super-cuspidal, K (�, ) = S(F�)

Proof. See Theorem 1 of Chapter 1 of [9].

The following proposition is fundamental.

PROPOSITION 3.5. There is a finite set of finite functions S with the following
property: for any W 2 W (�, ), and � 2 S there is a Schwartz function Φ�,W on F
such that the following equality holds for every y 2 F�

W

0BBB@
y

y
1

1

1CCCA =
X
�2S

Φ�,W(y)�(y)jyj
3
2 .

Proof. For super-cuspidal representations, this follows from Lemma 3.4. For
the Whittaker functional of an induced representation of an arbitrary quasi-split
group, this is equation (3.4.2) of [4].

THEOREM 3.6. For every W in W (�, ), �(s, W,�) is a rational function in
X = q�s. The ideal generated by these functions is principal.

Proof. The rationality assertion is obvious. It is seen that each � in the germ
expansion is either a quasi-character itself, or the product of a quasi-character and
some power of the function logq j j. We will denote the quasi-character associated
with � by �̃. Similar to the argument on pages 1.46–47 of [9] we see that if
� = �̃.( logq j j)

n(�) then

R
F Φ�,W(y)�(y)�(y)jyjs d�y

L(s, �̃�)n(�)

is an entire function. Now Theorem 4.3 of [19] says that these are all the possible
denominators. This finishes the proof.

We will denote the generator of the above ideal by L(s,�,�).

PROPOSITION 3.7. L(s,�,�)�1 2 C [q�s].

Proof. Suppose

L(s,�,�) =
P(q�s)
Q(q�s)

with (P, Q) = 1.

If P(q�s) is not a monomial in q�s , for some values of s, say s0, P(q�s0) = 0.
This implies for all W 2 W (�, ), Z(s0, W,�) = 0 which is impossible, because



L-FUNCTIONS FOR THE p-ADIC GROUP GSp(4) 1095

S(F�) � K (�, ). Now the proposition follows from this identity:

Z

0BBB@s,�

0BBB@
0BBB@

a
a

1
1

1CCCA
1CCCAW,�

1CCCA = jaj
3
2�s

�
�1(a)Z(s, W,�).

COROLLARY 3.8. L(s,�,�) = gcd
�2S L(s,��̃)n(�).

Note that this is basically the same as Theorem 4.1 of [19]. The L-functions
appearing on the right-hand side are Tate’s L-factors.

PROPOSITION 3.9. L(s,�,�) = 1 when � is super-cuspidal, or when � is a sub-
quotient of the induction of a supercuspidal representation of the Levi factor of
the Klingen parabolic subgroup. Also deg L(s,�,�)�1 � 4 (� 2), when � is a
sub-quotient of a representation coming from the minimal (resp. Siegel) parabolic
subgroup.

Proof. When � is supercuspidal, the assertion is obvious by Lemma 3.4. Now
let � be a sub-quotient of a supercuspidal representation Π of a standard parabolic
subgroup P = P� = MN, � � ∆. The idea is to bound the size of the set S in
Proposition 3.5. Fix a � 2 S, and define a functional Λ� on W (�, ) by

Λ�(W) = Φ�,W(0).

This functional satisfies the following identity, for all n 2 N

Λ�(�(n)W) = �̄(n)Λ�(W),

where �̄ is defined by the following:

�̄

0BBB@
0BBB@

1 x
1

1 �x
1

1CCCA
0BBB@

1 r s
1 t r

1
1

1CCCA
1CCCA =  (x).

This in particular shows that � 2 ��N,�̄, the twisted Jacquet module [5]. It follows
from the proof of Proposition 3.5 that the functionals Λ� are linearly independent.
Thus, as the twisted Jacquet module is an exact functor, we just need to bound
the dimension of Ind(ΠjP, G)�N,�̄. Let PΠ be the usual map from S(G) 
 VΠ to
Ind(ΠjP, G) defined by the following

PΠ(�)(g) =
Z

P
�

1
2
P (p)Π(p�1)�(pg)drp,
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for � 2 S(G). It’s standard [3] that PΠ is surjective and commutes with right
translations. Identify Ind(ΠjP, G) with its Whittaker model, which we will denote
by W (Π), and let T be the pullback of the functional Λ� to G via PΠ. Then T
satisfies

T(Lp � Ru�) = ��1=2
P (p)�̄(u)T(Π�1(p)�),

for � 2 S(G)
VΠ, p 2 P, and u 2 U the unipotent radical of the Borel subgroup.
Similar to the method of [25] we will work with functions �, whose support are
subsets of PwU, for various w in W�nW. Fix one of these double cosets. The
space of distributions on PwU satisfying the invariance properties of T is at most
one dimensional [10]. Consider the natural map P � U �! PwU defined by
(p, u) 7! pwu�1. Next, P � U has a natural action on PwU by (p, u).x = pxu�1.
The group P� U also acts on S(PwU)
 VΠ by duality:

(p, u).�(x) = �(pxu�1).

By using this action

T((p, u)�) = �1=2
P (p)�̄(u)T(Π(p)�).

Now we have a map S(P� U)
 VΠ �! S(PwU)
 VΠ defined by

�f (x) =
Z

∆w

f (x�) d�,

where ∆w = f(p, u)jpwu�1 = wg. Indeed ∆w is the isotropy group of the action
of P� U on PwU at w and we have P� U=∆w = PwU. Let T� be the pullback
of T to P� U via the above map. One can easily see that

T�(L(p,u)f ) = T((p�1, u�1).�f ) = ��1=2
p (p)�̄(u�1)T�(Π�1(p)f ).

Then there exists a functional � 2 V�Π such that

T�( f ) = �
�Z

P

Z
U
�
�1=2
p (p)�̄(u�1)Π�1(p)f (p, u) dp du

�
.

This is because of the following natural generalization of Lemma 17 of [10] on
left-invariant distributions.

