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Preface

These notes are all about the Real Numbers and Calculus. We start from scratch

with definitions and a set of nine axioms. Then, using basic notions of sets and logical

reasoning, we derive what we need to know about real numbers in order to advance

through a rigorous development of the theorems of Calculus.

In Chapter 0 we review the basic ideas of mathematics and logical reasoning needed

to complete the study. Like Euclid’s Basic Notions, these are the things about sets and

logic that we hold to be self-evident and natural for gluing together formal arguments

of proof. This chapter can be covered separately at the beginning of a course or

referred to throughout on an ’as needed’ basis. It contains all the common definitions

and notation that will be used throughout the course.

Students already think about real numbers in different ways: decimal representation,

number line, fractions and solutions to equations, like square roots. They are familiar

with special real numbers, with infinite, non-repeating decimals, like π and e. All

these ways of representing real numbers will be investigated throughout this axiomatic

approach to the development of real numbers. The Axioms for Real Numbers come

in three parts:

The Field Axioms (Section 1.1) postulate basic algebraic properties of number: com-

mutative and associative properties, the existence of identities and inverses.

The Order Axioms (Section 1.2) postulate the existence of positive numbers. Con-

sequences of include the existence of integers and rational numbers.

The Completeness Axiom (Section 1.3) postulates the existence of least upper bound

for bounded sets of real numbers. Consequences of completeness include infinite

decimals are real numbers and that there are no ’gaps’ in the number line.

The completeness of the real numbers paves the way for develop the concept of

limit, Chapter 2, which in turn allows us to establish the foundational theorems of

calculus establishing function properties of continuity, differentiation and integration,

Chapters 4 and 5.
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Goals

1. Prove the Fundamental Theorem of Calculus starting from just nine axioms that

describe the real numbers.

2. Become proficient with reading and writing the types of proofs used in the

development of Calculus, in particular proofs that use multiple quantifiers.

3. Read and repeat proofs of the important theorems of Real Analysis:

• The Nested Interval Theorem

• The Bolzano-Weierstrass Theorem

• The Intermediate Value Theorem

• The Mean Value Theorem

• The Fundamental Theorem of Calculus

4. Develop a library of the examples of functions, sequences and sets to help explain

the fundamental concepts of analysis.
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Two Exercises to get started.

True or False 1

Which of the following statements are true? Explain your answer.

a) 0.9 > 1

b) 0.9 < 1

c) 0.9 = 1

Calculation 1

Using your calculator only for addition, subtraction, multiplication and division, approx-

imate
√

56. Make your answer accurate to within 0.001 of the exact answer. Write a

procedure and explain why it works.
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Chapter 0

Basic Notions

0.0 Getting Started

Biggles to secretary: Now, when I’ve got these antlers on - when I’ve got these antlers

on I am dictating and when I take them off (takes them off) I am not dictating.

– from ”Biggles Dictates a Letter,” Monty Python’s Flying Circus.

About moose antlers Υ: Many things in this book are already understood (or maybe

we just think we understand them) and we don’t want to forget them completely. At

the same time we develop the real number system with a minimal set of concepts to

guide us, we want to be able to use our intuition and ideas already mastered to guide

our way and help us understand. We do want to keep straight where we are in this

game. That’s where moose antlers come in. This is how it works: when moose antlers

are on, we can use what we already know to think about examples and proofs. When

they are off we only think about the axioms and theorems that we have proven so far.

Look for the Υ moose antlers throughout the book. At those points feel free to

use what mathematical knowledge and intuition you have to answer the questions.

Otherwise, what you have at your disposal is the nine axioms and any previous theorems

we have derived from those axioms using the basic notions of sets and logic that are

summarized in this chapter.

0.1 Sets

0.1.1 Common Sets

Υ Some of all of these sets will be familiar to you from previous mathematical expe-

riences. Throughout this book, we will be starting from scratch and defining each of

1



2 CHAPTER 0. BASIC NOTIONS

them. References are provided below. They are all listed here to establish common

notation. You may have used different notation for some of these sets and you may

have other common sets you’d like to include. Do not hesitate to make your concerns

known!

R represents the set of all real numbers. This set is the main interest and star of

this course. And as in all good books the character will be developed slowly

and carefully throughout the course. In the beginning, we assume a few things

about how the elements in this set behave under the operations of addition and

multiplication. This is quite abstract – we don’t have any idea what the elements

(which we will call numbers) of this set really are or even if such a set of things

exists in any “real” (You can decide if this pun is intended or not) sense. From

the axioms we will derive enough information to set up the familiar models for

real numbers are – principally, decimal representation and the number line. We

will also be able to conclude that any other system that satisfies the same axioms

is essentially the same as the real number system we describe.

R+ represents the set of positive real numbers. Defining characteristics of this set

will be established in Section 1.2

R≥ = R+ ∪ {0} represents the set of non-negative real numbers.

R2 = R × R is the set of ordered pairs of real numbers - also called the Cartesian

plane. In this book it is mostly used in reference to functions that map R to

R. In subsequent study of real analysis, Rn - ordered n-tuples of real numbers -

take more central roles.

N and Z+ both represent the set of positive integers. It is a subset of the real numbers

and we will later establish the characteristics of this set from the axioms of R.

Also called the set of Natural numbers. Very often the characteristics of these

sets are establish by The Peano Axioms. The real numbers are then constructed

from the integers. This is not the approach in this book. See Section 1.2.2.

N0 or Z≥ both denote the set of non-negative integers.

Z represents the set of all integers. From our Υantler-less point of view we know

nothing about this set. We will establish defining characteristics that will agree

school-based ideas of what integers are.

Q represents the set of all rational numbers. They can be defined after we clarify the

notion of devision and have defined the integers.

Q+ represents the set of all positive rational numbers.

∅ represents the empty set.
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0.1.2 Set Notation

Υ Moose antlers are tricky in this section. The book will assume you know (antlers on

or not) about sets and functions and that you understand the set notation described

in this chapter. It’s part of the basic notions you’ll need to proceed. However, all the

examples of sets below require Υ moose antlers to understand. And you’ll want the

antlers on to come up with other examples.

We discuss three different ways to denote a set.

1. By list. This works perfectly for small finite sets, like {3, 36, 17}. It is also

used for infinite sets that can be listed. For example, N = {1, 2, 3, 4, · · · } or

{1, 6, 11, 16, · · · }. Describing a set this way requires that everyone knows what

rule is being used to generate the numbers.

Example 0.1 The set {2, 3, 5, · · · } might be the prime numbers or it might be

the Fibonacci numbers or it might be the integers of the form 2n + 1.

2. By condition.

Example 0.2 {x : x is a prime number}, read ”the set of all x such that x is a

prime number.”

3. Constructively by giving a formula that describes the elements of the set. For

example, {n2 : n ∈ Z}, the set of perfect square numbers. Note that you need

to describe the set of all possible values for each variable in the formula. Note

that an element of the set may be described more than once but this does not

change the set. That is, {n2 : n ∈ Z} = {n2 : n ∈ Z≥}.

Example 0.3 {sin nπ
2

: n is an integer} = {0, 1,−1}

Exercise 0.1 ΥIs there a simpler description of {x2 : x ∈ R}?

Exercise 0.2 ΥLet S be the set of all odd positive integers. Describe this set in each

of the three ways listed above.

Exercise 0.3 ΥFind numbers a, b, c so that the formula, an2 + bn + c , for n ∈ Z≥,

describes a set like the one indicated in Example 0.1
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0.1.3 Operations on Sets

We can also construct sets from other sets. This book assumes you are familiar

with the union and intersection of a collection of sets and the complement of set

with respect to another one. We write the complement of X with respect to Y as

Y \X = {y ∈ Y : y 6∈ X}.

0.2 Logic

0.2.1 Logical Statements

Throughout this book we will be proving theorems about real numbers. Theorems are

statements that are either true or false and are stated in the form ’If p, then q’ and

notated p =⇒ q, where p and q are also statements. p is called the hypothesis (or

antecedent) and q is the conclusion (or consequence) of the theorem. The proof of

the theorem proceeds from the assumed fact that p is true and goes through a series

of logically valid statements until one can conclude q.

