DETERMINACY EXERCISES WEEKEND 2

PROBLEM 1. This problem fulfills an old promise to prove the Gale-Stewart theorem without choice. For simplicity's sake, we consider a closed game G(C) played on $\omega^{<\omega}$; so there is a tree T with C = [T].

1. Define a function $F: \mathcal{P}(\omega^{<\omega}) \to \mathcal{P}(\omega^{<\omega})$, by

$$F(X) = \{ s \in \omega^{<\omega} \mid \ell(s) \text{ is even, and } (\forall n) (\exists m) s^{\frown} \langle n, m \rangle \text{ is in } X \text{ or not in } T \}.$$

Recursively define $X_0 = \emptyset$, and $X_\alpha = F(\bigcup_{\eta < \alpha} X_\eta)$.

- Show there is an ordinal $\Omega < \omega_1$ so that $X_{\Omega} = X_{\Omega+1}$.
- 2. Show that if $\emptyset \in X_{\Omega}$, then Player II has a winning strategy in G(C).
- 3. Show that if $\emptyset \notin X_{\Omega}$, then Player I has a winning strategy in G(C).
- 4. Observe the same argument proves Gale-Stewart for a tree $T \subseteq X^{<\omega}$, assuming only that X can be well-ordered.

PROBLEM 2 (Steel, Van Wesep). Assume AD; then self-dual Wadgewise sets are selfdual Lipschitzwise (that is, if $A \leq_W \neg A$ then $A \leq_L \neg A$).

Hint: Supposing not, imitate the proof that the Wadge hierarchy is well-founded, using an infinite list of Wadge games being played simultaneously. By assumption, we have a strategy τ_1 winning for Player II in $G_W(A, \neg A)$; let τ_0 be the easy winning strategy for Player II in $G_W(A, A)$. To produce moves for Player I, try "padding" with extra Lipschitz boards between the Wadge boards, using the winning strategy σ for Player I in $G_L(A, \neg A)$. (It may be informative to first assume τ_1 is 2-Lipschitz—that is, it passes only on every other move.)

PROBLEM 3. Assume the Steel-Van Wesep theorem. Show:

- 1. If $\langle A_n \rangle_{n \in \omega}$ is a sequence such that for all $n, A_n \leq_W B$, then also $\bigoplus_{n \in \omega} A_n = \bigcup_{n \in \omega} \{\langle n \rangle^{\frown} x \mid x \in A_n\} \leq_W B$.
- 2. A non-self-dual Wadge degree consists of a single non-self-dual Lipschitz degree; its W-successor is self-dual.
- 3. A self-dual Wadge degree is a union of ω_1 self-dual Lipschitz degrees; its W-successor is non-self-dual.
- 4. Wadge degrees of countable cofinality are self-dual; Wadge degrees of uncountable cofinality are non-self-dual.