LEMMA 3.10. Suppose G is a p-adic group, �: G �! GL(V) is a smooth
representation of G on some complex vector space V. Let T be a functional on
S(G; V) which satisfies

T(Lgf ) = T(�(g)f ),
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for all f 2 S(G; V) and g 2 G. Then there exists a � 2 V� in such a way that

T( f ) = �
�Z

�(g)f (g) dlg
�

.

Proof. Define a map : S(G; V) �! S(G; V) by

(f )(g) = �(g�1)f (g).

Note that this map is well defined because � is smooth. It can now be checked
that the functional T̃ = 

�T is left-invariant. Now if we use the indentification
S(G; V) = S(G) 
 V , the proof of Lemma 17 of [10] shows that there exists a
functional � such that

T̃( f ) = �
�Z

f (g) dlg
�

.

Writing this equation in terms of T proves the lemma.

On the other hand for all � 2 ∆w,

T�(R�f ) = T(FR�f ) = T(Ff ) = T�( f ).

Using the integral representation for T� we have:

T�(R�f ) = �

�Z
P

Z
U
�
�1=2
p (p)�̄(u�1)Π�1(p)R�f (p, u) dp du

�
= �

�Z
P

Z
U
�
�1=2
p (p)�̄(u�1)Π�1(p)f (pp1, uu1) dp du

�
= �

�Z
P

Z
U
�
�1=2
p (pp�1

1 )�̄�1(uu�1
1 )Π�1(pp�1

1 )f (p, u) dp du
�

= �

�
�

1=2
p (p1)�̄(u1)Π(p1)

Z
P

Z
U
�
�1=2
p (p)�̄�1(u)Π�1(p)f (p, u) dp du

�
,

for � = (p1, u1). Finally, it is trivial that for every v 2 V� there exists f 2

S(P� U)
 VΠ such that

v =
Z

P

Z
U
�
�1=2
p (p)�̄�1(u)Π�1(p)f (p, u) dp du.

Thus for all (p, u) 2 ∆w, � satisfies the following equation:

�(�̄(u)Π(p)v � v) = 0.

The rest of the proof consists of a case-by-case analysis of all the possibilities.
The Borel subgroup case is simple. For fixed w, if we can find p such that the
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corresponding u satisfies �̄(u) 6= 1, then it follows that

(�̄(u)� 1)�(v) = 0.

It follows from this equation, then, that �(v) = 0 for all v. Finding such p is
possible when w sends the element0BBB@

1 x
1

1 �x
1

1CCCA(1)

to an upper-triangular matrix. This happens for exactly four elements of the Weyl
group, hence the first assertion of the proposition. For the other two parabol-
ics, first we give representatives for the right cosets of W� in W. Note that by
Proposition 1.3.1 of [3], G = [PwU, w 2 W�nW. Next by Lemma 1.1.2 of
[3], in any right cosets of W� in W there exists a unique element w character-
ized by w�1

� > 0. Hence for the two parabolics, we get the following sets of
representatives:

(1) Siegel parabolic subgroup:

fidentity, (2 3), (1 2 4 3), (1 3)(2 4)g.

(2) Klingen parabolic subgroup:

fidentity, (1 4), (1 2)(3 4), (1 3 4 2)g.

For the Siegel parabolic case, for the two elements (2 3) and (1 2 4 3), there
exist (p, u) 2 ∆w satisfying Π(p) = 1 and �̄(u) 6= 1. Hence the same argument
shows that their corresponding functional � is identically zero. For the Klingen
parabolic subgroup, though, we have to use the super-cuspidality of the inducing
representation. Let NM be the unipotent radical of the Levi factor of P. Then it
can be checked that for the three Weyl elements identity, (1 4), and (1 2)(2 3) we
have

�̄(w�1NMw) = f1g.

From this it follows that �(v) = 0 for all v 2 VΠ(NM). But since Π is super-
cuspidal VΠ(NM) generates VΠ as a vector space, hence the result. It remains to
study the element (1 3 4 2). We have the following identity:

(1 3 4 2)

8>>><>>>:
0BBB@

1 t
1

1
1

1CCCA
9>>>=>>>; =

8>>><>>>:
0BBB@

1
1
t 1

1

1CCCA
9>>>=>>>; .
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This identity implies that

�

 
Π
 

1
t 1

!
v � v

!
= 0.

Here we have used the same notation for the restriction of Π to the GL(2) part
of the Levi factor of P. This now implies that � = 0, again because Π is super-
cuspidal. We have completed the proof of the proposition.

3.2. From this point on, we concentrate on representations induced from
the minimal parabolic subgroup and the Siegel parabolic subgroup. We will use
the same notations as in the proof of Proposition 3.9. We will also assume that
� = Ind(ΠjP, G) is irreducible. Proposition 3.5 says that for all W 2 W (Π) there
is a �(W) > 0 such that if jaj < �(W), then

W

0BBB@
a

a
1

1

1CCCA =
X
�2S

Λ�(W)�(a)jaj
3
2 .

The reason for �(W) > 0 is that the functions Φ�,W in Proposition 3.5 are all
Schwartz functions. Now we would like to study the behavior of �(W), when W
holomorphically depends on a parameter, or a space of parameters, in the sense
we will now explain. For f 2 Ind(ΠjP\K, K) and s 2 C , define a function fs by
the following:

fs(pk) = �P(p)s+ 1
2 Π(p)f (k),

for p 2 P and k 2 K. Note that fs is well defined, and belongs to the space
of a certain induced representation �s. Let ��s be the Whittaker functional of
�s. We know from above that there exists a number � = �( f , s) such that for
jaj < � we will have the required asymptotic expansion for ��s(�s(â)fs), where
â = diag(a, a, 1, 1). We will refer to the following proposition as the Uniformity
Proposition [26].

PROPOSITION 3.11. �( f , s) = �( f ).