Sometimes it is easier to show that the negation of the statement of the theorem is

false in order to prove the theorem true. Therefore it is good to understand how to

negate a statement. ∼ p denotes the negation of p. Please keep in mind that either

p is true or ∼ p is true, but not both. Here is a table of different related statements

and their negations. We will use these names for related statements throughout the

book.

statement negation of statement

p =⇒ q p and ∼ q

converse q =⇒ p q and ∼ p

contrapositive ∼ q =⇒ ∼ p ∼ q and p

A statement and its contrapositive always have the same truth value. A statement

and its converse may have different values.

Exercise 0.4 How do the following two statements fit into the table.

a) ∼ p or q

b) p or ∼ q
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Sometimes the hypothesis of a theorem is not explicitly stated but it is always there

– if for no other purpose than to establish what sets the variables in the statement

belong to. Throughout the book you are encouraged to explicitly state the hypothesis

and the conclusion of theorems.

True or False 2

Which of the following statements is true? Explain. Modify the false statement to

make a true statement.

a) If x ∈ [2, 4], then x2 ∈ [4, 16].

b) If x2 ∈ [4, 16], then x ∈ [2, 4].

0.2.2 Quantifiers

Our logical statements will almost always contain variables and those variables may

be ’quantified.’ One way to think about it is that the statement is describing a set by

a condition. The quantifiers tell you ’how many’ numbers are in the set. There are

two different quantifiers:

1. FOR ALL Consider the following two statements and convince yourself that they

mean the same thing:

For all x ∈ R, x2 ≥ 0 (0.1)

{x ∈ R : x2 ≥ 0} = R (0.2)

2. THERE EXISTS Consider the following two statements and convince yourself that

they mean the same thing:

There exists x ∈ R, x2 = 9 (0.3)

{x ∈ R : x2 = 9} 6= ∅ (0.4)

Exercise 0.5 Write the negation of each of the above statements.

How to prove statements that contain quantifiers is a main concern in later discussions

about real numbers.
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0.3 Functions

No Υmooseantlers needed for this section. Everything is defined in terms of sets and

using basic logic!

0.3.1 Definitions, Notation and Examples

Definition A function, f , is a set of order pairs in R × R with the property that for

each first coordinate x , there is a unique second coordinate, y , such that (x, y) is

in the function. Because the y is unique for a given x , we can unambiguously write

y = f (x), the customary functional notation. The domain of f is the set of all first

coordinates in f and the target of f is a set that contains all second coordinates in

f . In these notes the target will always be a subset R. Thus the function is the set,

{(x, f (x)) : x ∈ D}. Sometimes this set is called the graph of f , but the graph is not

a separate object from the function, as we have defined it.

Here is a long list of definitions and notation conventions that we will use throughout

the book. It is assumed they are mostly familiar to the reader:

Notation If D is the domain of a function f , we write f : D → R

Definition The following definitions apply to the function, f : D → R. These notions

should be familiar as they are fundamental to any study of mathematics.

· For any S ⊂ D, we say the image of S under f , and write f (S), to mean

{f (x) : x ∈ S}. The image of f is f (D).

· For any T ⊂ f (D), we say the pre-image of T under f , and write f −1(T ), to

mean {x : f (x) ∈ T}.

· We say that f is 1− 1 or f is an injection, if for all x, y ∈ D

f (x) = f (y) =⇒ x = y ,

· If E ⊂ R is the target of f and if f (D) = E, we say that f is onto E ⊂ R, In

this case, we may also say that f is a surjection.

· We say that f is bijection, if it is both an injection and surjection. In this case,

we also say that f shows a 1− 1 correspondence between D and E.

Example 0.4 The pre-image of [.25, 1] under the function x → x2 is [−1,−.5]∪ [.5, 1]

Exercise 0.6 Give an example of each of the following. Include the domain as part of

the description. Sketch the graph of the function.

a) a function that is not 1− 1 but is onto

b) a function whose pre-image of some set T is R+

c) a function whose image is R+
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Figure 0.1: Graph of sn =
1

n

Figure 0.2: The image of sn =
8

n3
.

0.3.2 Sequences are functions Z+ → R or Z≥ → R

Definition A function whose domain is Z+ or Z≥ is called a sequence.

Notation A sequence is most usually denoted with subscript notation rather than

standard function notation, that is we write sn rather than s(n).

Example 0.5 The graph in Figure 0.1 shows part of the graph of a sequence that maps

Z+ → R and is given by the formula, sn =
1

n
. In addition, the first 100 numbers in

the image of the sequence on the y − axis.

Example 0.6 Another way to picture a sequence is to plot the image on a number

line, as shown in Figure 0.2. The downside is that the order of the sequence is not

explicitly given. Here the image of the sequence, sn =
8

n3
, is shown on a horizontal

number line. The order of the sequence values is not shown on this picture. You need

to see the formula, as well, to understand that the values are being listed in order from

right to left. The values in the image bunch up at zero to become indistinguishable

from each other and from 0. The picture is insightful, but imprecise.

Notation Because of the ordering of the natural numbers, a sequence can be given

by listing the first few values without reference to the domain or a formula, as in

3,
3

4
,

1

3
,

3

25
,

1

12
· · · (0.5)

This type of notation can be convenient but it never tells the whole story. How does

the sequence continue past the values given? The finite sequence may suggest a
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pattern but one can’t be sure without more information. We don’t know whether the

domain starts at 0 or 1, but a formula could be adjusted to fit either case. NOTE: It

would be wrong to include braces {} around the sequence because that would indicate

a set. It would be how to denote the image of the sequence.

Exercise 0.7 Find a possible formula that would generate the sequence in Example

0.5. Sketch the graph of this sequence.
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0.4 True or False

The following True or False problems explore different logical statements using quan-

tifiers in a variety of ways.

True or False 3

Which of the following statements are true? Explain. Change Z to R and redo.

a) There exists an x ∈ Z, such that x is odd.

b) For all x ∈ Z, x is even.

c) There exists an x ∈ Z, such that 2x is odd.

d) For all x ∈ Z, 2x is even.

True or False 4

(From Morgan) Which of the following statements are true? Explain.

a) For all x ∈ R, there exists a y ∈ R such that y > x2.

b) There exists an y ∈ R, such that for all x ∈ R, y > x2.

c) There exists an y ∈ R, such that for all x ∈ R, y < x2.

d) For all a, b, c ∈ R, there exists x ∈ R such that ax2 + bx + c = 0.

True or False 5

Which of the following statements are true? Explain.

a) There exists a real number, x , such that x2 = 9.

b) There exists a unique real number, x , such that x2 = 9.

c) There exists a unique positive real number, x , such that x2 = 9.
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The following True or False problem concerns the notion of pre-image.

True or False 6

Which of the following statements true? Prove or give a counterexample. Consider

conditions of f that would make the statements True.

a) f (X ∩ Y ) = f (X) ∩ f (Y )

b) f −1(X ∩ Y ) = f −1(X) ∩ f −1(Y )

c) f (f −1(Y )) = Y.

d) f −1(f (Y )) = Y.

Exercise 0.8 In some cases, it may be easier to determine if the negation of a statement

is true or false. If you haven’t already, write the negation of each statement in the

True or False problems.



Chapter 1

The Real Number System

We begin by supposing the existence of a set, R, whose elements we call real

numbers We suppose we know a few things about numbers. We know when two of

them are equal, section 1.0.1. We know that we can add or multiple two of them

and get an unique number, section 1.0.2. We know some conventions for how to

write expressions involving adding and multiplying, section 1.0.3. Most importantly

we postulate nine Axioms, the defining characteristics of real numbers. These include

the Field Axioms, Section 1.1; the Order Axioms, Section 1.2; and the Completeness

Axiom, Section 1.3.

We do not assume that we can represent real numbers as decimals. Nor how to

represent real numbers on a number line. However, ourΥintuition using these two

models for real numbers can guide our thinking.

1.0 Definitions and Basic Notions from Algebra

1.0.1 Equality

Basic Notion 1 EQUALITY OF REAL NUMBERS IS AN EQUIVALENCE RELATION. The following

properties apply for all real number x and y :

Reflexive x = x

Symmetric if x = y , then y = x

Transitive if x = y and y = z , then x = z

11



12 CHAPTER 1. THE REAL NUMBER SYSTEM

1.0.2 Addition and Multiplication

We assume the existence of a set of two binary operations on the ’numbers’ in this

set. Basic notions about equality apply. Both addition and multiplication produce a

unique, answer, meaning that adding a number a and multiplying by a number m are

both functions.

Basic Notion 2 UNIQUENESS OF ADDITION For all a, x, y ∈ R.

x = y =⇒ a + x = a + y .

