L'Hôpital's rule

TA: Sam Cole

11/11/14

In problems 1-6:

- (a) Write the indeterminate form you get when you try to evaluate the limit by substitution. It must be 0/0 or $\pm \infty/\infty$ in order to use L'Hôpital's rule.
- (b) Use L'Hôpital's rule to evaluate the limit.

Note: you may need to apply L'Hôpital's rule multiple times in order to convert the limit into a form that is easy to evaluate. You must check *each time* that it is one of the two allowable indeterminate forms.

1.
$$\lim_{x \to 2} \frac{(3x+2)^{1/3}-2}{x-2}$$

2. $\lim_{x \to \infty} \frac{4x^3-2x^2+6}{\pi x^3+4}$
3. $\lim_{x \to \pi/2} \frac{2\tan x}{\sec^2 x}$
4. $\lim_{x \to 0} \frac{\tan 4x}{\tan 7x}$
5. $\lim_{x \to 0} \frac{1-\cos 3x}{x^2}$
6. $\lim_{x \to 1} \frac{x^n-1}{x-1}$ (*n* is a positive integer)

7. Evaluate the following limit:

$$\lim_{x \to 1^{-}} (1-x) \tan\left(\frac{\pi x}{2}\right).$$

Hint: rewrite the *product* as a *quotient* and apply L'Hôpital's rule. Make sure you verify that you have one of the two acceptable indeterminate forms before applying the rule.

8. Evaluate:

$$\lim_{x \to \infty} (x - \sqrt{x^2 + 1}).$$

Hint: write as $\frac{x-\sqrt{x^2+1}}{1}$ and rationalize the numerator.

9. Evaluate:

$$\lim_{x \to 0^+} \left(\cot x - \frac{1}{x} \right).$$

Hint: write $\cot x$ as $\cos x / \sin x$, then find the common denominator with 1/x and write as a single fraction.

- 10. Let $f(x) = x^{2x}$. We will evaluate $\lim_{x\to 0^+} f(x)$.
 - (a) Let $g(x) = \ln f(x)$.
 - (b) Rewrite g(x) as a quotient and use L'Hôpital's rule to evaluate $\lim_{x\to 0^+} g(x)$.
 - (c) Since e^x is a continuous function,

$$\lim_{x \to 0^+} e^{g(x)} = e^{\lim_{x \to 0^+} g(x)}.$$

Use this fact to evaluate $\lim_{x\to 0^+} f(x)$.

11. We say that g(x) grows faster than f(x) if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$$

Use L'Hôpital's rule to show that 1.000001^x grows faster than x^{10000} . Why do you think people use the term "exponential" to refer to quantities that grow very rapidly?