In [26], Shalika proves the corresponding proposition for GL(2). Namely,
suppose �1 and �2 are two quasi-characters of F�, in such a way that Ind(�1 


�2jB, G) is irreducible. Then for complex parameters (s1, s2), one considers the
representation I(s1, s2) = Ind(�1vs1 
 �2vs2 jB, GL(2)). Now for f 2 Ind(�1 


�2jB \ K, K), one can define the number �( f , s1, s2) the way we defined our
�( f , s). Then Shalika’s uniformity proposition asserts that �( f , s1, s2) = �(f , 0, 0).
Our method of proof of Proposition 3.11 which we are about to present can be
used to give a proof for Shalika’s theorem different from his original method.
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Proof. We will use the following identity repeatedly [5]

 
1 t

1

!
=

 
1

�1

! 
t�1 �1

t

! 
1

t�1 1

!
,(2)

for t nonzero. We will prove the proposition for the two cases of interest sepa-
rately.

Case 1. Siegel parabolic subgroup: Supercuspidal representations. Let jaj <
1. We know from [22] that in this case

W(�s, fs, â)

= jaj
3
2�s

�(a)
Z

F3
fs

26664
0BBB@

1
1

�1
�1

1CCCA
0BBB@

1 r u
1 t r

1
1

1CCCA ; e

37775 (� at) dt dr du,

as a principal value integral. Let � be the characteristic function of the ring of
integers. We have two different cases:

(1) t integer. As jaj < 1, we have  (at) = 1. Thus the integral is independent
of a.

(2) t noninteger. By using the fundamental identity above write the integral
as the following:

Is
f (a) =

Z
F3
jtj�

3
2�s(1� �(t)) (� at)fs26664

0BBB@
1

1
�1

�1

1CCCA
0BBB@

1
1

�1
1

1CCCA
0BBB@

1
1

t�1 1
1

1CCCA
0BBB@

1 r u
1 r

1
1

1CCCA ;

 
t�1

1

!37775 dt dr du.

Now we will use the following identity:

0BBB@
1

1
�1

�1

1CCCA
0BBB@

1
1

�1
1

1CCCA
0BBB@

1
1

t�1 1
1

1CCCA
0BBB@

1 r u
1 r

1
1

1CCCA
0BBB@

1
1

�t�1 1
1

1CCCA
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=

0BBB@
1 r

1
1 �r

1

1CCCA
0BBB@

1
1

�1
�1

1CCCA
0BBB@

1
1

�1
1

1CCCA
0BBB@

1 �rt�1 u + r2t�1

1
1 rt�1

1

1CCCA .

This implies the following:

Is
f (a) =

Z
F3
jtj�

1
2�s(1� �(t)) (� at) (� r)fs26664

0BBB@
1

1
�1

�1

1CCCA
0BBB@

1
1

�1
1

1CCCA
0BBB@

1 r u
1

1 �r
1

1CCCA
0BBB@

1
1

t�1 1
1

1CCCA;

 
t�1

1

!37775 dt dr du.

Now we divide Is
f (a) to the following 4 integrals:

Integral 1. The integrand in Is
f (a) is multiplied by �(u)�(r). This will then be

a finite linear combination of integrals of the following form:

Z
F
jtj�

1
2�s(1� �(t))chM(t�1) (� at)v

 
t�1

1

!
dt,

for certain compact sets M in O independent of s. The function

t 7! v

 
t�1

1

!

has compact support in F�. Thus it suffices to have a(suppv)�1 � O.

Integral 2. The integrand in Is
f (a) is multiplied by �(u)(1� �(r)). This time

we obtain integrals of the following form:

Z
F2
jtj�

1
2�sjrj3�6s

 (� at � r)v

 
t�1

1

!
chM1(t�1)chM2 (r�1)

(1� �(r))(1� �(t)) dt dr.

This is taken care of in the same exact manner.

Integral 3. The integrand in Is
f (a) is multiplied by �(r)(1 � �(u)). We have

the following integral:Z
F3
jtj�

1
2�sjuj�

3
2�3s(1� �(t))(1� �(u))�(r) (� at � r)(3)
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fs

26664
0BBB@

1
1

1
1

1CCCA
0BBB@

1
1

1
u�1 1

1CCCA
0BBB@

1 r
1

1 �r
1

1CCCA
0BBB@

1
1

t�1 1
1

1CCCA ;(4)

 
t�1

1

! 
1

u�1

!37775 dt dr du.(5)

This is now a finite linear combination of the following integrals:

Z
F2
jtj

1
2�sjuj�3s� 1

2 (� at)v

 
t�1

u�1

!
chM1 (t�1)chM2(u�1)

(1� �(u))(1� �(t))
dt
jtj

du
juj

.

Let u = t:

Z
F2
jtj�4sjj�3s� 1

2 (� at)v

 


1

!
chM1 (t�1)chM2(t�1


�1)

(1� �(t))(1� �(t))
dt
jtj

d
jj

=
Z
p2
jtj4sjj3s+ 1

2 (� at�1)v

 


1

!
chM1 (t)chp\M2 (t)

dt
jtj

d
jj

.

This too is a finite linear combination of the following integrals:

Z
K

Z
p

jtj4sjj3s+ 1
2 (� at�1)chM1(t)chp\M2(t)

dt
jtj

d
jj

,

for compact sets K in F�. Choose a large integer M in such a way that �MK �

p\M2, also jaj < q�M . Then we get an integral which is independent of a and
the following integral:

Z
jtj<q�M

jtj4s
 (� at�1)

dt
jtj

,

which can be explicitly computed in terms of ord a.

Integral 4. The integrand in Is
f (a) is multiplied by (1��(r))(1��(u)). We start

from equation (3) above. After simple manipulations, and a change of variable



L-FUNCTIONS FOR THE p-ADIC GROUP GSp(4) 1103

R = u�1r, we get the following:Z
F3
jtj�

1
2�sjuj�

1
2�3s(1� �(t))(1� �(u))(1� �(uR)) (� at � Ru)

fs

26664
0BBB@

1
1

1
R2u 1

1CCCA
0BBB@

1
1

1
1

1CCCA
0BBB@

1
1

1
u�1 1

1CCCA
0BBB@

1
1

t�1 1
1

1CCCA;

 
t�1

u�1

! 
1

R(1 + u) 1

!37775 dt dR du.