Basic Notion 3 UNIQUENESS OF MULTIPLICATION For all m, x, y ∈ R,

x = y =⇒ m · x = m · y .

It is often useful, and some people prefer, to consider addition and multiplication as

functions. That is, for every real number a, there is a function, sa : R→ R, given by

sa(x) = x + a,

and, for every real number m, there is a function, tm : R→ R, given by

tm(x) = m · x.

The UNIQUENESS OF ADDITION AND MULTIPLICATION says that these functions are indeed

functions, i.e. there is only one value for each element in the domain.

The uniqueness of these operations is used in our preliminary work when doing

things like adding the same number to both sides of an equation.

1.0.3 Expressions

Binary means that the operation works on only two numbers at a time, so expres-

sions like a + b + c aren’t meaningful until we know more about what rules apply.

However, we can include parentheses in expressions and so legitimately know what to

do. The expression, a + (b + c), is meaningful: first add b to c , then add a to the

result. This use of parentheses is assumed familiar to the student of this book. (Υ
Once we know the associative and commutative rules, a+ b+ c is not an ambiguous

expression.)
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Basic to working with equations with variables and real numbers is being able to

’substitute’ equal expressions for each other. This is how we can build more and more

complicated, and thus interesting, expressions. This is however, not an easy concept

to formalize. Here is a stab at it:

Basic Notion 4 SUBSTITUTION If u is a real number such that u = E(x, y , z, · · · ),
where E(x, y , z, · · · ) is any legitimate expression for a real number involving other

real numbers x, y , z, · · · , then u may be interchanged for E(x, y , z, · · · ) in any other

expression without changing the value of that expression. NOTE: transitivity, from

Basic Notion 1, is an elementary example of substitution.

Υ Eventually, we want the substitution principle to apply to more sophisticated ex-

pressions like sin(a + b) or re−3c or lim
x→p

f (x), so we use the (admittedly) imprecise

language, ’legitimate expression’. Once one learns that these expressions, or oth-

ers, represent real numbers, we are free to use substitution on such expressions: If

u = sin(x), then sin2(x) + 2 sin(x) + 1 = u2 + 2u + 1
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1.1 The Field Axioms

There is a set R of real numbers with an addition ( + ) and a multiplication ( · )

operator, that satisfy the following properties:

Axiom 1 COMMUTATIVE LAWS. For all real numbers, a and b,

FOR ADDITION a + b = b + a

FOR MULTIPLICATION a · b = b · a

Axiom 2 ASSOCIATIVE LAWS. For all real numbers, a, b and c ,

FOR ADDITION a + (b + c) = (a + b) + c

FOR MULTIPLICATION a · (b · c) = (a · b) · c

Axiom 3 DISTRIBUTIVE LAW. For all real numbers, a, b and c ,

a · (b + c) = a · b + a · c

Axiom 4 EXISTENCE OF IDENTITY ELEMENTS.

FOR ADDITION There is a real number, 0, such that, a + 0 = a, for all a ∈ R
FOR MULTIPLICATION There is a real number, 1, such that, 1 · a = a, for all a ∈ R
FURTHERMORE, 0 6= 1

Axiom 5 EXISTENCE OF INVERSES.

FOR ADDITION For all a ∈ R, there is an x ∈ R, such that a + x = 0.

FOR MULTIPLICATION For all a ∈ R, a 6= 0, there is an x ∈ R, such that a · x = 1.
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1.1.0 Consequences of the Field Axioms

In this section we state and prove many facts about real numbers. We call these

facts theorems and, occasionally, corollaries or lemmas. Theorems are not always

stated explicitly in the form p =⇒ q, but they can be stated that way. Often the

only hypothesis is that the elements being discussed are real numbers, i.e. we are

always assuming that there is a set of real numbers that satisfy the basic axioms as

well as all theorems we prove.

Exercise 1.1 Provide proofs for Theorems 1.0 - 1.15. Some of the proofs are provided.

Theorem 1.0 For all a ∈ R, 0 + a = a and 1 · a = a

Theorem 1.1 CANCELLATION LAW FOR ADDITION If a + b = a + c , then b = c .

Proof of Theorem. Let e be a real number from Axiom 5 such that a + e = 0. By

Axiom 1, it is also true that e + a = 0. Note: here we use what is sometimes called

a two column proof: the left side is a valid conclusion following from the previous

statements and the right side is the justification or warrant for that conclusion.

a + b = a + c given, the hypothesis

e + (a + b) = e + (a + c) uniqueness of addition, add e to both sides

(e + a) + b = (e + a) + c associative law for addition, Axiom 2

0 + b = 0 + c by substitution, as stated above: e + a = 0

b = c Theorem 1.0

Theorem 1.2 The number, 0, the additive identity of Axiom 4, is unique.

Proof. Note: the strategy used to show that a number is unique is to assume there

are two numbers that satisfy the given condition and then show that they are equal.

Assume there exists another real number 0′ such that a + 0′ = a for all a ∈ R, then

for all a ∈ R, we have that a + 0 = a + 0′. By the CANCELLATION LAW FOR ADDITION,

Theorem 1.1, we can cancel the a’s to get, 0 = 0′. This shows that 0 is unique.

Theorem 1.3 EXISTENCE AND UNIQUENESS OF SUBTRACTION For all a, b ∈ R, there is a

unique solution, x ∈ R, to the equation a + x = b.
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Notation The unique solution to the equation, a + x = b, is denoted by b − a. The

unique solution to the equation, a+ x = 0, 0− a, is written simply −a. We call it the

additive inverse of a or the negative of a.

Proof. Let e be a real number from Axiom 5 such that a+ e = 0 and let x = e + b.

Now consider

a + x = a + (e + b) substituting our definition of x

= (a + e) + b associative law for addition, Axiom 2

= 0 + b substituting 0 for a + e

= b Theorem 1.0

To show uniqueness, assume that there is another real number, y , such that a+y = b.

Then a+x = a+y . So by the CANCELLATION LAW FOR ADDITION, Theorem 1.1, x = y .

Theorem 1.4 For all a ∈ R,
−(−a) = a.

Proof. Given any number a ∈ R,

−a + a = a + (−a) commutative law for addition, Axiom 1

a + (−a) = 0 definition of −a from Theorem 1.3.

−a + a = 0 transitive property of equality

So a is the negative of −a. The negative of −a is written, −(−a), as seen in the note

after Theorem 1.3.

Theorem 1.5 ADDITION DISTRIBUTES ACROSS SUBTRACTION For all a, b, c ∈ R,

a(b − c) = ab − ac.

Proof.

a(b − c) + ac = a((b − c) + c) distributive law, Axiom 3

a((b − c) + c) = ab definition b − c from Theorem 1.3

a(b − c) + ac = ab transitive property of equality

a(b − c) = ab − bc EXISTENCE AND UNIQUENESS OF SUBTRACTION, Theorem 1.3

Theorem 1.6 For all a ∈ R,
0 · a = a · 0 = 0.
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Proof. This is a special case of Theorem 1.5, where b = c.

Theorem 1.7 CANCELLATION LAW FOR MULTIPLICATION For all a, b, c ∈ R,

ab = ac and a 6= 0 =⇒ b = c.

Proof. EFS

Theorem 1.8 The number, 1, of Axiom 4 is unique.

Proof. EFS

Theorem 1.9 EXISTENCE AND UNIQUENESS OF DIVISION For all a, b ∈ R, a 6= 0, there is a

unique solution, x ∈ R, to the equation a · x = b.

Notation The unique solution to the equation a · x = b is written b
a
. The unique

solution to the equation a · x = 1, 1
a
, is also written as a−1. It is the multiplicative

inverse of a and also callied the reciprocal of a.

Proof. EFS

Theorem 1.10 THERE ARE NO ZERO DIVISORS

a · b = 0 =⇒ a = 0 or b = 0.

Proof. EFS

Example 1.1 Modular arithmetic is an example where there are zero divisors. Because

2 · 4 ≡ 0 mod 8 and neither is ≡ 0 mod 8 we call both 2 and 4 zero divisors mod 8.

Theorem 1.11 For all a ∈ R, a 6= 0,

(a−1)−1 = a or
1
1
a

= a.

Proof. EFS

Theorem 1.12 For all a, b ∈ R, b 6= 0,

a

b
= a · b−1.

