Theorem: Bolzano-Weierstrass

Every bounded sequence in \(\mathbb{R} \) has a convergent subsequence.

The proof presented here uses only the mathematics developmented by Apostol on pages 17-28 of the handout. We make particular use of

AXIOM 10 Every nonempty set \(S \) of real numbers which is bounded above has a supremum (least upper bound). Every nonempty set \(S \) of real numbers which is bounded below has an infimum (greatest lower bound).

and

THEOREM I.32 Let \(h \) be a given positive number and \(S \) be a set of real numbers.

If \(S \) has a supremum, then for some \(x \) in \(S \) we have \(x > \sup S - h \), and

If \(S \) has an infimum, then for some \(x \) in \(S \) we have \(x < \inf S + h \)

The idea of the proof of the Bolzano-Weierstrass Theorem is to let \(S \) be the set of all of the terms in the sequence. Since this set is bounded it must have a least upper bound, \(s \). We can then find a converging subsequence by choosing, for each \(n \), an element from \(S \) that satisfies **THEOREM I.32** with \(h = \frac{1}{n} \). We must be careful with each choice to pick a term that is further out the sequence than the last term we picked so that we truly get a subsequence. The trouble is that \(s \) may not be an accumulation point. It may be an element in \(S \) and the only element in \(S \) that satisfies the inequality. Even this would be OK if there were an infinite number of the terms in the sequence were equal to \(s \) – we could make a subsequence of nothing but \(s \)'s which would of course converge to \(s \). We are then left with the possibility that there are a finite number of \(s \)'s among the terms of the sequence. In the proof, we must cope with this possibility repeatedly.

Proof of Theorem

Let \(a_n \) be a bounded sequence and let \(S = \{a_n : n > 0\} \). Since the sequence is bounded, so is \(S \) and so \(S \) has a least upper bound, \(s_0 \), by **AXIOM 10**.
If \(s_0 \not\in S \), find a subsequence that converges to \(s_0 \) using I.32 for \(h = \frac{1}{n} \) for all positive integers \(n \).

If there are an infinite number of \(a_n \)'s that are equal to \(s_0 \), then the constant sequence, \(s_0 \), is a converging subsequence and we are done.

Otherwise, there are a finite number of \(a_n \)'s in \(S \) that are equal to \(s_0 \). Pick \(N_1 \) large enough so that \(s_0 \) is not in the set \(S_1 = \{ a_n : n > N_1 \} \). \(S_1 \) is bounded because it is a subset of the bounded set, \(S \). It has a least upper bound, \(s_1 \) and \(s_1 < s_0 \). As above, we can either find a subsequence that converges to \(s_1 \) or there are a finite number of the \(s_1 \)'s in \(S_1 \). In the first case, we are done, otherwise we continue by defining \(S_2 = \{ a_n : n > N_2 \} \) and it’s supremum, \(s_2 \), with \(s_2 < s_1 < s_0 \).

We continue inductively. At any stage, \(m \), we either find a converging subsequence, or we let \(S_m = \{ a_n : n > N_m \} \) and it’s supremum, \(s_m \), with \(s_m < s_{m-1} < \cdots < s_1 < s_0 \).

If we never find a supremum that is an accumulation point or a supremum that occurs an infinite number of times, we the process continues indefinitely. We are left with a decreasing subsequence, \(s_n \), of our original sequence. Being a subsequence of \(a_n \) it is bounded below and therefore has a greatest lower bound, \(t \). Because \(s_n \) is decreasing, \(t \) cannot be an element of the set \(T = \{ s_n : n > 1 \} \). (Otherwise it would be greater than the next term in the sequence and hence not a lower bound). So we proceed, via the second part of I.32 to find a subsequence that converges to \(t \). And then we are truly done.