We divide this integral again to integrals having �(R2u) and 1� �(R2u) in them.
The integral with �(R2u) is easy to deal with. We will now study the second
integral. After using equation (2), the integral can be written as a finite linear
combination of the following integrals:Z

F3
jtj�

1
2�sjuj�

1
2�3s(1� �(R2u))(1� �(t))(1� �(u))(1� �(uR))

 (� at � Ru)jR2uj�3s� 3
2 v

" 
t�1

u�1

! 
1

R(1 + u) 1

! 
R�2u�1

1

!#
chM1(t�1)chM2(u�1) dt dR du.

This integral in turn is a finite linear combination of the following:Z
F3
jtj�

1
2�sjuj�

1
2�3s(1� �(R2u))(1� �(t))(1� �(u))(1� �(uR))

 (� at � Ru)jR2uj�3s� 3
2 v

 
R�2t�1

1

!
chM1 (t�1)chM2(u�1)chM3(R�1u�1(1 + u)) dt dR du,

which can again be dealt with as before. This completes the proof of the unifor-
mity proposition in this case.

Case 2. Siegel parabolic subgroup: nonsupercuspidal representations. Here
we will show that the following integrals have asymptotics that are uniform in s:

eW(�s, fs, â) =
Z

F3
fs

26664
0BBB@

1
1

�1
�1

1CCCA
0BBB@

1 r u
1 t r

1
1

1CCCA ; e

37775 (� at) dt dr du.
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The same proof as above works in this case. One just needs to take into account
the contribution of the germ expansion of Π.

Case 3. Borel parabolic subgroup. In this case we have the following:

W(�(s), fs, â)

= �3(a)jaj
3
2�3s

Z
F4
 (� x� at)

fs

26664
0BBB@

1 x
1

1 �x
1

1CCCA
0BBB@

1 r u
1 t r

1
1

1CCCA
37775 dx dr du dt

=
Z
p

�1(x)�2(x�1) (� x�1)�a
Siegel

0BBB@�
0BBB@

1
x�1 1

1
�x�1 1

1CCCA fs

1CCCA dx
jxj

+
Z
O

 (� x)�a
Siegel

0BBB@�
0BBB@

1 x
1

1 �x
1

1CCCA fs

1CCCA dx,

where

�
a
Siegel( f ) =

Z
F3

f

0BBB@w2w1w2

0BBB@
1 r u

1 t r
1

1

1CCCA
1CCCA (� at) dr du dt.

This is the twisted-by-a Whittaker functional of Ind(Ind(�1 
 �2) 
 �3jP, G).
Here �3 is the character of the similitude part of P. The result now follows from
Case 2 and [26].

4. Local computations for the Borel parabolic subgroup.

4.1. Let �1, �2, �3 be three quasi-characters of F�. We call a character
�1 
 �2 
 �3 “regular” if it is not fixed by any Weyl element except for the
trivial element. It can easily be checked that this is equivalent to the statement
that no element of the set f�1,�2,�1�

�1
2 g is trivial. It is not hard to see when

the representation �1 � �2 o �3 is reducible: It happens if and only if one of
the quasi-characters in the set just mentioned is equal to v�1 [20], [23]. Sally
and Tadic [20] have completed the classification for representations induced from
the Borel subgroup. They have in particular determined the reducibilities of in-
ductions. Here, for the convenience of the reader, we include a resume of their
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results. Following [20], L stands for the Langlands Quotient. Also R(G) is the
Grothendieck group of the category of all smooth representations of GSp(4).

Let �1 
 �2 
 �3 be regular, and suppose �1 � �2 o �3 is reducible. In the
notation of [20] this means s(�1 
 �2 
 �3) > 0. If s(�1 
 �2 
 �3) = 1, then
�1 
 �2 
 �3 is associated either to a character of the form v1=2

�
 v�1=2
�
 �

where � =2 f�, v�1
�, v�3=2g for any � unitary with �2 = 1, or it is associated to

a character of the form �
 v 
 � where � =2 f1F� , v�1, v�2g. Lemmas 3.3 and
3.4 of [20] combined with the exactness of Jacquet functor give the following:

(1) Let �, �, and � 2 (F�)̃ , where � =2 f�, v�1
�, v�3=2g for any � with

�
2 = 1. Then �StGL(2) o � and �1GL(2) o � are irreducible representations. We

have

v1=2
�� v�1=2

�o � = �StGL(2) o � + �1GL(2) o �

in R(G). The representation �StGL(2) o � is generic.
(2) Let �, � 2 (F�)̃ . Suppose that � =2 f1F� , v�1, v�2g. Then �o�StGSp(2)

and �o �1GSp(2) are irreducible representations. We have

�� v o v�1=2
� = �o �StGSp(2) + �o 1GSp(2)

in R(G). The representation �o �StGSp(2) is generic.
Now we consider regular �1 
 �2 
 �3 with s(�1 
 �2 
 �3) = 2. Then

�1 
 �2 
 �3 is either associated with v2 
 v 
 �, or v� 
 � 
 �, with �2 = 1.
This situation is the subject of Lemmas 3.5 and 3.6 of [20].

(1) For � 2 (F�)̃ the following equalities holds in R(G)

v2 � v o v�1=2
� = v3=2StGL(2) o v�1=2

� + v3=21GL(2) o v�1=2
�

= v2
o �StGSp(2) + v2

o �1GSp(2)

and

v2
o �StGSp(2) = v�StGSp(4) + L((v2, StGSp(2)))

v3=2StGL(2) o v�1=2
� = v�StGSp(4) + L((v3=2StGL(2), v�1=2

�)).

In this case, the Steinberg representation StGSp(4) is generic.
(2) Let � be of order two. Then the representation v� � � o � contains a

unique generic essentially square integrable sub-quotient. This sub-quotient will
be denoted by �([�, v�],�). We have in R(G)

v� � � o � = v1=2
�StGL(2) o � + v1=2

�1GL(2) o �

= v1=2
�StGL(2) o �� + v1=2

�1GL(2) o ��
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and

v1=2
�StGL(2) o � = �([�, v�],�) + L((v1=2

�StGL(2),�)).