Proof. EFS

Theorem 1.13 ADDITION OF FRACTIONS For all a, b, c, d ∈ R, b 6= 0 and d 6= 0,

a

b
+
c

d
=
ad + bc

bd
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Proof. EFS

Theorem 1.14 MULTIPLICATION OF FRACTIONS For all a, b, c, d ∈ R, b 6= 0 and d 6= 0,

a

b
·
c

d
=
a · c
b · d

Proof. EFS

Corollary 1.14.1 For all a, b ∈ R, a 6= 0 and b 6= 0,

1

ab
=

1

a
·

1

b
or (a · b)−1 = a−1 · b−1

Proof. EFS

NOTE: Sometimes corollary 1.14.1 is proven first as a lemma and is then used to

prove theorem 1.14.

Theorem 1.15 EXISTENCE AND UNIQUENESS OF SOLUTION TO LINEAR EQUATIONS For all a, b, c ∈
R, a 6= 0, there is a unique solution, x ∈ R, to the equation

a · x + b = c.

Proof. EFS

Exercise 1.2 Prove using the Axioms 1 through 5 and the Theorems 1.0 - 1.15.

For all a, b, c, d ∈ R.

a) −0 = 0; 1−1 = 1

b) −(a + b) = −a − b

c) −(a − b) = −a + b

d) (a − b) + (b − c) = a − c

e)
a
b
c
d

=
ad

bc

f) −(
a

b
) =
−a
b

=
a

−b
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1.1.1 Comments on the Field Axioms

Addition vs multiplication Except for the Distributive Law, Axiom 3, and the part

of Axiom 5 where 0 is excluded from having a multiplicative inverse, the axioms

are symmetric in addition and multiplication. Axiom 3 says that ’multiplication dis-

tributes across addition.’ What would happen if the opposite were true that ’addition

distributes across multiplication?’

Exercise 1.3 Write down a rule that would say that addition distributes across multi-

plication. Prove that it cannot be true if the Field Axioms are true.

Exercise 1.4 Something to contemplate: Why is it necessary to exclude a multiplicative

inverse for 0?

Associativity and commutativity Without parentheses, we do not know how to re-

solve an expression like a + b + c or a · b · c The Associative Law, Axiom 2, tells us

that the two ways to add parentheses will give you the same answer. This is worth

pondering with specific numbers (Υrequired). Consider the expression, 3 + 4 + 5. We

can resolve to either 7 + 5 or 3 + 9. We get the same thing, 12, either way.

Exercise 1.5 How many ways can you add parentheses to 2+3+4+5 to get a different

way to sum the numbers? Let cn = the number of ways to put parentheses on an

addition string with n numbers. What is cn? (These are well-known as the Carmichael

Numbers.)

1.1.2 Examples of Fields

A set, together with a well-defined addition and multiplication, is called a Field if the

Field Axioms (Section 1.1) are all satisfied.

Example 1.2 Υ Think of some other number systems, such as

a) Q, the rational numbers.

b) R2, the plane of ordered pairs of real numbers.

c) C, the complex numbers.

d) Z/Zn, integers mod n

e) Q[x ], polynomials with rational coefficients

f) Q(x), rational functions (ratios of functions ∈ Q[x ]).

Does each system have a well-defined addition and multiplication? Which satisfy

the Field Axioms?
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1.2 The Order Axioms

ΥSome geometric concerns One useful way to represent real numbers is on a number

line. To do this we need rules to decide how to place the numbers. When is one

number to the right or to the left of another number? Put another way, when is

one real number ’larger’ than another? Or even, what does ’larger’ mean? The

standard approach is to first decide which ones are ’larger’ than 0, section 1.2. So

we can declare that ’b is larger than a’ whenever ’b − a is larger than 0.’ The Order

Axioms, then, are closely related to notions of distance and length, section 1.2.4.

More surprisingly, perhaps, is that the Order Axioms allow us to think about integers,

section 1.2.2. Then rational numbers can be defined, section 1.2.3. In this section we

see how these concepts are developed from axioms. There exists a subset, R+ ⊂ R,

with the following properties:

Axiom 6 If a and b are in R+, then a + b ∈ R+ and a · b ∈ R+.

Axiom 7 If a 6= 0, then either a ∈ R+ or −a ∈ R+ but not both.

Axiom 8 0 6∈ R+

1.2.1 Consequences of the Order Axioms

Definition We say that a real number, x , is a positive number whenever x ∈ R+. We

say that a real number, x , is a negative number whenever −x ∈ R+.

Notation If b − a is a positive number, we write a < b or b > a. In this case, we say

’a is less than b’ or ’b is greater than a.’

An immediate and important consequence of the order axioms is:

Theorem 1.16 1 is a positive number.

Proof. By Axiom 7 if 1 /∈ R+, then −1 ∈ R+ which would mean that

(−1) · (−1) = 1 ∈ R+.

Which shows not only that 1 ∈ R+ but also that −1 /∈ R+.

Exercise 1.6 Provide proofs for Theorems 1.17 - 1.21. Some of the proofs are provided.

Theorem 1.17 LAW OF TRICHOTOMY For all a, b, c ∈ R, exactly one of the following are

true:

a = b, a < b, b < a

NOTE: In the special case, when one of a and b is zero the Law of Trichotomy says

that a real number is exclusively positive, negative, or zero.
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Proof. EFS

Theorem 1.18 TRANSITIVITY For all a, b, c ∈ R,

a < b and b < c =⇒ a < c

Proof. EFS

NOTE: ’Less than’ (<) forms a relation between numbers. We have just shown that

it is a transitive relation. However, it is neither symmetric nor reflective so it is not

an equivalence relation like ’=’. See Basic Notion 1

Exercise 1.7 There are three variations of TRANSITIVITY when ’≤’ replaces ’<’ in one or

the other or both of spots in the hypothesis. State each one, providing the strongest

conclusion in each case. Prove at least one of your statements. Use TRANSITIVITY ,

Theorem 1.18 rather than repeating proofs.

Exercise 1.8

Notation There are many different varieties of intervals. Write each one of the

following using set notation:

(a, b) = {x ∈ R : a < x and x < b}. Sometimes abbreviated: a < x < b

[a, b]

(a, b]

[a, b)

(a,∞)

[a,∞) = {x ∈ R : a ≤ x}.

(∞, b)

(∞, b]

Exercise 1.9 How would you notate the set, {x : a < x or x < b}? How does it vary

with whether or not a < b or b < a?

Theorem 1.19 ADDITION PRESERVES ORDER If a is a real number, then

x < y =⇒ a + x < a + y

Proof. EFS

Theorem 1.20 If a < b and c < d , then a + c < b + d
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Proof. EFS

Multiplication preserves order only when the multiplication factor is positive:

Theorem 1.21 If m > 0, then multiplication by m preserves order, that is

x < y =⇒ m · x < m · y .

If m < 0, then multiplication by m reverses order, that is

x < y =⇒ m · x > m · y .

Proof. EFS

Exercise 1.10 Here are some more basic facts about order. You may want to prove

them in a different ’order.’

a) For all a ∈ R, if a 6= 0, then a2 > 0.

b) If a < b, then −b < −a.

c) If a > 0, then a−1 > 0.

d) If 0 < a < b, then a−1 > b−1 > 0.

e) The sum of two negative numbers is negative.

f) The product of two negative numbers is positive.

g) The product of a negative number and a positive number is negative.

h) For all a, b ∈ R, a2 + b2 = 0 ⇐⇒ a = b = 0.

True or False 7

If true, prove the statement. If false, restate to make a true fact and prove it.

a) x2 > x .

b) If w1, w2 > 0 and w1 + w2 = 1, then

a < b =⇒ a < w1a + w2b < b

c) If a < b and c < d, then ac < bd.
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Definition We say a function, f : D → R, is increasing whenever, for all x, y ∈ D,

x ≤ y =⇒ f (x) ≤ f (y).

We say a function is strictly increasing whenever, for all x, y ∈ D,

x < y =⇒ f (x) < f (y).

We say a function is decreasing whenever, for all x, y ∈ D,

x ≤ y =⇒ f (y) ≤ f (x).

We say a function is strictly decreasing whenever, for all x, y ∈ D,

x < y =⇒ f (y) < f (x).

Example 1.3 The function sa(x) = x + a is increasing by Theorem 1.19.

Exercise 1.11 When is multiplication by m an increasing function? When is it decreas-

ing?

Exercise 1.12 Prove that the function, f (x) = x2, is increasing on [0,∞) and decreas-

ing on (−∞, 0].

Exercise 1.13 Prove that the function, f (x) = 1
x

, is decreasing on (0,∞) and decreas-

ing on (−∞, 0).

