Morgan problem #3, Chapter 1

Which of the following statements are true?

a. For all \(x \) there exists a \(y \) such that \(y > x^2 \). TRUE
 Proof: Given any value of \(x \), let \(y = x^2 + 1 \) so that \(y > x^2 \).

b. There exists a \(y \) such that for all \(x \), \(y > x^2 \). FALSE
 Proof: To show it is false, we must show that given any \(y \), there are values of \(x \) that make the inequality false, i.e. \(x^2 \geq y \). If \(y \) is any positive real number, let \(x = y + 1 \), then \(x^2 = y^2 + 2y + 1 > y \). (I have to fuss with the \(y + 1 \) to handle the case where \(y < 1 \).) On the other hand, if \(y \leq 0 \) then \(x^2 \geq y \) for any value of \(x \).

 Note that this is just another way of saying that \(\{ x^2 : x \in \mathbb{R} \} \) is unbounded.

c. There exists a \(y \) such that for all \(x \), \(y < x^2 \). TRUE
 Proof: We only have to give one value for \(y \) and then show that the inequality holds for all \(x \). Let \(y = -1 \) (or any negative number). Since \(x^2 \) is always positive, \(x^2 > y \).

d. For all \(a, b, c \), there exists an \(x \) such that \(ax^2 + bx + c = 0 \) FALSE
 Proof: We only need to show one instance of \(a, b \) and \(c \) and show that no values of \(x \) make the equality true. Let \(a = 1, b = 1 \) and \(c = 1 \). The equation \(x^2 + x + 1 = 0 \) has no real solutions because the discriminant (\(b^2 - 4ac \)) is negative.