Definite integrals

TA: Sam Cole

11/18/14

You man not use the fundamental theorem of calculus for this worksheet!

- 1. Suppose $f(x) \ge 0$ on [a, b]. What is the geometric meaning of $\int_a^b f(x) dx$? What if f(x) is not ≥ 0 on all of [a, b]?
- 2. Sketch the graph of $f(x) = x^3$ on [-1, 2]. Then approximate the net area bounded by f(x) and the x-axis using a left, right, at midpoint Riemann sum with 4 subintervals.
- 3. Use the picture to evaluate the integrals:

(a)
$$\int_0^a f(x)dx$$
 (b) $\int_0^b f(x)dx$ (c) $\int_a^c f(x)dx$

- 4. Use geometry to evaluate $\int_0^4 \sqrt{16 x^2} dx$.
- 5. Use properties of integrals to evaluate the following integrals, given that $\int_0^3 f(x)dx = 2$, $\int_3^6 f(x)dx = -5$, and $\int_3^6 g(x)dx = 1$.
 - (a) $\int_0^3 5f(x)dx$ (b) $\int_3^0 f(x)dx$ (c) $\int_3^6 (3f(x) g(x))dx$
- 6. Suppose $f(x) \ge 0$ on [0,2], $f(x) \le 0$ on [2,5], $\int_0^2 f(x) dx = 6$, and $\int_0^5 f(x) dx = -2$. Evaluate the following:
 - (a) $\int_{2}^{5} f(x) dx$ (b) $\int_{0}^{5} |f(x)| dx$ (c) $\int_{2}^{5} 4|f(x)| dx$ (d) $\int_{0}^{5} (f(x) + |f(x)|) dx$
- 7. Consider the function $f(x) = h(\frac{x}{b})^p$, where b, h, and p are constant.
 - (a) Sketch the cases p = 1, 2, 3 on the interval [0, b] on a single set of coordinate axes.

- (b) What well known formula gives $\int_0^b f(x) dx$ when p = 1?
- (c) Consider the case h = b = 1, p = 2, i.e. $f(x) = x^2$. Recall that

$$\int_0^1 x^2 dx = \lim_{n \to \infty} (\text{midpoint Riemann sum with } n \text{ subintervals}).$$

Use a midpoint Riemann sum with 2 subintervals to approximate $\int_0^1 x^2 dx$. Now do the same using 3 subintervals, then 4 subintervals, then 5 subintervals, etc. What appears to be the value of $\int_0^1 x^2 dx$?

- (d) Make a conjecture about the value of $\int_0^b f(x)dx$ for h, b, and p in general. How does the area under f(x) on [0, b] compare with that of a $b \times h$ rectangle?
- 8. Consider $f(x) = x^2$ on [0, 1].
 - (a) Write the formula for the right Riemann sum with n subintervals, using Σ notation.
 - (b) Evaluate $\int_0^1 x^2 dx$ by taking the limit of the right Riemann sum as $n \to \infty$. Compare with your answer to 7c. Hint: use the identity

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$