Exercise 1.14 Prove that the function, f (x) = x+1
x−1 , is decreasing on (1,∞).

1.2.2 Integers

ΥMathematical induction. We have mentioned earlier that another way to develop

the real number system is to start with integers and the Peano Axioms then construct

the rational and irrational numbers. With our current endeavor, however, we still have

nothing to say about integers. We do know 1 and so could define integers: 2 = 1 + 1

and 3 = 2 + 1 and so on. Of course, it is the ’so on’ that leaves us with less precision

than we like for a usable definition. But we have the idea of an inductive process and,

in this section, we see how to make induction part of our development. We start with

a definition:

Definition We say that a subset of R is an Inductive Set whenever both of the following

conditions hold:

• 1 ∈ S
• If n ∈ S, then n + 1 ∈ S
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Example 1.4 The set of positive real numbers is an inductive set. 1 ∈ R+ by Theorem

1.16 . The second condition follows because the sum of two positive real numbers is

a positive real number by Axiom 6.

Exercise 1.15 What is the largest inductive set you can think of? What is the smallest?

Definition We say that a real number is a positive integer if it is contained in every

inductive set.

Notation We denote the set of all positive integers as Z+.

Z+ is the smallest inductive set in the sense that it is contained in every other one.

Theorem 1.22 The positive integers are positive real numbers.

Proof. This is because the set of positive real numbers is an inductive set, so every

positive integer is contained in it.

Definition The negative integers are {−n : n ∈ Z+}, the negative positive integers,

denoted by Z−. The integers are the positive integers together with the negative

integers and 0, denoted by Z = Z+ ∪ {0} ∪ Z−.

Exercise 1.16 Prove: There is no integer in the open interval (0, 1).

Mathematical Induction.

To establish the algebraic structure of the integers there is some work to do and

Mathematical Induction will be a major tool. The following theorem establishes the

legitimacy of the induction procedure.

Theorem 1.23 MATHEMATICAL INDUCTION Let S be a set of positive integers that is an

inductive set, i.e. satisfies the following two conditions:

• 1 ∈ S
• If n ∈ S, then n + 1 ∈ S

then S = Z+.

Proof. By definition, S is an induction set so Z+ ⊂ S. By hypothesis, S ⊂ Z+. So

S = Z+.

This theorem is the basis for proof by mathematical induction: To prove a fact by

mathematical induction, first restate the fact as a statement about a subset of positive

integers. For example, define a set of positive integers, S, such that n ∈ S if and only

if some property, P (n), is true. Then show that S is an inductive set by
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• Showing a ’base case,’ P (1) is true (1 ∈ S)

• Showing an inductive step: If P (n) is true (n ∈ S), then P (n + 1) is true

(n + 1 ∈ S).

Finally, apply Theorem 1.23 to conclude that S is all positive integers, so P (n) is true

for all n ∈ Z+. Υ By all means use methods you have used before and are comfortable

with, but do understand how the process fits into the grand scheme of things.

The first theorems we will prove with induction establish the algebraic structure of the

integers.

The integers form a commutative ring

Since the integers are a subset of the real numbers, they satisfy of all the field axioms,

except for the existence of multiplicative inverses, which is not ring axiom. So we only

need to show closure:

Theorem 1.24 ALGEBRAIC PROPERTIES OF INTEGERS

1. The sum of two integers is an integer.

2. The product of two integers is an integer.

3. The negative of an integer is an integer.

Outline of proof for sums. First, fix a positive integer m. Use induction to show that

{n ∈ Z+ : m + n ∈ Z} = Z+ and {n ∈ Z+ : −n + m ∈ Z} = Z+. Finally, show that

the sum of two negative integers is an integer without another induction proof.

Exercise 1.17 Prove: The only two integers that have a multiplicative inverse are 1

and −1.

The Well-Ordering Principle

When establishing integers from axioms, MATHEMATICAL INDUCTION is sometimes used

as an axiom. Sometimes the following theorem is used instead and this theorem will

be useful for us later. In any case, it can be proved with mathematical induction.

Theorem 1.25 THE WELL-ORDERING PRINCIPLE Every non-empty set of positive integers

contains a smallest integer.

Proof. Let W be a subset of the positive integers that does not contain a smallest

element. We will show that W = ∅. Let S = {k : [1, k ] ∩W = ∅}. We will show

that S is an inductive set.
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• 1 ∈ S because if it were not in S it would be in W and it would be the smallest

element in W .

• Assume n ∈ S. This means that no k ≤ n are in W . Now if n + 1 ∈ W it

would be the smallest integer in W , but W does not have a smallest element so

[1, n + 1] ∩W = ∅. In other words, n + 1 ∈ S.

Therefore S is an inductive set of positive integers, so must be all of them. In other

words W is empty. We conclude that any non-empty set of positive integers must

contain a smallest element.

NOTE: Do not confuse the above theorem with THE WELL-ORDERING THEOREM, a theo-

rem dependent on the Axiom of Choice. The Axiom of Choice is often included in

the axioms for set theory despite certain bizarre behavior such as the Banach-Tarski

Paradox. These considerations become of more interest in the the study of Lebesgue

integration and will not come up for us in this course.

Exercise 1.18 Use the THE WELL-ORDERING PRINCIPLE to prove that there is no positive

integer M such that 2k < M for all k ∈ Z+.

Exercise 1.19 You may have noticed that our proof of THE WELL-ORDERING PRINCIPLE,

Theorem 1.25, could be simplified by using Strong Induction. Find a good statement of

strong induction and prove it using MATHEMATICAL INDUCTION, Theorem 1.23. Proceed to

rewrite the proof of THEWELL-ORDERING PRINCIPLE, Theorem 1.25, using strong induction.

Practice with Induction.

Exercise 1.20 For practice with mathematical induction, prove the following two the-

orems. We will need both of them later in the course.

Theorem 1.26 For all positive integers n,

n∑
k=0

k2 =
1

6
· n · (n + 1) · (2n + 1)

Proof. EFS

Theorem 1.27 BERNOULLI’S INEQUALITY For any positive real number, x , and for all

positive integers n, (1 + x)n ≥ 1 + n · x

Proof. EFS

Exercise 1.21 Bernoulli’s Inequality is useful for many things. Use it to prove that

1

2n
<

1

n
, for all n > 0.
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Inductive Definitions

This way to define integers is an example of using an inductive definition. Defining a

sequence by recursion is another. The first few elements in the sequence are given and

the rest are defined in terms of the previous ones. For example we define a sequence,

sn by recursion (or inductively) by first defining s0 = 1 and then, once we have defined

sk for k < n, define sn = n + 4. Now we understand the sequence to be 1, 5, 9, 13....

A direct or, closed form, description of the sequence is simply sn = 1 + 4 · n. Later,

we will see examples of defining sequences of sets recursively when using the NESTED

INTERVAL THEOREM.

Exercise 1.22 List the first 10 numbers in the following sequence, given by a recursive

formula.

a) x0 = 1 and xn = xn−1 + 5.

b) x0 = 1, x1 = 1 and xn = xn−2 + xn−1.

Exercise 1.23 Identify a pattern for the following sequences. Write a recursive formula

and a closed formula to describe each one.

a) 6, 18, 54, 162, · · ·

b) 2.0, 0.2, 0.02, 0.002 · · ·

Exercise 1.24 Write a recursive formula to capture and continue this sequence:

√
2,

√
2 +
√

2,

√
2 +

√
2 +
√

2,

√
2 +

√
2 +

√
2 +
√

2, · · ·

Exercise 1.25 ΥMake a formal inductive definition that captures the procedure you

established for approximating
√

56, accurate to within (0.1)n.

1.2.3 Rational Numbers

Definition We say that a real number, r , is a rational number whenever there exist

integers n and m such that

r =
n

m

We denote the set of all rational numbers by Q.
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Exercise 1.26 Prove the following two theorems to establish the structure of the

rational numbers.

Theorem 1.28 ALGEBRAIC PROPERTIES OF Q

1. 0 and 1 are rational numbers.

2. The sum of two rational numbers is a rational number.

3. The product of two rational numbers is a rational number.

4. The negative of a rational number is a rational number.

5. The multiplicative inverse a rational number is a rational number.

Proof. EFS

Theorem 1.29 Q+ = {r ∈ Q : r > 0} satisfies the Order Axioms.

Proof. EFS

Exercise 1.27 Use the previous two theorems to support the claim: the rational num-

bers form an Ordered Field.

