
MCL summer workshop in graph theory

Lab 1

6/21/16

Programming exercises

We will be using Python for most of our programming in this workshop. If
you’ve never used Python before, take a look at this tutorial: https://www.

codecademy.com/learn/python.
On the other hand, if you are already a Python pro, then try your had at

these exercises!

Problem 1: a simple graph class

Let’s create a simple Graph class. Your representation of a graph G will be
based on its adjacency matrix, a 2D array whose (i, j)th entry is True if G has
an edge connecting vertices i and j, False otherwise.

Your class should contain the following methods (test each one as you go
along!):

• A constructor which takes a parameter n and constructs a new graph
with n vertices (labeled 0 through n− 1) and no edges. Your constructor
should initialize an n × n array A whose entries are all False, and an
integer numEdges initially set to 0.

• hasEdge(self , i, j): return True if the graph has an edge connecting ver-
tices i and j, False otherwise.

• addEdge(self , i, j): add an edge connecting vertices i and j, i.e. set the
(i, j)th entry of the adjacency matrix to True. hasEdge(i, j) should
always return the same thing as hasEdge(j, i) (why?), so make sure
you set the (j, i)th entry of the adjacency matrix to True, too!

Before setting the (i, j)th entry of the matrix to True, you should check
its current value. If it’s already True, then there’s already an edge there,
so there’s nothing to do. But if you are changing it from False to True,
then you really are adding an edge, so you should add 1 to self .numEdges.

1

https://www.codecademy.com/learn/python
https://www.codecademy.com/learn/python


0

2

1
3

Figure 1: Use this graph to test your program!
.

• removeEdge(self , i, j): you’re a smart person; you can figure out what
this is supposed to do!

• neighbors(self , i): return an array of vertex i’s neighbors, i.e. the other
vertices connected to vertex i. For example, for the graph in Figure 1
neighbors(1) should return [0, 2, 3], and neighbors(3) should return
[1].

• degree(self , i): return the degree (number of neighbors) of vertex i. For
the graph in Figure 1, degree(1) should return 3, and degree(3) should
return 1. Hint: you’ve already done most of the work!

• str (self ): return a string containing each vertex and its list of neigh-
bors. For the graph in Figure 1, this should look something like
0: 1 2

1: 0 2 3

2: 0 1

3: 1

Problem 2: special types of graphs

Add the following functions to your program (outside the Graph class):

• CompleteGraph(n): return a complete graph with n vertices, i.e. a
graph containing all possible edges. This does not included edges from
a vertex to itself. Thus, hasEdge(i, i) should always be False. See
Figure .

• Path(n): return a path of length n, a graph with n vertices and edges
from vertices 0 to 1, 1 to 2, . . ., and n− 2 to n− 1 (see Figure 3).

• Cycle(n): return a cycle of length n, a graph with n vertices and edges
from vertices 0 to 1, 1 to 2, . . ., n−2 to n−1 and n−1 to 0 (see Figure 3).
Hint: a cycle is a path with one extra edge!

• RandomGraph(n): create a graph with n vertices. Then, for each pair of
vertices flip a coin; if heads, add an edge between those vertices. You can

2



0

1 2

3

Figure 2: A complete graph on 4 vertices has 6 edges: 01, 02, 03, 12, 13, and 23.

0 1 2 3

0

1 2

3

Figure 3: A path of length 4 (left) and a cycle of length 4 (right).

do this by importing the module random and using random.randint(0,

1), with 0 corresponding to tails and 1 to heads.

You should not add edges from a vertex to itself, and be careful not to flip
a coin for both (i, j) and (j, i) (since these are the same pair of vertices).

Each of these functions should create a new Graph object and add the ap-
propriate edges with addEdge().

Math exercises

Let’s say you generate a random graph on 4 vertices by flipping a fair coin for
each pair of vertices and adding an edge between that pair if it comes up heads.
Compute the following probabilities:

1. Pr(G = K4) (i.e., all possible edges)

2. Pr(12 and 23 are edges)

3. Pr(12 and 23 are the only edges)

4. Pr(G has exactly 2 edges)

How do your answers change if the coin is not fair (say Pr(H) = 1/3)?

3