Now suppose �1 
 �2 
 �3 is not regular and that �1 � �2 o �3 is not
irreducible. Then �1
�2
�3 is associated to a character of the form v
1F�
�,
or v 
 v 
 �, or v1=2

� 
 v�1=2
� 
 �, with � of order two. The following are the

results of Lemmas 3.7, 3.8, and 3.9 of [20].
(1) Suppose that � is of order two. Then we have

v1=2
� � v�1=2

� o � = �StGL(2) o � + �1GL(2) o �

in R(G). Both representations on the right-hand side are irreducible, and �StGL(2)o

� is generic.
(2) We have in R(G)

v � v o v�1=2
� = v o �StGSp(2) + v o �1GSp(2).

Both representations are irreducible, and v o �StGSp(2) is generic.
(3) We have in R(G)

v � 1F� o v�1=2
� = v1=2StGL(2) o v�1=2

� + v1=21GL(2) o v�1=2
�

= 1GL(2) � v o v�1=2
�

= 1F� o �StGSp(2) + 1F� o �1GSp(2).

The representations 1F� o �StGSp(2) and v1=2StGL(2) o v�1=2
� (resp. v1=21GL(2) o

v�1=2
�) have exactly one irreducible sub-quotient in common. That sub-quotient

is essentially tempered and it will be denoted by � (S, v�1=2
�) (resp. � (T , v�1=2

�)).
These two essentially tempered representations are not equivalent. We have in
R(G)

v1=2StGL(2) o v�1=2
� = � (S, v�1=2

�) + L((v1=2StGL(2), v�1=2
�)).

The representation � (S, v�1=2
�) is generic.

4.2. In this section we will prove the following theorem:

THEOREM 4.1.

(a) If �1 � �2 o �3 is irreducible, then

L(s,�1 � �2 o �3) = L(s,�3)L(s,�1�3)L(s,�2�3)L(s,�1�2�3).
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(b) Suppose � =2 fv�1=2
�, v�3=2g, for any � of order two. Then �StGL(2) o �

is irreducible generic, and

L(s,�StGL(2) o �) = L(s,�)L(s,��2)L
�

s +
1
2

,��
�

.

(c) Suppose � =2 f1F� , v�2g. Then �o �StGSp(2) is irreducible generic, and

L(s,�o �StGSp(2)) = L(s +
1
2

,��)L
�

s +
1
2

,�
�

.

(d) L(s, StGSp(4)) = L(s + 3
2 , 1F�).

(e) For � of order two,

L(s, �([�, v�],�)) = L(s + 1,�)L(s + 1,��).

(f) L(s, � (S,�)) = L(s + 1,�)2.

Proof. Let � = �1 � �2 o �3. Also let â =

0B@a
a

1
1

1CA.

Step 1. Suppose �1 
 �2 
 �3 is regular. We have seen before that for jaj
small:

W(�, f , â) = �3(a)jaj3=2(�1
�( f ) + �2

�( f )�1(a) + �3
�( f )�2(a) + �4

�( f )�1�2(a)),

where �i
� are functionals in ��N,�̄. Most of this section is devoted to the careful

analysis of the functionals �i
�. By applying various intertwining operators, we

get the following identities:

�
2
� = C(�, w2w1)�1

w2w1�
� A(�, w2w1),

�
3
� = C(�, w2)�1

w2�
� A(�, w2),

and

�
4
� = C(�, w2w1w2)�1

w2w1w2�
� A(�, w2w1w2).

Also for f with support in the open cell we have:

�
1
�( f ) =

Z
N

f (wln)�̄�1(n) dn.
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Step 2. We will now give alternative descriptions for the functionals �i
�

. We
still assume that �1 
 �2 
 �3 is regular.

For any Weyl element w, define the following functional:

�
w
�

( f ) =
Z

Nw

f (w�1n)�̄(n�1) dn,(6)

where Nw is the usual N\wN̄w�1. These functionals have the following invariance
properties:

�
w1
�

(�(â)f ) = �1�2�3(a)jaj3=2
�

w1
�

( f ),

�
w1w2
� (�(â)f ) = �1�3(a)jaj3=2

�
w1w2
� ( f ),

�
w1w2w1
� (�(â)f ) = �2�3(a)jaj3=2

�
w1w2w1
� ( f ),

and

�
w1w2w1w2
� (�(â)f ) = �3(a)jaj3=2

�
w1w2w1w2
� ( f ).

One notes that �w1w2w1w2
� is the same as �1

�. Furthermore

LEMMA 4.2. One has the following identities:

�
w1w2
� = �

w1
w2�

� A(�, w2),(7)

�
w1w2w1
� = �

w1w2
w1�

� A(�, w1),(8)

and

�
w1w2w1w2
� = �

w1w2w1
w2�

� A(�, w2).(9)

Proof. Straightforward.

As dim �
�

N,�̄ � 4, these identities combined with those of Step 1 imply that for w
in fw2, w2w1, w2w1w2g there exist scalars Awlw(�) such that the following hold:

�
wlw
� = Awlw(�)�1

w� � A(�, w),

We have the following lemma:

LEMMA 4.3. For w as above

Awlw(�) = C(�, w)C(w�, w�1).

Proof. The idea is to use the the following equation [22]:

A(w�, w�1) � A(�, w) = C(�, w)�1C(w�, w�1)�1.
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Let, for example, w = w2. Then by Lemma 4.2

�
1
w2�

� A(�, w2) = �
w1w2w1w2
w2�

� A(�, w2)

= �
w1w2w1
w2w2�

� A(w2�, w2) � A(�, w2)

= C(�, w2)�1C(w2�, w2)�1
�

w1w2w1
�

.

The same proof works for other w.

We have then proven the following proposition:

PROPOSITION 4.4. In the regular case, there exists � = �( f ) such that for all a
with jaj < � the following holds:

W(�, f , â) =
jaj3=2

�1�2�3(a)
C(w2w1w2�, w2w1w2)

�
w1
� ( f ) +

jaj3=2
�1�3(a)

C(w2w1�, w1w2)
�

w1w2
� ( f )

+
jaj3=2

�2�3(a)
C(w2�, w2)

�
w1w2w1
� ( f ) + jaj3=2

�3(a)�w1w2w1w2
� ( f ).