Exercise 1.28 The following exercise about even and odd integers gives enough ammu-

nition to show that the square root of 2 cannot be rational. Think of a good definition

for an even integer and an accompanying good definition for an odd integer. From

your definitions, prove the following things (not necessarily in this order; find the order

that works well for your definitions):

a) The sum of two even integers is even; the sum of two odd integers is even; the

sum of an even integer and an odd integer is odd.

b) Zero is an even; 1 is an odd; every integer is either odd or even, but not both.

c) x is odd iff −x is odd; x is even iff −x is even.

d) x is odd iff x + 1 is even; x is even iff x + 1 is odd.

e) Every integer (positive or negative or zero) is either odd or even.

f) The product of two odd integers is odd; the product of an even integer and any

integer is even.

g) For any integer n, 2n is an even integer and 2n + 1 is an odd integer.

h) If n2 is an even integer, then n is also an even integer.
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i) Every integer can be expressed as a power of 2 times an odd integer.

j) Every rational number can be written as m
n

where both m and n are integers and

at least one of them is odd.

If you cannot prove these things from your definitions, you will need to change your

definitions so that you can. We can now prove the following theorem.

Theorem 1.30 There is no rational number, s, such that s2 = 2.

Proof. Assume not, so there is a rational number s = n
m

and s2 = 2. By Exercise

1.28 j) we can assume that one of n or m is odd. Now s2 = 2 = n2

m2
or 2m2 = n2.

n2 is even so n is even by Exercise 1.28 h). Let k be the integer such that n = 2k.

Then 2m2 = 4k2 and m2 = 2k2. Now Exercise 1.28 j) says m is even, in contradiction

to the assumption that one of m and n is odd. So there can be no rational number

whose square is 2.

NOTE: Nothing is being said about whether or not the square root of 2 actually

exists, only that, if it does exist, it cannot be a rational number. Because the rational

numbers satisfy all of our axioms so far, we know we need more to be able to say that

there is a real number, s, such that s2 = 2. The final axiom is THE COMPLETENESS AXIOM

which provides what is needed and we will get there soon.

1.2.4 Distance, absolute value and the Triangle Inequality

Discussion of the number line Υ

It’s easy to figure out a way to mark real numbers on a line using compass and

straightedge constructions from Euclidean geometry. First, label one point on the line

0 and another 1. By convention, 1 is to the right of 0. Set the compass to the length

of the segment determined by these two points. Use this setting to mark off 2, 3 and

so on. By going the other way, mark off −1, −2, −3, · · · Rational numbers can be

included by employing similar triangles. Addition is defined by copying a segment next

to another segment. Multiplication can be defined by similar triangle constructions.

But this does not get all of the real numbers because we know we can construct√
2 – it is the diagonal of a square which has sides of length 1. However, there are

many other real numbers that can not be constructed. Eventually we will be able to

locate numbers by using THE COMPLETENESS AXIOM. We do not intend to development

the number line rigorously but we do use it to enhance our intuition. In particular, we

are about to introduce the idea of the distance between to real numbers.
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Absolute Value and Distance

Definition The absolute value of x , written as |x |, defines a function. The value of

the function is given in parts:

|x | =

{
x if x ≥ 0

−x if x ≤ 0.

Theorem 1.31 Four obvious facts about any real number, x :

1. If x > 0, then x = |x |

2. If x < 0, then x = −|x |

3. |x | = 0 ⇐⇒ x = 0.

4. If x 6= 0, then |x | > 0.

Proof. EFS

Definition We say that the distance between a and b is |b − a|. We say that the

length of an interval is the distance between its endpoints.

It can be useful to think about absolute value in the more intuitive ideas of distance.

For example, Theorem 1.31 can be restated: The distance between any real number

and zero is positive, unless that number is zero - in which case, the distance is zero.

Theorem 1.32 The distance between two numbers is zero if and only if the two

numbers are equal.

Proof. |a − b| = 0 ⇐⇒ a − b = 0 ⇐⇒ a = b.

The following, while obvious, is useful because it can eliminate cases when proving

the THE TRIANGLE INEQUALITY, Theorem 1.2.4, which in turn is very useful throughout

analysis.

Lemma 1.33 −|x | ≤ x ≤ |x |

Proof. If x is positive, it is the right endpoint of the interval [−|x |, |x | ]. If x is negative,

it is the left endpoint. If x = 0, then −|x | = x = |x |. In any case, −|x | ≤ x ≤ |x |.

Exercise 1.29 Provide proofs for Theorems 1.34 - 1.36. State the theorems in terms

of distances when possible. Some of the proofs are provided.

Theorem 1.34 |a| < |b| ⇐⇒ −|b| < a < |b|
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Proof. (Distance formulation of theorem: if a is closer to zero than b, then a is in the

interval, [−|b|, |b| ]) Using Lemma 1.33 and order facts from Exercise 1.10, we have

−|b| < −|a| ≤ a ≤ |a| < |b|

Theorem 1.35 |a| ≥ |b| ⇐⇒ a ≤ −|b| or a ≥ |b|

Proof. The statement of this theorem is the contrapositive of Theorem 1.34 and

hence true.

The Triangle Inequality

THE TRIANGLE INEQUALITY and related facts will be used repeated when we discuss limits.

Theorem 1.36 THE TRIANGLE INEQUALITY in four versions.

The first version is the most commonly used in analysis:

1. THE TRIANGLE INEQUALITY For any two real number, x & y ,

|x + y | ≤ |x |+ |y |

2. DISTANCE FORM OF THE TRIANGLE INEQUALITY For any three real numbers, x , y & z ,

|x − y | ≤ |x − z |+ |z − y |

Distance formulation: the length of one side of a triangle is less than or equal

to the sum of the lengths of the other two sides.

3. BACKWARDS TRIANGLE INEQUALITY For any two real number, x & y ,

|x − y | ≥ |x | − |y |

Distance formulation: the distance between two numbers is greater than the

difference between the absolute values of the numbers.

4. For any two real numbers, x & y ,

|x − y | ≥ ||x | − |y ||

Distance formulation: the distance between two points is greater than or equal

to the distance between the absolute values of the numbers.

Proof. The last three versions follow from the first by judicious choice of variables.
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1. The following makes use of the fact that |x | + |y | = ||x | + |y || when using

Theorem 1.34.

−|x | ≤ x ≤ |x | by Lemma 1.33

−|y | ≤ y ≤ |y | by Lemma 1.33

−(|x |+ |y |) ≤ x+y ≤ |x |+ |y | add the two inequalities

|x + y | ≤|x |+ |y | by Theorem 1.34

2. Let x = x − z and y = z − y and apply 1. to x + y .

3. EFS

4. EFS

Exercise 1.30 Prove: If a < c < d < b then the distance between c and d is less than

the distance between a and b.

Exercise 1.31 Use THE TRIANGLE INEQUALITY, Theorem 1.36, to prove these two other

versions.

a) |x − y | ≤ |x |+ |y |

b) |x + y | ≥ |x | − |y |

Exercise 1.32 Here are some more basic facts about absolute value. Prove them

directly from the definition.

a) | − x | = |x |

b) |y − x | = |x − y |

c) |x2| = |x |2

d) If x2 = c , then |x |2 = c

e) |x · y | = |x | · |y |

f) |x−1| = |x |−1

True or False 8

Which of the following statements are true? Try stating and graphing each one as a

fact about distances.

a) x < 5 =⇒ |x | < 5
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b) |x | < 5 =⇒ x < 5

c) |x − 5| < 2 =⇒ 3 < x < 7

d) |1 + 3x | ≤ 1 =⇒ x ≥ −2
3

e) There are no real numbers, x , such that |x − 1| = |x − 2|

f) For every x > 0, there is a y > 0 such that |2x + y | = 5

g) |a − x | < ε ⇐⇒ x ∈ (a − ε, a + ε)

Example 1.5 Using absolute value is often a convenient way to define intervals. Confirm

that

[3, 7] = {x : |x − 5| ≤ 2|}

In general, if a ≤ b, then

[a, b] = {x : |x −m| ≤
d

2
}, where m =

a + b

2
and d = b − a.

Exercise 1.33 ΥGraph the set determined by each inequality on a number line. Explain

your conclusion.

a) |2x − 4| < 5

b) |2x − 4| ≥ 5

Exercise 1.34 Prove: If x is in the interval (a, b) then the distance between x and the

midpoint of the interval is less than half the length of the interval.

