The fundamental theorem of calculus

TA: Sam Cole

11/20/14

In problems 1-6:

(a) Find an antiderivative F(x) of the integrand f(x). In other words, evaluate $\int f(x)dx$.

(b) Use the FTC to evaluate the definite integral.

1.
$$\int_{-2}^{2} (x^2 - 4) dx$$

3.
$$\int_0^4 x(x-2)(x-4)dx$$

3.
$$\int_0^4 x(x-2)(x-4)dx$$
 5. $\int_{-\pi/2}^{\pi/2} (\cos x - 1) dx$

$$2. \int_0^{\ln 8} e^x dx$$

4.
$$\int_0^{1/2} \frac{dx}{\sqrt{1-x^2}}$$

6.
$$\int_{1}^{2} \frac{3}{x} dx$$

In problems 7-9:

(a) Sketch the graph of f(x) on the given interval.

(b) Shade the region bounded by f(x) and the x-axis.

(c) Find the area of the region. Note: areas should always be nonnegative!

7.
$$f(x) = 1/x$$
; [1, 2]

8.
$$f(x) = \cos x$$
; $[\pi/2, \pi]$ 9. $f(x) = x^3 - 1$; $[-1, 2]$

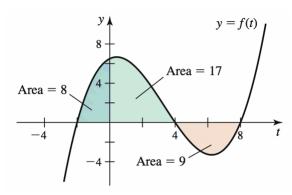
9.
$$f(x) = x^3 - 1; [-1, 2]$$

Simplify:

10.
$$\frac{d}{dx} \int_3^x (t^2 + t + 1) dt$$

12.
$$\frac{d}{dx} \int_x^1 \sqrt{t^4 + 1} dt$$
 (Hint: reverse limits of integration)

11.
$$\frac{d}{dx} \int_2^{x^3} \frac{dt}{t^2}$$
 (Hint: chain rule)


13.
$$\frac{d}{dx} \int_{-x}^{x} \frac{dt}{t^2+1}$$
 (Hint: split into two integrals)

$$14. \ \frac{d}{dx} \int_{e^x}^{e^{2x}} \ln t^2 dt$$

15. Let $A(x) = \int_{-2}^{x} f(t)dt$ and $F(x) = \int_{4}^{x} f(t)dt$. Use the picture to evaluate the following:

- (a) A(-2) (b) F(8)
- (c) A(4) (d) F(4)
- (e) A(8)
- (g) A'(0) (approximately)

- (f) F'(8)