Step 3. Now we would like to extend our results form the previous sections
to the nonregular case. Let us first fix some notations. Let �(s) denote the repre-
sentation �1v4s ��2v2s

o�3v�3s. For f 2 Ind(�1 
�2 
�3jB\K, K) define the
function fs by the following:

fs(bk) = �B(b)s+ 1
2 (�1 
 �2 
 �3)(b)f (k).

fs is a well-defined function on G and it belongs to �(s). The idea is the following.
The representations �(s) are regular. Our first task is to give a description of
the meromorphy of the the complex functions gw(s) = �

w
�(s)( fs). We have the

following proposition:

PROPOSITION 4.5. gw(s) is a rational function of X = q�s. Furthermore gw1(s),
gw1w2 (s)
L(2s,�2) ,

gw1w2w1 (s)

L(4s,�1)L(2s,�1�
�1
2 )

, and
gw1w2w1w2 (s)

L(2s,�2)L(6s,�1�2)L(4s,�1) are polynomials of X and X�1.

We will denote these polynomials by P1, P2, P3, and P4 in the order they
appear.

Proof. First the function gw1 :

�
w1
�(s)( fs) =

Z
F
 (� x)fs

26664w1

0BBB@
1 x

1
1 �x

1

1CCCA
37775 dx
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=
Z
O

f

26664w1

0BBB@
1 x

1
1 �x

1

1CCCA
37775 dx

+ �1(� 1)
Z
p

 (� x�1)�1(x)�2(x�1)jxj2sf

26664
0BBB@

1
x 1

1
�x 1

1CCCA
37775 dx
jxj

.

Choose M > 1 large enough so that f

0B@1
x 1

1
�x 1

1CA = f (e) for all x 2 �
kU and

k > M. Then we get the following as the final expression:

�
w1
�(s)( fs) =

Z
O

f

26664w1

0BBB@
1 x

1
1 �x

1

1CCCA
37775 dx

+ �1(� 1)
MX
j=1

�1(�j)�2(��j)q�2ks
Z
�j
U

 (� x�1)f

0BBB@
1
x 1

1
�x 1

1CCCA dx
jxj

,

which is a polynomial. Terms corresponding to j > M will not appear because

Z
��j

U

 (x) dx = 0,

when j > 1. To prove the other assertions of the proposition, we use the fact
that the rest of the functionals can be written as compositions of �w1 and GL(2)
intertwining operators as in Lemma 4.2:

�
w1w2
�(s) = �

w1
w2�(s) � A(�(s), w2),

�
w1w2w1
�(s) = �

w1w2
w1�(s) � A(�(s), w1),

and

�
w1w2w1w2
�(s) = �

w1w2w1
w2�(s) � A(�(s), w2).

Now we proceed as follows. To prove the proposition, for �w1w2 , we notice that,
since �w1 is a polynomial, the poles of �w1w2 are among the poles of A(�(s), w2).
The poles of this intertwining operator in turn are among those of L(2s,�2). To
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see this, we perform the following computation

A(�(s), w2)fs(e) =
Z

F
fs

0BBB@
0BBB@

1
1

�1
1

1CCCA
0BBB@

1
1 t

1
1

1CCCA
1CCCA dt

=
Z
O

f

0BBB@
0BBB@

1
1

�1
1

1CCCA
0BBB@

1
1 t

1
1

1CCCA
1CCCA dt

+
Z

FnO
fs

0BBB@
0BBB@

1
t�1 �1

t
1

1CCCA
0BBB@

1
1

t�1 1
1

1CCCA
1CCCA dt

=
Z
O

+
Z
p

jtj2s
�2(t)fs

0BBB@
0BBB@

1
1
t 1

1

1CCCA
1CCCA dt
jtj

= polynomial + polynomial.L(2s,�2).

A similar computation proves that the poles of A(�(s), w1) are among the poles
of L(s,�1�

�1
2 ). Repeating the same argument proves the rest of the assertions of

the proposition.

Combining everything that we have proven so far including those in the
appendix and the uniformity proposition gives the following result:

PROPOSITION 4.6. There exist � = �( f ) such that for all a with jaj < � the
following holds:

W(�(s), fs, â)

= jaj3=2
�3(a)

h
�1�2(a)�2(�1)C(��1

1 v�4s)C(��1
2 v�2s)

C(��1
1 �

�1
2 v�6s)P1( f , s)jaj3s

+ �1(a)�2(� 1)C(��1
1 v�4s)C(��1

1 �2v�2s)L(2s,�2)P2( f , s)jajs

+ �2(a)C(��1
2 v�2s)L(4s,�1)L(2s,�1�

�1
2 )P3( f , s)jaj�s

+ L(2s,�2)L(6s,�1�2)L(4s,�1)P4( f , s)jaj�3s
i

Now we would like to use Proposition 4.6 to compute the gcd for irregular
cases. For the time being we assume there are no reducibilities. There are three
cases to deal with:

(1) �1 = 1, and �2 6= 1.
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(2) �1�2 = 1, and �1 6= 1.

(3) �1 = 1 and �2 = 1.

We first need a proposition. In what follows we will use q�s and X interchange-
ably:

PROPOSITION 4.7. Let

Pi(X, f ) =
1X
j=0

ai
j( f )(X � 1)j,

and also let �i be the germ associated with Pi at s = 0. Then fai
1( f )g4

i=1 generates
a one dimensional space. Also we have the following relations:

ai
j(�(â)f ) = �i(a)

jX
l=0

 
(5� 2i) logq jaj

l

!
ai

j�l( f ).

Notice that we have not included the negative powers of X�1 for the simple
reason that 1

X is holomorphic at X = 1!

Proof. Let Re s > 0.

Pi(X,�(â)f ) = �i(a)jaj2i�5Pi(X, f )

= �i(a)X(5�2i) logq jajPi(X, f )

= �i(a)(1 + (X � 1))(5�2i) logq jajPi(X, f ).