Exercise 1.35 If the distance between two integers is less than 1, the integers are

equal.

1.2.5 Bounded and unbounded sets

Definition We say a set S ⊂ R is bounded whenever there exists a positive real

number, M, such that |s| ≤ M for all s ∈ S.

Definition We say a set S ⊂ R is bounded above whenever there exists a real number

M such that s ≤ M for all s ∈ S.



34 CHAPTER 1. THE REAL NUMBER SYSTEM

Definition We say a set S ⊂ R is bounded below whenever there exists a real number

m such that s ≥ m for all s ∈ S.

Both of the following theorems describe common techniques used in proofs about

boundedness.

Theorem 1.37 A set S ⊂ R is bounded if and only if it is bounded above and bounded

below.

Proof. EFS

Theorem 1.38 A S ⊂ R is bounded above if and only if the set,

−S = {x ∈ R : −x ∈ S},

is bounded below.

Proof. EFS

Theorem 1.39 The real numbers are not bounded

Proof. hint: State the negation of the definition of boundedness.

Exercise 1.36 Υ Give three examples of sets that are bounded and three examples of

sets that are not bounded. Which of your assertions can you prove to be true?

Exercise 1.37 Υ Give three examples of sets that are bounded above but not below.

Which of your assertions can you prove to be true?

Definition We say that L is a least upper bound of a set S ⊂ R whenever both of

the following conditions hold:

1. L is an upper bound of S

2. if u is an upper bound of S, then L ≤ u.

If L is a least upper bound of a set S and if L ∈ S, we call L the maximum of S.

Definition Write out a definition for greatest lower bound , G, and minimum of S.

Theorem 1.40 Any two least upper bounds for a non-empty set, S, are equal. Any

two greatest lower bounds for a non-empty set, S, are equal.

Proof. Let L1 and L2 both be least upper bounds for S. Without loss of generality,

assume that L1 ≤ L2 Since L2 is a least upper bound, it must be less than or equal

to L1, which is a upper bound of S. Hence, L2 ≤ L1 ≤ L2. By trichotomy, L1 = L2.
A similar proof works for the greatest lower bounds.
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Notation As usual uniqueness allows us to name the least upper bound and the

greatest lower bound of a set, should they exist. We use the abbreviation supS

and say, supremum of S, for the least upper bound of set S. Similarly we use the

abbreviation inf S and say, infinum of S, for the greatest lower bound of S. In the

case when supS ∈ S, we also call it the maximum of S. If inf S ∈ S, we call it the

minimum of S

Example 1.6 The greatest lower bound of the open interval, (5, 10), is 5

Proof. There are two steps in the proof of this fact:

1. 5 is a lower bound: By definition of the open interval, 5 < x for all x ∈ (5, 10).

2. 5 is greater than any other lower bound: Suppose h is a lower bound greater

than 5, so 10 > h > 5. Consider m = 5+h
2
, the average of 5 and h. We know

5 < m < h < 10. Since m ∈ (5, 10), h is not a lower bound for (5, 10). Since

any number greater than 5 is not a lower bound, 5 must be the greatest one.

Exercise 1.38 For any two real numbers, a < b, the least upper bound of the interval

(a, b) is b.

Exercise 1.39 Let N be an integer and let S = {s ∈ R : s2 ≤ N}. Find a rational

number that is a upper bound of S. Prove your assertion.

Definition We say that a set is finite whenever there exists a 1 − 1 correspondence

between the set and the set of all positive integers less than or equal to n, for some

positive integer n. The order of the set, or the number of elements in the set, is n.

[A 1− 1 correspondence is a bijection.]

Theorem 1.41 A finite set has a maximum and a minimum element.

Proof. HINT: Use induction on the number of elements in the set.

Example 1.7 Υ What is the inf{1
n

: n ∈ Z+}?

Example 1.8 Υ Does Z+ have an upper bound?

Definition We say a function is bounded (bounded above) (bounded below) when-

ever the image of the function is bounded (bounded above) (bounded below). The

definition includes the possibility that the function is a sequence.

Exercise 1.40 Give three examples of functions that are bounded.

Exercise 1.41 Give three examples of functions that are not bounded.
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1.3 The Completeness Axiom

True or False 9

Which of the following statements are true? Explain.

a) There exists a least positive real number.

b) For all positive numbers ε, there exists a positive integer, N, such that
1

N
< ε.

The answers to the last question is ’Yes’ (see Theorem 1.48), but we can’t prove it

yet. We need another axiom:

Axiom 9 THE COMPLETENESS AXIOM A non-empty set of real numbers that is bounded

above has a least upper bound.

1.3.1 Consequences of the Completeness Axiom

Clearly, there is an analogous fact for lower bounds, but it need not be stated as part

of the axiom. Instead it can be proved from the axiom. The technique is a standard

good trick to know.

Theorem 1.42 EXISTENCE OF GREATEST LOWER BOUND A non-empty set of real numbers

that is bounded below has a greatest lower bound.

Outline of Proof: If S is a non-empty set that is bounded below, let T = {x : −x ∈ S}.
Show that T is bounded above, apply Axiom 9, and make conclusions about the

original set S. Draw number line pictures to help explain the strategy of the proof.

A word about ε The greek letter, ’epsilon,’ ε, is often used in situations where the

interesting part is numbers getting arbitrary small. What we mean by arbitrarily small

is that the inf of the set of positive ε’s we are considering is 0. We use ε to stand in

for ’error,’ which we like to be small.

Theorem 1.43 Let S be a non-empty set of real numbers that is bounded above.

For all ε > 0, there exists x ∈ S such that supS − ε < x.

NOTE: This is what we mean when we say that there are numbers in S get arbitrarily

close to supS.
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Outline of Proof. If ε > 0, supS − ε cannot be a upper bound. Draw a numberline

picture to help explain the situation.

Exercise 1.42 State and prove the analogous theorem for the greatest lower bound of

a set that is bounded below.

Theorem 1.44 Let S be a non-empty set of real numbers that is bounded above. Let

U be the set of all upper bounds for S, that is,

U = {u ∈ R : u ≥ s for all s ∈ S},

then inf U = supS.

Outline of Proof. Any u ∈ U is an upper bound for S, so u ≥ supS, the least upper

bound. So supS is a lower bound for U. Any number greater than supS, is an upper

bound for S and hence ∈ U. So supS is the greatest lower bound. Draw a numberline

picture to help explain the situation.

Exercise 1.43 State and prove an analogous theorem for a set of real numbers that is

bounded below.

The following theorem is a forerunner to THE NESTED INTERVAL THEOREM which we will

be using extensively fro the rest of the course.

Theorem 1.45 Given two non-empty subsets, A ⊂ R and B ⊂ R, such that every

element in A is a lower bound for B and every element in B is an upper bound for A,

there exists a real number between the two sets. That is, there exists a real number,

r , such that for all a ∈ A and b ∈ B, a ≤ r ≤ b In fact,

supA ≤ r ≤ inf B

Outline of Proof: Apply Axiom 9 to argue that A has a least upper bound and that

B has a greatest lower bound. Show that supA is a lower bound for B, and hence

that supA ≤ inf B. Then r could be any number in between the two. Draw a number

line picture to illustrate the proof.

Exercise 1.44 Prove: If S ⊂ R≥ and if S is bounded below, then inf{x2 : x ∈ S} =

(inf S)2.

1.3.2 The Nested Interval Theorem

Theorem 1.46 THE NESTED INTERVAL THEOREM The intersection of a sequence of non-

empty, closed, nested intervals is not empty. Furthermore, if the least upper bound of

the left endpoints is equal to the greatest lower bound of the right endpoints, there is

only one point in the intersection.
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NOTE: Notate the sequence by In = [an, bn], for n > 0. Convince yourself of the

following and draw a numberline picture to help explain the theorem.

1. That each interval, In, is not empty is equivalent to saying that for all n, an ≤ bn,
2. That each interval is closed means that the endpoints are contained in the

interval and that’s why we used the closed brackets to denote the intervals.

3. That the sequence is nested means that, for all n > 0, [an+1, bn+1] ⊂ [an, bn] or

that an ≤ an+1 and that bn+1 ≤ bn.

