DETERMINACY EXERCISES DAY 2

PROBLEM 1. Show the following.

1. $|2^{\omega}| = |\omega^{\omega}| = |\mathbb{R}| = |\mathbb{R} \times \mathbb{R}|.$

2. $|\mathbb{R}^{\omega}| = |\mathbb{R}|.$

3. (Uses choice.) If X is infinite, then $|X| = |X \times X| = |X^{<\omega}|$.

4. (Uses choice.) κ^+ is regular, for all infinite cardinals κ .

PROBLEM 2. Show AD implies $AC_{\omega}(\mathbb{R})$.

PROBLEM 3. Assume $\mathsf{AC}_{\omega}(\mathbb{R})$. Suppose $\{A_n\}_{n \in \omega}$ is a collection of non-empty countable sets of reals. Show $\bigcup_{n \in \omega} A_n$ is countable.

PROBLEM 4. Show $\mathsf{AC}_{\omega}(\mathbb{R})$ is equivalent to the following seemingly weaker principle: For all countable collections $\{A_n\}_{n\in\omega}$ of non-empty sets of reals, there is some infinite $I \subseteq \omega$ and $f: I \to \bigcup_{n\in I} A_n$ with $f(n) \in A_n$ for every $n \in I$.

PROBLEM 5. Let $\kappa > \omega$ be a regular cardinal. Show that if $\langle C_{\xi} \rangle_{\xi < \alpha}$ is a sequence of clubs in κ with $\alpha < \kappa$, then $\bigcap_{\xi < \alpha} C_{\xi}$ is club in κ .

PROBLEM 6. Let $\langle A_{\alpha} \rangle_{\alpha < \kappa}$ be a sequence of subsets of a regular cardinal $\kappa > \omega$. The **diagonal intersection** of this sequence is the set

$$\triangle_{\alpha < \kappa} A_{\alpha} = \{ \alpha < \kappa \mid \alpha \in \bigcap_{\beta < \alpha} A_{\beta} \}.$$

Show the diagonal intersection of a sequence of clubs in κ is club in κ .

DEFINITION. A set $S \subseteq \kappa$ is stationary if for every club C in $\kappa, S \cap C \neq \emptyset$.

PROBLEM 7. Let S be a stationary subset of a regular cardinal $\kappa > \omega$. Show if $F: S \to \kappa$ is a function such that $F(\alpha) < \alpha$ for all $\alpha \in S$, then there is a stationary set $S' \subseteq S$ on which F is constant.

PROBLEM 8. Let $A \subseteq \omega_1$. Define a game $G_c(A)$ played on ω_1 as follows: Players I and II take turns to produce a sequence of ordinals $\xi_0 < \xi_1 < \xi_2 < \ldots$ with each $\xi_n < \omega_1$. Player I wins if and only if $\sup_{n < \omega} \xi_n \in A$. Show the game $G_c(A)$ is determined if and only if A either contains or is disjoint from a club in ω_1 .