Now a simple application of the binomial theorem proves the proposition.

1. �1 = 1, and �2 6= 1. In this case Proposition 4.6 implies that W(�(s), fs, â)
is the sum of the following two expressions for jaj small:

�2(a)
X4 � 1

h
�2(� 1)(1� q�1X4)X4C(��1

2 v�2s)C(��1
2 v�6s)P1(X)X3r

� C(��1
2 v�2s)L(2s,��1

2 )P3(X)X�r
i

,

and

1
X4 � 1

h
�2(� 1)(1� q�1X4)X4C(�2v�2s)L(2s,�2)P2(X)Xr

� L(2s,�2)L(6s,�2)P4(X)X�3r
i

.
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The expressions inside the brackets must vanish for X = 1. This is because accord-
ing to [22] Whittaker functions are holomorphic with respect to the variable s:

P3(1) =
�2(� 1)(1� q�1)C(��1

2 )P1(1)

L(0,��1
2 )

,

and

P4(1) =
�2(� 1)(1� q�1)C(�2)P2(1)

L(0,�2)
.

Now we compute the limit when X approaches 1 by using l’Hôpital’s rule. It
follows that to prove the appearance of the terms logq jaj and logqjaj�2(a) in the
asymptotic expansion, we just need to find functions f in 1 � �2 o 1 such that
P1( f , s) 6= 0 and P2( f , 0) 6= 0. These are both obvious. So in this case:

L(s, 1� �2 o �3) = L(s,�3)2L(s,�2�3)2.

2. �1�2 = 1, and �1 6= 1. In this case, to prove the existence of the term
�1�3 and �2�3 we need to prove the existence of functions f such that P2(1) 6= 0
and P3(1) 6= 0. We also need to find f such that P1( f ) 6= 0. Both assertions are
obvious. Thus we have proven in this case that we get the following identity:

L(s,�1 � �
�1
1 o �3) = L(s,�3)2L(s,�1�3)L(s,�2�3).

3. �1 = 1 and �2 = 1. It is easily seen that

lim
s!0

W(�(s), fs, â) =
1
6

(A( f ) + B( f )r + C( f )r2 + D( f )r3),

for certain functionals that appear as coefficients. We know from the open cell
that for certain f the functional A( f ) is nonzero. Computations using MAPLE V
show that:

D = a nonzero contant .P1(1),

C = 18(1� q�1)(32� 49q�1 + 89q�2)P1(1) + 144(1� q�1)3P
0

1(1)
� 144(1� q�1)P

0

2(1),

and finally

B = 6(1� q�1)(88� 13q�1 + 233q�2)P1(1)

� 72(1� q�1)2(� 4 + 9q�1)P
0

1(1)

+ 288(1� q�1)(� 1 + 2q�1)P
0

2(1)

+ 18(1� q�1)P
00

1 (1)

� 36(1� q�1)P
00

2 (1) + 18(1� q�1)P
00

3 (1).
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It now follows from the proposition above that these coefficients are linearly
independent, if nonzero. D is nonzero, because it is the Whittaker functional of
the induction through the Siegel parabolic subgroup. Suppose C is identically
zero. Then

C(�(â)f ) = �P1(1,�(â)f ) + �P
0

1(1,�(â)f ) + P
0

2(1,�(â)f )

= C( f ) +�3� logq jajP1(1, f )� r logq jajP2(1, f )

= �3� logq jajP1(1, f )� r logq jajP2(1, f ).

Now a straightforward computation shows that this can never happen. The same
argument proves the nonvanishing of B. This proves that in this case

L(s, 1� 1 o �3) = L(s,�3)4.

This finishes the proof of the first part of the theorem. Parts (b) through (f)
of the theorem follow from the classification lemmas, Lemma 4.2, and similar
computations as above.

5. Local computations for the Siegel parabolic. Let � be a supercuspidal
representation of GL(2), and � a quasi-character of GL(1). We would like to
prove the following theorem:

THEOREM 5.1.

(a) If � o � is irreducible,

L(s,� o �) = L(s,�).L(s,�.!�).(10)

(b) If � = �0.v1=2, and !�0 = 1, then the unique irreducible quotient of �o�

admits L(s,�.!�) as its L-functions.

(c) If�=�0.v�1=2, and!�0 =1, then the unique irreducible sub-representation
of � o � admits L(s,�) as its L-functions.

The conditions in parts (b) and (c) of the theorem come from Shahidi’s
classification of representations supported in the Siegel parabolic subgroup [23] .

Proof. Let � = � o �. The proof is divided into two steps.

Step 1. We know from [22] that the Whittaker functional for the representation
� is given by the following:

��( f ) =
Z

N
f

26664
0BBB@

1
1

�1
�1

1CCCA n; e

37775 ��1(n) dn.
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The integral is over the unipotent radical of the Siegel parabolic subgroup. When
!� 6= 1 this in particular implies that:

��

0BBB@�
0BBB@

a
a

1
1

1CCCA f

1CCCA = �(a)jaj3=2
�

1
�

( f ) + �(a)!�(a)jaj3=2
�

2
�

( f ),

for certain functionals �1 and �2, when jaj < �( f ). Also it can be seen that:

�
1
�( f ) =

Z
N

f (w�1n; e) dn,

when support of f is in the open cell. By applying the long intertwining operator
to the above identity we get the following:

W(�, f , â) = �1
�( f )�(a)jaj3=2 + C(�, w)�1

w̃�(A(�, w)f )�(a)!�(a)jaj3=2,

where â is the obvious matrix element. Now define a new functional by the
following identity:

�̃�( f ) = f (e; e).

This functional satisfies

�̃�(�(â)f ) = �(a)!�(a)jaj3=2
�̃�( f ).

It follows that there is a number D depending only on � such that

�
1
w̃�(A(�, w)f ) = D�̃�( f ).

This is because the functional �1
� has a different asymptotic behavior, and that

dim �
�

N,�̄ � 2.

Claim 1. D = C(�, w)�1C(w̃�, w�1)�1

Proof of the claim. Look at the open cell!