Proof of The Nested Interval Theorem 1.46. Let A = {an : n > 0} and let B = {bn :

n > 0}. Since the intervals are non-empty and nested, an ≤ bm for all positive integers

n and m. Theorem 1.45 applies to the sets, A and B, so there exists a real number,

r , such that an ≤ r ≤ bn for all n. Since r is in all the intervals, it is also in the

intersection. And since it is also true that sup an ≤ r ≤ inf bn, if sup an = inf bn, then

any point in the intersection must be equal to both.

1.3.3 Archimedes Principle

The integers are not bounded

Theorem 1.47 The set of positive integers is not bounded above.

Proof. We will prove this theorem by contradiction: assume the set of positive integers

is bounded. By Axiom 9 there would be a least upper bound. Let L be this least upper

bound. Then L−1, being less than L, is not an upper bound for the positive integers.

Let N be a positive integer greater than L− 1. We have L− 1 ≤ N =⇒ L ≤ N + 1.

Since L is an upper bound for the set of positive integers and N + 1 is a positive

integer, we also have that L ≥ N + 1. Together this means that L = N + 1. But then

N + 2 is an integer great than L so L couldn’t be a upper bound.

Exercise 1.45 Use Theorem 1.47 to show that the integers are not bounded.

Theorem 1.48 ARCHIMEDES PRINCIPLE For all real numbers ε > 0, there exists a positive

integer N such that
1

N
< ε.

Proof. The negation of this statement is that there exists a positive real number ε,

such that for all positive integers, N,
1

N
≥ ε. But this says that N ≤

1

ε
for all N, or

that the integers are bounded by
1

ε
. This is false so the Archimedes Principle must be

true.

This easy restatement of Archimedes Principle is the first of many squeeze theorems.
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Theorem 1.49 SQUEEZE THEOREM 1 If 0 ≤ h < 1
n

for all n ∈ Z+, then h = 0.

Proof. Assume h satisfies the hypotheses but is not 0. By ARCHIMEDES PRINCIPLE,

Theorem 1.48 , there exist n ∈ Z+ such that 1
n
< h.

Theorem 1.50 GENERALIZED ARCHIMEDES PRINCIPLE For all real numbers x and d > 0,

there exists a positive integer N such that x < N · d.

Proof. Use Archimedes Principle to prove this theorem. Note that Archimedes Prin-

ciple, in turn, follows from this theorem.

Exercise 1.46 Show that Archimedes Principle holds for rational numbers. That is,

prove the following theorem without using the Archimedes Principle.

Theorem 1.51 For all rational numbers, r > 0, there exists a positive integer, N, such

that 0 < 1
N
< r.

Proof.

Exercise 1.47 The following theorem follows from Archimedes Principle using Exercise

1.21. We use it in the next (optional) section and in later work. Prove it.

Theorem 1.52 For all B, h > 0, there exists an integer n > 0 such that
B

2n
< h

Proof. EFS

1.3.4 Optional – Nested Interval Theorem and Archimedes prove the

Completeness Axiom

Theorem 1.53 The Nested Interval Theorem and Archimedes Principle imply the

Completeness Axiom

Proof. Let S be a non-empty set with an upper bound. Construct a sequence of

nested closed intervals, [an, bn], by bisection, so that [an+1, bn+1] ⊂ [an, bn], an ∈ S,

bn an upper bound for S, and |bn − an| ≤ b0−a0
2n
.

• Let a0 be a point in S (S is non-empty!) and let b0 be a upper bound for S If

a0 = b0 this is the least upper bound and we are done, so assume a0 < b0.

• Assume [an, bn] is defined as required. Let m be the mid-point of [an, bn]. There

are two cases:

1. If m is an upper bound for S, let an+1 = an and bn+1 = m.
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2. If m is not an upper bound for S then there exists an+1 ∈ S that is greater

than or equal to m. Note that an+1 ≤ bn because bn is an upper bound for

S. Let bn+1 = bn.

If an+1 = bn+1 this is the least upper bound and we are done, so assume an+1 <

bn+1. Notice that [an+1, bn+1] ⊂ [an, bn] and |bn+1−an+1| ≤ 1
2
|bn−an| ≤ 1

2
b0−a0
2n

=
b0−a0
2n+1

, so the new interval satisfies the requirements.

By THE NESTED INTERVAL THEOREM, all these intervals contain a common point, b. By

ARCHIMEDES PRINCIPLE, b is the only common point: For, if a is another one then 0 <

|b − a| < b0−a0
2n

< 1
n

for all n, this implies b = a by SQUEEZE THEOREM 1.

Claim: b is an upper bound for S. Proof: Suppose not. then there is some a ∈ S
with a > b. By ARCHIMEDES PRINCIPLE, in the form of Theorem 1.52, for some n,

|a − b| > |b0−a0|
2n

= |bn − an| so (removing parentheses) a − b > bn − an > bn − b
(an < b) or a > bn. This shows that a must be an upper bound. a must be the least

upper bound since it is in S. So a ≤ bn all n. a is in all the intervals so a = b.

Supposes b is not the least upper bound, there there exists an upper bound for S, a,

with a < b ≤ bn, for all n. Since a is an upper bound for S, an ≤ a for all n so a is in

all the intervals. a = b again.

So b is the least upper bound for S.

1.3.5 Rational numbers are dense in R

Definition We say that a subset D ⊂ R is dense in R, whenever every open interval

of R contains an element of D.

Exercise 1.48 The following sequence of theorems can be used to prove that the

rational numbers are dense in R. Prove Theorems 1.55 - 1.59.

Theorem 1.54 Any non-empty set of integers that is bounded below has a minimum

number.

Proof. EFS

Theorem 1.55 For every real number, r , there exists a unique integer, n, such that

r < n ≤ r + 1.

Proof. HINT: For r > 0, use well-ordering to find smallest positive integer greater

than or equal to r . This will be n.

Theorem 1.56 For every real number, r , there exists a unique integer, m, such that

m ≤ r < m + 1.



1.3. THE COMPLETENESS AXIOM 41

Proof. EFS

Theorem 1.57 If b > a + 1, then the open interval, (a, b) contains an integers.

Proof. EFS

Theorem 1.58 Q IS DENSE IN R Every non-empty open interval contains a rational

number.

Proof. EFS

Theorem 1.59 Given any real number, α, there exists a rational number arbitrarily

close to α. That is, given ε > 0, there exists a rational number, r , such that |α−r | < ε

Proof. Let r be a rational number in the interval, (α− ε, α+ ε).

1.3.6 Optional – An Alternative Definition of Interval

This section is a mini-lesson on how making good, mathematical definitions can sim-

plify understanding and proving. The problem with our current definition of interval

is that there are too many parts to it. We have to worry about open and closed

endpoints as well as unbounded intervals. A simplified definition may make it easier

to prove things about intervals. The following two theorems exploit a condition that

is simple to use. Reminder: our current definition says that an interval is one of the

following:

(a, b) or [a, b] or (a, b] or [a, b) or (a,∞) or [a,∞) or (∞, b) or (∞, b]

Exercise 1.49 Write all cases for the proof of the following Theorem, 1.60. The

proof is straight forward but tedious because each type of interval must be dealt with

separately.

Theorem 1.60 If S is an interval, then

a, b ∈ S and a < c < b =⇒ c ∈ S. (1.1)

Proof. EFS

What if we used the condition 1.1 from the theorem as the definition of interval?

Would we get the same sets are intervals?

Theorem 1.61 If a set S ⊂ R satisfies condition 1.1, then S is an interval.
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Proof. First, suppose S is bounded. Let z be any point strictly between a = inf S

and b = supS. There is a point, x ∈ S greater than z (otherwise z would be a upper

bound, less than b, the least upper bound) and a point y ∈ S less than z (otherwise z

would be a lower bound, greater than a, the greatest lower bound). By the condition,

z ∈ S. Now (a, b) ⊂ S ⊂ [a, b], so S is an interval by our previous definition.

Second, suppose that S is unbounded above, but not below. Let z be any point

greater than a = inf S. There is a point, x ∈ S greater than z (otherwise z would be

a upper bound for S.) and a point y ∈ S less than z (otherwise z would be a lower

bound, greater than a, the greatest lower bound). By the condition, z ∈ S. Now

(a,∞) ⊂ S ⊂ [a,∞) so S is an interval by our previous definition.

The other two cases are similar.

Notice that this proof depends on the completeness axiom. In the rational numbers,

there are sets that satisfy condition (1.1) but are not intervals in our original definition.

Exercise 1.50 Show that {r ∈ Q : r 2 > 2} satisfies condition (1.1), but it cannot be

written as (a,+∞) for any a ∈ Q.


