Week 6. Transformations in a coordinate system

Review:

Workshop Geometry: Unit 1, lesson 2: Pay particular attention to the parts about using grid paper. Come to class with plenty of graph paper

Problem of the Week: Architectural Arches

See handout, Discovery Project 4

Translations and three Reflections

Whenever possible, do these problems in three ways: making a table, using a graph and modifying a formula. Use your calculator liberally.
106. Start with the circle $\left\{(x, y): x^{2}+y^{2}=9\right\}$. Translate the circle so that the center is at $(3,4)$. Write an equation for the translated circle.
107. Start with the graph of the absolute value function, $\{(x, y): y=|x|\}$. Translate the graph 4 units to the right. What is the formula for the translated function? Can you give a geometric interpretation of this new function in terms of distances? Make a table of values for both the original and the translated function.
108. Start with the graph, $\{(x, y): y=|x-2|\}$. Translate the graph 4 units to the left. What is the formula for the translated function? Make a table of values for both the original and the translated function.
109. Start with the function, $\{(x, y): y=|x|\}$. Translate the graph so that the vertex is at $(a, 0)$. What is the equation of the new function? What is the difference in the graph if a is positive or negative?
110. Start with the function, $\{(x, y): y=|x|\}$. Translate the graph so that the vertex is at $(0, b)$. What is the equation of the new function? What is the difference in the graph if b is positive or negative?
111. Start with the parabola, $\left\{(x, y): y=x^{2}\right\}$. Translate the graph 3 units to the right. What is the formula for the translated function? Make a table of values for both. Explain how the table of values shows the translation.
112. Start with the parabola, $\left\{(x, y): y=x^{2}\right\}$. Translate the graph 2 units to the left. What is the formula for the translated function? Make a table of values for both. Explain how the table of values shows the translation.
113. Start with the parabola, $\left\{(x, y): y=x^{2}\right\}$. Translate the graph 3 units to down. What is the formula for the translated function? Make a table of values for both. Explain how the table of values shows the translation.
114. Start with the parabola, $\left\{(x, y): y=x^{2}\right\}$. Translate the graph 3 units to up and 2 units to the left. What is the formula for the translated function? Make a table of values for both. Explain how the table of values shows the translation.
115. Start with the parabola, $\left\{(x, y): y=x^{2}\right\}$. Translate the graph so the vertex of the parabola is now at $(2,-4)$. What is the formula for the translated function? Make a table of values for both. Explain how the table of values shows the translation.
116. Start with the parabola, $\left\{(x, y): y=x^{2}\right\}$. Translate the graph so that the vertex is at (h, k). What is the equation of the new parabola?
117. Use problem 116 to find the equation of a parabola that has it's vertex at the point $(-1,10)$.
118. Find the number c such that the vertex of the parabola $y=x^{2}+8 x+c$ lies on the x-axis.
119. Find a formula for a function whose graph is the reflection about the x-axis of $\left\{(x, y): y=x^{2}\right\}$. Make a table of values for both. Explain how the table of values shows the reflection.
120. By reflecting and then translating the graph of $\left\{(x, y): y=x^{2}\right\}$. Find the formula for a parabola that turns down and has a vertex at $(1,4)$.
121. In the previous problem, what happens if you first translate and then reflect. Do you get the same result?
122. Find a formula for a function whose graph is a parabola that turns up and has a vertex at the point (k, h).
123. Find a formula for a function whose graph is the reflection about the y-axis of $\left\{(x, y): y=x^{3}\right\}$.
124. Find a formula for a function whose graph is the reflection about the y-axis of $\{(x, y): y=\sqrt{x-1}\}$.
125. A function whose graph is symmetric about the y-axis is called an "even" function. Give two examples of even functions.

Stretching and Enlargements

126. The graph of a parabola is obtained from the graph of $y=x^{2}$ by vertically stretching away from the x-axis by a factor of 2 . What is the equation for this parabola?
127. The graph of a parabola is obtained from the graph of $y=x^{2}$ by vertically shrinking towards the x-axis by a factor of 2 . What is the equation for this parabola?
128. For parabolas, explain why stretching in the y-direction (away from the x-axis) looks like shrinking in the x-direction (towards the y-axis).
129. Start with a circle, $x^{2}+y^{2}=1$, and stretch it by a factor of 3 in the x-direction. What is the equation of the resulting ellipse?
130. Start with a circle, $x^{2}+y^{2}=1$, and stretch it by a factor of 3 in the x-direction and by a factor of 2 in the y-direction. What is the equation of the resulting ellipse?
131. Start with $f(x)=x^{2}+2$, then write the rule of a function whose graph is the graph of f but shifted 5 units to the left and 4 units up.
132. Start with $f(x)=x^{2}+2$, then write the rule of a function whose graph is the graph of f but first shrunk by a factor of 2 towards the y-axis and then shifted 5 units to the left and 4 units up. do you get the same resulting function if you shrink after the translations?

Reflections through $y=x$
133. Start with the line $y=2 x$. Reflect the graph through the line $y=x$. Write a function to graph the reflected line. Repeat for the following lines item $y=3 x$ item $y=2 x+3$. item $y=-x+1$. item $y=5 x-2$. Make a conjecture about the slope of the reflected line?
134. Start with the parabola $y=x^{2}$. Reflect the graph through the line $y=x$. Can you write a formula for the function this reflected graph?
135. Explain the graph of the function, $f(x)=\sqrt{x-1}$, in terms of a reflection and a translation.
136. Start with the parabola $y=x^{2}+5$. Reflect the graph through the line $y=x$. Can you write a function to graph this reflection? Can you write two functions that will graph this reflection?
137. Start with the parabola $y=-2 x^{2}+1$. Reflect the graph through the line $y=x$. Can you write a function to graph this reflection? Can you write two functions that will graph this reflection?
138. Explain the graph of the function, $f(x)=1+\sqrt{x-3}$, in terms of translations and a reflection.