This gives the following identity:

W(�, f , â) = �1
�( f )�(a)jaj3=2 + C(w̃�, w�1)�1f (e; e)�(a)!�(a)jaj3=2

for jaj < �( f ). As �1
� and �̃� are linearly independent, this gives the result for

the cases when !� 6= 1.
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Step 2. Now let !� = 1. Let �s denote the representation �.vs
o �.v�s. For

f 2 Ind(� � �jP \ K, K) define the function fs by the following:

fs(pk) = �P(p)
s
3 + 1

2 (� 
 �)(p)f (k).

It’s now obvious that fs is a well-defined function on G and it belongs to the
space of �s. Now we have the following identity:

W(�s, fs, â) = �1
�s( fs)�(a)jaj

3
2�s + C(w̃�s, w�1)�1f (e; e)�(a)jaj

3
2 +s

for jaj < �( f , s). We showed in Proposition 3.9 that this expansion is uniform in
s, i.e. �( f , s) = �( f ). From [24] and the note at the end of the Appendix:

C(w̃�s, w�1)�1 = Aq�ns 1� q�(1+2s)

1� q2s .

We also know from [22] that the left-hand side of the equation above has an
analytic continuation to an entire function on the whole complex plane. Thus
�

1
�s( fs) must have a pole of order 1. Let X = q�s, and write the power series

expansion of �1
�s( fs) as the following:

�
1
�s( fs) =

a�1

X � 1
+ a0 + a1(X � 1) + a2(X � 1)2 + � � � .

Then we have the following for jaj < �( f ):

lim
s!0+

W(�s, fs, â)(11)

= jaj3=2
�(a)

"
2a�1 logq jaj + a0 +

�3 + 7q�1 + 2n� 2nq�1

2(1� q�1)
a�1

#
.(12)

This is because we want the poles to cancel out. This is guaranteed by

a�1( f ) = �
1
2

A(1� q�1)f (e; e).

This in particular implies that a�1 is not identically zero. Now we have the
following lemma which proves that a0 and a1 are linearly independent.

LEMMA 5.2. a0 and a�1 satisfy

a�1(�(â)f ) = �(a)jaj
3
2 a�1( f ),

a0(�(â)f ) = �(a)jaj
3
2 a0( f ) + logq jaj�(a)jaj

3
2 a�1( f ).
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Proof. This follows from the invariance equation for �� and the binomial
theorem.

This finishes that proof of the theorem.

6. Appendix: computation of local coefficients. Here we will present ex-
plicit computations of the local coefficients that appeared in Propositions 4.3
above. We refer the reader to Section 3 of [22] for preliminaries on local coeffi-
cients. Our computations are motivated by those of [14] and [15]. More general
results can be found in [23] and [24]. Recall the definition of local coefficients:

�� = C(�, w)�w̃�A(�, w).

Here we have assumed that � is induced, and A(�, w) is an intertwining integral.
We know that for every representation � and Weyl elements w and w0

C(�, ww0) = C(�, w0)C(w0�, w),

provided l(w) + l(w0) = l(ww0). In our special case, this implies that we only need
to compute the local coefficients for w1 and w2. Define a function : G �! C by

(g) =

(
�

1=2
B (b)(�1 
 �2 
 �3)(b)chN(O)(n) if g 2 Bw�1

l N, and g = bw�1
l n,

0 Otherwise.

It is obvious that  2 �. Also ��() = 1. This implies that

C(�, w)�1 = �w� � A(�, w)().

We will now explicitly compute the right-hand side. For a quasi-character � of
F�, define a function Φ� on F by the following:

Φ�(x) =
Z

F�
�(y)chO(y + x)

dy
jyj

.

We let

�(�) =

(
1 � unramified,
0 otherwise.

Also for unramified �

L(�) =
1

1� �(�)
.
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A straightforward computation shows that

Φ�(x) =

8><>:
(1� 1

q )�(�)L(�) if x 2 O,
0 if � c(�) < ordx < 0,
�(� x)jxj�1 otherwise.

(13)

Here c(�) is the conductor of the quasi-character �.

LEMMA 6.1.

lim
k!1

Z
p�k

Φ�(x)�(� x) dx =

(
1�q�1

�(��1)
1��(�) � unramified,

�(� �
c(�))

R
U
 (� �

�c(�)u)�(u) du � ramified.

Proof. The assertion follows from (13) above and Lemma 1 of [21].

Note 6.2. The limit is equal to Tate’s invariant factor! (cf. p. 291 of [21], also
[24] and [15])

I denote the limit appearing in the lemma by C(�). Now we can compute the
local coefficients.

1. w1.

�w1� � A(�, w1)()

= lim
k!1

Z
N(p�k)

A(�, w1)()(w�1
l n)��1(n) dn

= lim
k!1

Z
N(p�k)

Z
F


0BBB@w�1
1

0BBB@
1 y

1
1 �y

1

1CCCAw�1
l n

1CCCA ��1(n) dy dn

= lim
k!1

Z
N(p�k)

Z
F


0BBB@
0BBB@
�y�1 1

y
y�1 1

�y

1CCCA

w�1
l

0BBB@
1 y�1

1
1 �y�1

1

1CCCA n

1CCCA ��1(n) dy dn

= �1(� 1) lim
k!1

Z
p�k

Φ
�1�

�1
2

(x)�(� x) dx

= �1(� 1)C(�1�
�1
2 ).
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2. w2. Similar to the case of w1 we get the following:

�w1� � A(�, w1)() = lim
k!1

Z
p�k

Φ�2(x)�(� x) dx

= C(�2).

Now the following proposition is immediate:

PROPOSITION 6.3.

C(w2�, w2)�1 = C(��1
2 ),

C(w2w1�, w1w2)�1 = �2(� 1)C(��1
1 )C(��1

1 �2),

and

C(w2w1w2�, w2w1w2)�1 = �2(� 1)C(��1
1 )C(��1

2 )C(��1
1 �

�1
2 ).

Note 6.4 It is proved in [22] with notations therein that for unitary �

C(w̃v, w̃�, w�1) = C(� v̄,�, w).
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