PBR vs. Keystone Light An application of differentials

March 6, 2015

If you're not familiar with cheap beer, most canned beers, including Pabst Blue Ribbon (PBR), are sold in 12-oz cylindrical cans with radius ≈ 1 in and height ≈ 5 in. Some, however, such as Keystone Light, come in slightly taller, thinner cans (but still have a volume of 12 oz). This is a marketing ploy used by the company that produces Keystone: a can of Keystone "looks bigger" than a can of PBR because it's somewhat taller but only slightly thinner. So what's the deal?

(a) A can of PBR

(b) A can of Keystone Light

Figure 1: Which can appears to be bigger?

Recall that the volume of a cylinder is given by

$$
V(r, h)=\pi r^{2} h
$$

Then the partials of $V(r, h)$ are

$$
V_{r}(r, h)=2 \pi r h, V_{h}(r, h)=\pi r^{2}
$$

Now imagine that you have a standard size beer can $(r=1, h=5)$ and you want to vary the dimensions slightly while keeping the volume the same. The equation relating the differentials $d V, d r, d h$ is

$$
\begin{aligned}
d V & =V_{r}(1,5) d r+V_{h}(1,5) d h \\
& =10 \pi d r+\pi d h
\end{aligned}
$$

So we see that volume is 10 times more sensitive to changes in radius than changes in height! Therefore, if we want to keep volume the same, we have

$$
0=\Delta V \approx 10 \pi \Delta r+\pi \Delta h
$$

hence

$$
\Delta h \approx-10 \Delta r
$$

Thus, if we decrease the radius by ϵ (i.e., $\Delta r=-\epsilon$) it allows us to increase the height by about 10ϵ without changing the volume. For example, if we decrease the radius by just $1 / 20$ in, which is barely noticeable, we can increase the height by about $1 / 2$ in, which is very noticeable! The result is a can with radius .95 in and height 5.5 in, which will appear to be about the same radius as a PBR can but $1 / 2$ in taller!

This example was adapted from a very nice book by Susan Colley [1], who was my calc. 3 professor when I was an undergrad.

References

[1] Susan Jane Colley. Vector Calculus. Pearson, 4th edition, 2011.

